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Abstract — The delta operator approach to contin-
uous-time cellular neural networks (CT-CNNS) is in-
vestigated in terms of a robust realization. It is shown
that earlier results concerning the robustness of CT-
CNNS can be obtained as a limiting case of this ap-
proach, while at the same time, this allows us to
formulate robustness considerations for discrete-time
CNNS.

1. Introduction
Continuous-time cellular neural networks (CT-CNN) were
first introduced in [1]. Primary applications were concerned
with image processing tasks, e.g., [1, 2]. Other areas of ap-
plication, such as signal processing [3] and pattern recogni-
tion [4], have also been successfully considered. Although
the basic equation describing the dynamics of each unit
(cell) can be given in arbitrary dimensions, due to applica-
tions and implementation aspects, CNNS in two dimension
have been particularly the subject of active research.

In this case, the dynamics of each unit is governed by

~ dxij(t)

dt = – + ‘ij(t)+ ~ aij,m. Sat(xm. (t))

mn G~.j

+ ~ bij,mn urn.+ 1, (1)

where sat(.) is the piece-wise linear non-linearity given by

sat(x) =~{lx+ll–lx– 11}.

The inputs and outputs of CNNS are defined to be uij and
SN(Xij), respectively, Spatially invariant CNNs are speci-
fied by a template set A, B, containing aij and bij, respec-
tively, and a bias 1. The operation of a CNN consists in
appropriately choosing the template values A, B and the
bias I such that for given initial values ~ij(0) some desired
image is obtained as the output of the system (1) at a stable
equilibrium.

Along the implementation of CT-CNNS [5, 6], discrete-
time CNNS were considered in terms of imcdementation as
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sampled-data systems [7]. Analogously to(1), the basic dy-
namic equation, in this case, is given by

Xij [~ + 1] = ~ aij,mn f(xmn[~])+ ~ bij,mnUk[+ ~ ,
mnC*j mnE ~.j

(2)

where the non-linearity f(.) can be the hard limiting func-
tion sgn(.), as introduced in [8], or the saturation function
sat(.). Henceforth, we denote the former case by SGN-
CNNS and the latter by SAT-CNNS. As shown below, for
sampled data systems, the advantage of the saturation non-
linearity to the hard limiter lies in the fact that in the former
case the state of each cell depends continuously on the dy-
namic prmmeters, i.e., on the A-template.

In this paper we introduce the delta operator based ap-
proach to CNNS (& CNNs). As it is shown, this provides us
with a unifying frame work for CT-CNNS and SAT-CNNS.
By doing so, some of the results concerning the robustness
of template sets, previously proved for CT-CNNS [9], can
be formulated for 5-CNNS. The respective continuous-time
results are then obtained as a limiting case of the delta oper-
ator approach. At the same time, we can apply these results
to SAT-CNNS.

In Sec. 2 we introduce &CNNs. Sec. 3 compares SAT-
CNNS and SGN-CNNS in terms of their continuous depen-
dency on the dynamic parameters and deals with the robust-
ness of &CNNs. Sec. 4 provides the simulation results. We
conclude with Sec. 5.

2, Delta operator based CNNS
Given a continuous-time signal x(t), we can obtain a dis-
crete-time sequence x(kTS) by sampling x(t) at a sampling
rate of TS. The sampled signal is denoted by x[k] for k 6 Z.

The delta operator is defined on the set of causal se-
quences by [10]

X[k+ 1]– X[k]
ax[k] = T .

s
(3)

Clearly, for x[k] = x(kz), i.e., resulting from sampling a
continuous-time sitrnal at Deriod T.. the delta ooerator is
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an approximation of its derivative. In the Iimiting case of
Ts + O, we obtain

pyh[k] = i(f) [,=k~.
s

For an inherently discrete system, as noted in [11], L can
be considered as an extra design parameter that can be used
to achieve better performance for the underlying digital sys-
tem.

The dynamic equation of a delta operator based discrete-
time CNN is defined as follows:

+ ~ bij,mnUmn + 1. (4)

mnE9Lj

By expanding (4) according to (3), we obtain

where ~ = R C defines the internal time scale of the analog
system. If(5) is considered in conjunction with (l), then the
sampling period TS has to satisfy TS~ ~ in order to avoid
aliasing effects. On the other hand, if (5) is considered by
itself, because it does not contain any continuous-time inte-
gration, i.e., capacitance, there is no concept of an internal
time and, hence, no restrictions of this kind on T$. In the fol-
lowing, we consider (5) as an inherently digital system and
normalize both R and C to unity. Clearly, CT-CNNS and
SAT-CNNS can be obtained as limiting cases of &CNNs,
namely as TS+ O and TS+ 1, respectively.

3. Robustness of &CNNs
In this section, we show that for discrete-time CNNS the use
of piece-wise linear non-linearity provides us with a contin-
uous dependency of the state trajectory on the A-template,
whereas this is not the case for the hard limiting non-linear-
ity. Further, we derive for &CNNS necessary and sufficient
bounds on the perturbations such that within these bounds
the desired operation is correctly performed. The continuity
property proves to be crucial to a design of robust templates.
In the absence of a continuous dependency smallest pertur-
bations chosen within the range suggested by the necessary
condition may render a correct operation invalid.

