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Abstruct — CNNS constitute a class of spatially discrete, non-

linear dynamic systems. Once the inputs and the states are ini-

tialized, the dynamic of a CNN is determined by a set of para-

meters, so-called templates. We investigate issues concerning
the dynamic behavior of a CNN due to variations in template

values. In particular, we derive, based on the output invariance

at the equilibrium, upper bounds for these variations. Further-

more, a general design approach for robust templates is pro-

posed.

1. Introduction

Cellular neural networks (CNNS) constitute a class of non-
linear, dynamic systems with local interaction. In contrast to
other interconnected neural networks, CNNS may be more
suitable for implementations in analog VLSI technology
[1,2,3]. For a 2 dimensional CNN, the dynamic behavior of
the ij-th unit or cell is governed by a first order differential
equation, namely

~ dxij
–: Xj” + ~Uij,k/ sat(xkf)+ Zij‘= RJk[dt

(1)

M-xi,j) = ~ {I%j+ 11– bij- It},

where aij,~l are the feedback parameters, and Iij is a cell-
dependent bias which is usually taken to be of the following
form

Iij = ~ bij,k[Ukl+ [ , (2)
kl

where uk/ is the inputs of the ij-th cell. The output of each
cell is by definition sat(xi;). Henceforth,we normalizeR =
C=l.

Analog realizations of(1) are inevitably subject to a num-
ber of restrictions which may alter the dynamic behavior of
(1) severely. Specifically, we point out two of these limita-
tions. First, let a be any one of the CNN parameters. As-
sume that for (1) to perform a specific task, et has to be set

to some nominal value u“. Due to the limited accuracy of
analog implementation, the actual value of o!will be

ct=ct* *&.

Simulations and measurements [1,2] show that &is typically
in the region of 1–5% of the absolute value of ct. Second,
limitation is dynamic mismatch among cells. This is largely
due to the fact that different values of parameters may cause
the cells to exhibit different transient behavior; in the absence
of robust templates, this renders parallel operation of identi-
cal cells invalid.

In view of these restrictions, one is faced with the ques-
tion to what extent a specific task admits robust templates,
and, assuming that they exist, how to obtain them. Before
proceeding, we shall elaborate in some detail on the notion
of robustness. Assume there exists a nominal vector p* of
parameters which performs some specific task. We denote
p* to be &-robust (E z O) if the set of vectors Cc(p*) in the
parameter space

Cc(p*) = {p; Ilp–pull- < E}

leads to the same stable equilibrium output as p*. Note that
we require only the outputs at the equilibrium to be the same.
The actual states may be different, however, they have to be-
long to the same saturation region. Furthermore, by taking
the maximum norm II.11~~we allow all the components of p*

to have the same amount of uncertainty, namely E. In prac-
tice, due to their underlying analog realization, some para-
meters may be more robust than others. Therefore, by choos-
ing II. //,WUwe take care of the worst case. In the following
we deriveupperboundsfor&andproposea designapproach
for robust templates based on the assumption that the corre-
sponding task can be realized by monotonic state trajectories.
We further incorporate the desired robustness in the design
of templates. By doing this, we obtain a region of the para-
meter space within which any vector will solve the specific
task with the desired robustness.
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II. Upper Bounds

Ideally, a measure of robustness would be one that allows
the CNN parameters to vary within some bounds, such that
the resulting new equilibrium is still in the same saturation
region as the original one. For such a measure we would,
however, have to be able to keep track of the CNN transients
until they start to converge in the desired saturation region.
To avoid the need to determine the transient trajectories, we
derive upper bounds for a given set of templates by consid-
ering only the asymptotic behavior of the CNN. The limita-
tions that this implies will be discussed later.

In the following we consider those tasks for which the
CNN admits an equilibrium point in some saturation region.
Introducing matrix notation, (1) can be written as

x(t) = –x(t) + A sat(x(t)) + Bu + i, (3)

where the matrices A, B and the vector i contain the corre-
sponding parameters aij, bij and I of a spatially invariant
CNN, respectively. Spatially invariant CNNS constitute a
class of CNNS where the connecting weights of each cell
with its neighbor cells are independent of the cell’s position.
We assume now that for some fixed input and initial values
the templates A, B, i perform some specific task successfully.
Consider deviations from these templates of the following
form:

A+6A, B+8B, i+8i.