We first introduce some notation and state a lemma. Let
1]“11- denote the max-norm defined by llxll~ = maxi Ixil.
The corresponding induced matrix norm, denoted again by
II.ll=, is

The following estimate holds for the induced matrix norm:
llMx\l_ < llM]l_l]x\l_. By using vector notation, the dy-
namic equations (5) can be written as

x[k+ 1]= (1 – L)x[k] + nAsat(x[k])

+GBu+Tsi. (6)

Note that in (6) we assumed zero boundary values, Hence-
forth, this will be the case unless it is stated to be otherwise.
In the following, the entries of A and B are denoted by Aij
and Bij, respectively. For A, as given in (6), we obtain

Lemma: Suppose h, g E R+ and en ~ O be such that

en<(l+h)en_l+g,

then
n-l

en<(l+h)%o+ ~(l+h)ig.
ieo

The proof can be readily obtained, e.g., by induction. In
particular, for (30= O we obtain

en<(l+h)n-lg
h“

(7)

The continuity property is given by the following theorem.
Theorem: The state vector x[k], as determined by (6),
depends continuously OK A, i.e., for every E >0 there is
q >0 such that& [IA–AII- < q then Ilx[k]– i[k]ll-s E.

Proof Let ~ = A + AA. From (6) the following estimate
can be made

[/x[k+ 1]-i[k+ l]lloa~ II - 7Jllx[k] -i[k]llca

+ L IIA]I-1]sat(x[k]) - sat(ii[k])]l~

+ ~11~11-11 sat(~[k])ll-. (8)

and from (8) it follows

llX[k+ 1]-ik[k+ l]llc.a< (1 +z+TsllAllca)

X Ilx[k]–?i[k]llco+T~llAA]lc.a (9:

By applying the lemma to (9) with f3k= Ilx[k]- ii[k]ll~
h = L+ LIIAI]- and g = zllAAll_, from (7) we obtain

Ilx[k]- i[k]llca<
(1 +~+~llAll~)k- 1 ,IMII- . ~lol

1+ llAllc.a

By choosing

1+ llAllc.a

‘< (l+~+7JlAllca)k -l&’

from (10) follows the continuity. This completes the proof
of the theorem.
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A similar statement cannot be made if the non-linearity We proceed by estimating the deviation in the state vec-
in (6) is replaced by the hard limiting function. In the case tor caused by the perturbation
of the sgn(-) function (9) would comespond to

Xp[k+ 1]–x[k+ 1]= (1 – z) (Xp[k]– X[k]

Ilx[k+ 1]- fi[k+ l]llca~ 2(1 +L+LllAllco) + nA( sat(xP[k]) - sat(x(k))) + LAA sat(xP)

+LIIAAII-, +& ABu+TsAi, (15)

which precludes any continuity conclusion.
We proceed by deriving necessary and sufficient bounds

on the perturbation parameters. Equation (6) provides us
with the starting point of the robustness analysis. Here we
closely follow the approach introduced in [9] for CT-CNNS.
Consider a template set A, B and I, that performs some spe-
cific task and assumes its equilibrium point in a saturation
region of the state space. Let AA, AB and Al be a perturba-
tion of the nominal values. The goal of the robustness study
is to give bounds on the perturbation parameters such that
the specific task under consideration is still correctly per-
formed by the perturbed set, namely A + AA, B+ AB and
I+ Al.

A necessary condition for the perturbed system to con-
verge at the same saturation region as the unperturbed sys-
tem is obtained by exploring the output invariance, i.e.,

Assuming all inputs to be in magnitude less than unity, by
applying the max-norm II. II- and the lemma to (15) we
obtain

11%41- Wtl- <
(1+T,+7JIAII$1A /

1+ llAlloa tlkl. (16)

As a sufficient condition, we require the deviation due
to perturbation be such that

llxP[k]-x[k]ll~ < mjn]x~l -1 V k > k* , (17)

where V is the smallest time for which both the perturbed
and unperturbed system enter their steady state. Equa-
tion (17) in conjunction with (16) implies now the follow-
ing sufficient bound on k* to get the correct output in the
presence of the total perturbation A,O1.l

sat(x~) = sat(x”),
log ((1 + llAll_) (mink lx~l– 1)+ A~Otal)– log(A,O,d)

(11) k*<
log(l +~(1 +]IAII.J)

where x denotes the steady state, i.e., x*[k+ 1]=x* [k] and
XPis the state vector of the perturbed system given by

Xp[k+ 1] = (1 – QxP[k] +Z(A+AA) sat(xp[k])

+21(B+AB)u+ n(i+Ai). (12)

Assuming (11), from (12) follows at the steady state

x~=x*+AA sat(x*)+ABu+Ai. (13)

The last equation relates the equilibria of the perturbed and
unperturbed systems, assuming that they are in the same sat-
uration region. By inserting (13) back into (11) we obtain,
as a necessary condition, the following bounds on the per-
turbation parameters