We seek to find bounds on

6A, 6B, i3i,

such that the output xneWof the perturbed system, with the
same input and initial values, for t >> 1 satisfies the output
invariance property

sat(xn.W)= sat(x). (4)

For this, let x,,ew = x +11, for some yet undetermined vector
valued function q. By inserting this into equation (3) we get

~(t) = –n(t) + (A + 3A) sat(x~.~(t)) – A sat(x(t))

+?iBu+8i. (5)

To proceed further we assume (4) to be true and integrate (5)
to obtain

q(t) = e-ff-rfJJ~(to) + 5A sat(x(t)) + 6Bu -1-&,

where to is such that (4) holds for all t> to.Note that the last
equation describes q(t) only for t a fo. Letting t + 00we get

~=6Asat(x*) +6Bu+6i,

where

x* = ylilx(t) .

Inserting II back into (4) leads to

sat(x’ + 5A sat(x’ ) + 6Bu + ~i) = sat(x”) ,

which, for x* in a saturation region, is equivalent to the fol-
lowing conditions

i) Ix*+ 5A sat(x”) + 5Bu + fiil 2 1

ii) sign(x’ + 6A sat(x”) + i5Bu+ /ii)= sign(x”) ,

where 1 is a vector with all its entries equal to 1. Equa-
tions (i–ii) are to be understood component-wise, further,
they contain the desired bounds on perturbation parameters
in an implicit form. This will be demonstarted below by
means of a typical CNN application, namely that of horizon-
tal line detection (HLD). Note that since we take the same
initial and input values for the unperturbed as well as for the
perturbed system, the bounds obtained this way depend only
on the template parameters. Although for any perturbation
of the parameters exceeding these bounds the CNN will fail
to converge in the desired saturation region, meeting these
bounds does not in general guarantee the output invariance
proparty. This is due to the fact that the derivation of these
bounds does not take into account the transient behavior of
the cells. However, for the class of tasks that are performed
by CNNS admitting monotonic state trajectories, it can be
shown that these bounds are sufficient as well.

The information conveyed by these bounds can be used
to compare different sets of predesigned templates, each of
which solves the same specific task, in terms of their degree
of robustness. If the permissible uncertainty of a set turns
out to be less than about 590(imposed by analog implemen-
tation),they will be precluded for use in analog applications.

The following choice of templates provides us with a min-
imal set of parameters needed to perform HLD

()

000

A= aba B=O i=c. (6)

000

In contrast to the bold face notation the matrices A,B and the
scalar i denote the cloning templates of a spatially invariant
CNN. Let us now assume, in agreement with our previous
definition of robustness, that all parameters are subject to the
same amount of maximum deviation&, i.e.,

[

*E *E

*E +s *&

]()

*E

/jA = “. “. “. ,~i= :. . .

\

*E *E *E *E
*& &&

and 6B = O. Substituting these into (i-ii) leads to the follow-
ing bounds

O < &< ~ (~jll(lX~jl)– 1) . (7)
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Equation (7) gives the desired upper bound for the set of tem-
plates A,B, i which lead to x*.
In the followng we compare 3 different sets of templates,
each of which solves the HLD problem, in terms of their ro-
bustness:
a)

()

000
A= 121 B=O i= -1,

000

b)

‘=($ ‘~’ ~’) ‘=oi=-o-’

and c)

()

000
A= 373 B=O i=–4.

000

Simulations were carried out by initializing all three template
sets with a given binary image, with white (represented by
– 1)corresponding to the background. The binary image was
chosen such that it contained all possible configurations that
may occur in a HLD task. This is crucial to the fact that the
bounds obtained this way will then be independent of the in-
put binary image. Further, the boundary cells were set to the
fixed value of zero. After convergence was reached, the min-
imum over l$j Iwas found for each set in order to determine
E. The following results were obtained:

&=() for a)
E <0.0625 for b)
&<0.5 for c).

Clearly, set a) cannot be robust. Indeed, simulations show
that the correct operation is very sensitive to 1, namely be-
low 10-5. Further, the set b) is still rather sensitive. The tol-
erance required by analog implementation, i.e., 5 % of the
nominal value of the parameters, cannot be guaranteed here.
By contrast, set c) is the most likely set of the three sets to be
robust. Random variations of these values show a robustness
ofupto&=o.5.

III. Robust Templates

In [4,5] a design approach to robust templates based on in-
scribing a maximal norm-body in a polytope, given by the
design constraints, was introduced. We explore here the mo-
notony property to obtain robust templates. Our approach is
demonstrated in detail in the example of HLD. The proposed
approach can be applied to other tasks of interest as well, in-
sofar as they permit the design of robust templates by the mo-
notony assumption about the states [6]. In what follows, we

restrict ourselves to binary input and output data. Note that
once we have robust template parameters the restriction of
binary inputs can be relaxed to allow noisy inputs with the
noise variance being dependent on the degree of the robust-
ness.