A,O,.l<~;$ l(AIA+Bu+i)~l–1, (14)

where A,OfaI= ~ij (lbijl+ Itiijl)+ 1~1 and L isw

bipolar vector that can occur as an output of the template
set A, B and 1. The minimum in (14) is taken over all
cells, i.e., components of the state vector. Note that since
(13) does not contain any dependency on the sampling pe-
riod T$, the necessary condition (14) does not either. In
particular, CT-CNNS and &CNNs do not differ in this re-
spect [9]. Moreover, because the state vector, by assump-
tion, converges in a saturation region and (14) is derived
by considering the steady state, we will also get the same
bound for A,O,=las in (14) if we replace sat(.) by sgn(.).

(18)

We make the following remarks concerning (18):
i) For AtOlaf= O, i.e., if the perturbation is turned off, the
upper bound in (18) tends to infinity. This is consistent
with the initial assumption that the unperturbed system con-
verges to some stable equilibrium.
ii) If the unperturbed system is already non-robust, i.e.,
mini l.r~I – 1 = O, then the upper bound in (18) becomes
zero, which again is a consistency indication.
iii) The bound imposed on k* in (18) reduces to the corre-
sponding bound in the continuous-time case [9] as TS tends

to zero. Due to limr+o 10g(l~La) = a and T~k+ t, we ob-
tain from (18)

(X< log ((1 + llA1l-)(min~ Ix;I – 1)+ AfO(af)– log(AIOlal)

l+llAllm
(19)

where t* is the continuous analogue of k*, i.e., the time
required for both the perturbed and unperturbed systems to
settle.

4. Simulation results
Simulations are performed to compare &CNNs and SGN-
CNNS in terms of template perturbations. For simplicity,
we consider applications for which B = O. In fact, from the
dynamic point of view this is the interesting case. Although
in the analysis of the previous sections the boundary was as-
sumed to be the fixed value of zero, for simulations we set
the boundary to the fixed value of – 1. This choice allows
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us to avoid the influence of the boundary on the sensitivity References
of the templates to be considered [9]. - [1]

For completeness, we list the simulated systems includ-
ing the boundary term and assuming B = O:

x(t) = –x(t) + Asat(x(t)) + i + ~ (m p]

x[k+ 1] = (1 –~)x[k] +TsAsat(x[k]) +T, i+~~ (21)

x[k+ 1] = Asgn(x[k]) +i+~, (22)

where a denotes the contribution of the boundary cells. In
the presence of non-zero boundary values, the necessary
condition in (14) becomes [3]

where, in view of simulations, we again assumed B = O.
As a first example, we consider the following template

set: A = [0 2 q], 1 = 1. For q = 1, this corresponds to a
shadowing template of the CT-CNN (20) with x(0) being
initialized with the image to be processed. Assuming we
consider only perturbations with respect to q, from (23) it
follows that I&l < min~,lk I (Al+ +i+~)k I– 1 = 1. Sim-
ulations of (21) with T,= 0.01, 1 and q = 1 show that (21)
also performs the shadowing task with IAql < 1. Further-
more, simulations of (21) with T$= 0.01, 1 and q being
randomly chosen in [0.1, 1.9] lead still to the correct out-
put. However, although the SGN-CNN (22) for q = 1 gives
the desired output with min~,l* I(A 1* + i + a)~ I – 1 = 1,
but for any perturbation of the nominal value q = 1 result-
ing in a q < 1 it fails to converge to the correct output. This
demonstrates the non-continuous dependency of the state
vector on the A-template in the case of hard limiting non-
linearity.

Next, we consider the template set A = [12 q], I = O.
For q = – 1 this is a connected component detector (CCD)
for (20). From (23) can be shown that the total tolerable
perturbation for q = – 1 is upper bounded by Iql <1. Sim-
ulations performed with (20) show, in fact, a robustness of
the same amount [12]. The &CNN (21) with ~ = 0.01, 1
and q = – 1 behaves also like a CCD. In fact, the cor-
rect operation is guaranteed for any perturbation of q sat-
isfying lAql <1. On the other hand, the SGN-CNN (22)
fails to converge to the correct output for q = – 1. Hence,
a template set that works for CT-CNNS may fail if used
for SGN-CNNS, however, it will apply to &CNNs. Fur-
ther, for q = – 1.01, (22) performs CCD correctly with
min~,l+ I(A 1* + i + il)k I– 1 = 0.99, showing the non-con-
tinuous behavior of the SGN-CNNS.

5. Conclusions
A delta operator based approach to CNNS was introduced.
A comparison of the delta discrete-time CNNS with the con-
ventional ones utilizing a hard limiting function was made.
It turns out that &CNNs resembles CT-CNNS both in dy-
namics and in robustness, whereas SGN-CNNS may differ
abruptly. In particular, the absence of a continuous depen-
dency of SGN-CNNs on the A-template may render a robust
design of them hard. Robust operation is desired if, e.g., the
data to be processed is subject to noise.
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