From (1) and (6) we obtain the following differential equa-
tion for each cell

dxij

x
= –~ij + a sat(xij_ 1) + b Sat(xjj)+ a stit(Xij+l ) + c.

Depending on the initial state of a cell and its neighboring
cells, the desired performance can be obtained if we can im-
pose one of the following equations simultaneously for all
cells

a Sat(Xij_ ] ) + b Sd(Xij) + a Sat(Xij+I ) + C < Xij (8)

a sat(~ij–l)+ b sat(~ij)+ a sat(~ij+l)+ c > Xij. (9)

To guarantee binary outputs, i.e., [xj/ >1, insteadof (8-9)
we require

a Sd(xij-l)+ b sat(~ij)+ a Sat(xij+l)+ c < – 1 (lo)

a Sat(xij–1)+ b sd(~ij)+ a sat(xl,i+l) + c >1. (11)

Clearly, (10-1 1) preserve the monotony of (8–9), respec-
tively. Further, if, for example, a decreasing state settles at
some value x; > – 1, from the equilibrium condition, we will
have

a sat(~~j-.l) + bx~j+a sat(-$j+l) + c = x~j> – 1,

which contradicts (1O). In the case of HLD the following ini-
tial configurations may occur

000 000 ● *O 000 eoe ● OO

From (10- 11)we obtain the following necessary inequalities
for the depicted combinations of cells at the equilibrium:

-2a–b+c<–l 2a+ b+c>l

2a–b+c<–l b+czl.

–b+c< –1 (12)

Assuming a >0, itcan be shown that (12) extended by

–2a+b+c<l (13)

provides us with a set of sufficient conditions to perform
HLD. To show this, we consider only the following case in
some detail

000

Since the state of the black cell shall decrease from 1to below
– 1, solving the differential equation we have the following
inequality in the linear region

2a-C (b-l) f.+=.
xij(~) S (1 – ~)e b–1

(14)
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From (12) follows that b >1, this with the equations (13-14)
imply that the state of the black cell will settle at some point
below – 1.

Finally, we would like to mention that (12–13) applies to
both – 1 or O boundary values. In the latter case, however,
we have additional constraints which can be shown to be al-
ready implied by (12). Including the desired robustness &
into the design constraints (12), we obtain, after some cal-
culation, the following bounds for the parameters:

a? &

b> a+l+4&

–b+l+4e< c<–2a+b–l -4&. (15)

These values are to be understood as nominal, but for the
sake of simplicity we have left out the * designation. Note
that the values given in the template sets (a-c) above are
within these bounds. Moreover, the calculated upper bounds
for e coincide with the actual& that would be used to obtain
e-robust templates from (15).

We conclude our synthesis with a class of applications for
which the correct operation of the network critically depends
on the accurate ratios of the nominal template values. Dif-
ferential operators constitute examples of such a class. To be
specific, we investigate the heat equation

i31u(t,x) = Au(t,x) . (16)

on a compact domain S26 R* with zero boundary conditions.
Bydiscretizing(16) in spatial components we obtain

d uij
— = !Ji+lj + Ui-lj – 4Uij + Uij+l + Uij-1 .
dt

This corresponds to a CNN with the following templates:

()

010
A= I-31 B=O i=O. (17)

010

Intuitively, it is clear that disturbing any entry of the matrix A
will result in a different dynamic behavior, e.g., if we change
–3 by an additive constant, say et, (16) will become

~, V(t,X) = Av(t,x) + ~V(t,X) . (18)

Using the trial solution

v(t, x) = eafu(t, x),

with u(t, x) an arbitrary function, it is easily shown that
u(t, x) has to satisfies (16). In other words, by changing
–3 to –3 + et, the solution of (16) becomes modified by an
exponentially increasing or decreasing factor, depending on
the sign of U. Further, if we change one of the 1‘s in A to
say 1 + et, no matter how small et, we will not only destroy
the rotational symmetry of the Laplace operator but also end

up with unstable solutions. This is best seen by calculating
the eigenvalues of the modified Laplacian in the Fourier
transformed domain. The eigenvalues corresponding to the
modified direction will have a positive real part leading to
divergence.

IV. Conclusion

We derived upper bounds for parameter perturbations by im-
posing the output invariance at the equilibrium. This in turn
enabled us to compare different sets of templates with respect
to their robustness. Applications were presented for horizon-
tal line detector. We presented further a general approach to
the design of robust templates for binary input-output CNNs.
Our approach resides on the assumption that the correspond-
ing task can be performed by CNNS whose states evolve
monotonically. Our method of design was demonstrated in
some detail on the example of horizontal line detection. We
showed that templates used to implement some partial differ-
ential equations are inherently highly sensitive with respect
to template entries.
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