
LEARNING ALGORITHMS FOR CELLULAR NEURAL NETWORKS

Bahram Mirzai, Zhenlan Cheng and George S. Moschytz

Signal and Information Processing Laboratory
Swiss Federal Institute of Technology

Zurich, Switzerland
mirzai@isi.ee.ethz.ch

ABSTRACT

A learning algorithm based on the decomposition of the
A-template into symmetric and anti-symmetric parts is intro-
duced. The performance of the algorithm is investigated in partic-
ular for coupled CNNs exhibiting diffusion-like and propagating
behavior.

1. INTRODUCTION

Cellular neural networks (CNNs) are examples of recurrent net-
works defined by the following system of differential equations

dxi j (t)

dt
=−xi j (t)+

∑
mn∈N i j

amnymn(t)+
∑

mn∈N i j

bmnumn+ I ,

where Ni j denotes the neighborhood of thei j -th cell for
1≤ i ≤ M , 1≤ j ≤ N and y= (|x+1|− |x−1|)/2. The state,
input and output of a cell are defined byxi j , ui j and yi j , respec-
tively. We assume a nearest neighborhood CNN. The output at
an equilibrium point, when one exists, is denoted byy∗i j . The
parameters of a CNN are gathered into the so-calledA-template,
the B-template and the bias I.

In view of learning algorithms, since a CNN is a recurrent
neural network, one can apply the learning algorithms known for
this class of networks [1], such as the recurrent back-propagation
algorithm (RBA) by replacing the non-linear function sat(·) by
a smoother similar one [2]. Algorithms like RBA are based on
the minimization of a cost function E that compares the output
of the networky∗i j with the desired outputdi j :

E= 1

2

∑
1≤i≤M,1≤ j≤N

(y∗i j −di j)
2 . (1)

Comparisons of this kind inherently neglect the evolution of a
cell from its initial state to the final state. However, the structure
of a template set depends crucially on the kind of dynamics in-
volved, and vice-versa, e.g., symmetric templates are normally
assumed for diffusion-type applications. Hence a learning algo-
rithm only based on (1) may not be capable of tracing a desired
set of parameters, if it is not provided with information of this
kind.

A different approach may be taken by minimizing the cost
function

E= 1

2

∫ T

0

∑
1≤i≤M,1≤ j≤N

(
xi j (t)−di j (t)

)2
dt . (2)

Although this approach takes into account the temporal evolution
of the system, it would also not be an appropriate one in the con-

text of CNNs. In fact, its definition requires a set of desired trajec-
tories di j (t) which, in turn, implicitly assumes a template set of
the task to be trained for. Moreover, the algorithms based on (2)
require larger computational storage capabilities than RBA [1,2].

In this paper we introduce a class of learning algorithms that
seeks to minimize (1), on the one hand, and to take into account
the dynamic nature of the particular task, on the other. The algo-
rithm considered here was originally motivated by [3]. We first
introduce a modified version of the learning algorithm described
in [3] and extend it to more involved applications. Simulations
are provided for a number of coupled CNNs. For later conve-
nience, we adopt the following notation and apply the notion of
“weight” to the parameters of a template set

A=
 a11 a12 a13

a21 a22 a23
a31 a32 a33

 B=
 b11 b12 b13

b21 b22 b23
b31 b32 b33

 .

2. A BACKPROPAGATION-LIKE LEARNING
ALGORITHM

Let the errorei j [k] of the cell Ci j at the iteration stepk be de-
fined by

ei j [k] = 1

2

(
di j − y∗i j [k]

)
. (3)

Analogously to the perceptron learning algorithm, define an up-
dating of the weights according to

amn[k+1]= amn[k]+η1amn[k]

bmn[k+1]= bmn[k]+η1bmn[k]

I [k+1]= I [k]+η1I [k]

(4)

with

1amn[k] =


0 if m= n= 2,

1

M N

∑
1≤i≤M,1≤ j≤N

ei j [k] y∗i+m−2 j+n−2[k] else

1bmn[k] = 1

M N

∑
1≤i≤M,1≤ j≤N

ei j [k] ui+m−2 j+n−2[k]

1I [k] = 1

M N

∑
1≤i≤M,1≤ j≤N

ei j [k] ,

(5)

where m,n ∈ {1, 2, 3} , and the learning rateη > 0. By (5), at
a given time stepk , the change in a template parameter or the

0-7803-4455-3/98/$10.00 (c) 1998 IEEE

bias is obtained by taking the product of the error and the corre-
sponding “input”, and then averaging over all cells. In particular,
a constant input of unity is assigned to the bias.

The algorithm (4) differs in two ways from the original one
proposed in [3]. First, we do not update the center entrya22
but rather set it initially to some fixed valuea22[0] ≥ 1. This
is motivated by the fact that usually one is interested inbipolar
outputs. Moreover, an update ofa22 according to

a22[k+1]= a22[k]+η 1

M N

∑
1≤i≤M,1≤ j≤N

ei j [k] y∗i j [k] , (6)

as proposed in [3], may lead to inconsistencies, since (6) up-
datesa22 only in one direction, namely it either increasesa22
by somepositivefraction of η or leaves it unchanged. Other ap-
proaches may be applied to includea22 in the training procedure
as well [4]. Second, we have introduced an update of the biasI
which is a required parameter for many applications.

Beside the analogy of (4) to the perceptron learning algorithm,
(4) can be motivated by the following observation. A cellCi j
contributes to the update of weights only whenei j 6= 0. In the
case ofei j = 1, y∗i j is 1 and it should become−1. Therefore,
to update, sayamn, we seek to decreaseamn by η for those cells
Cmn in the neighborhoodNi j with y∗mn= 1 and increase it byη
for those withy∗mn=−1. Averaging over all cells then provides
the amount by which updating is done. Similar reasoning applies
to the case ofei j =−1.

In contrast to the back-propagation algorithm, the algorithm
(4), as a whole, cannot be derived as a gradient descent algo-
rithm by minimizing the cost function (1). However, if the CNN
were only to operate in its uncoupled mode, then an update of the
B-template by (4) would correspond to the back-propagation al-
gorithm obtained by minimizing (1) with respect to the weights.
Furthermore, we note that (4) corresponds to “batch” training,
meaning that we first average over the partial updates of cells
due to the corresponding input/output patterns, and then perform
the updating of the weights. This is in contrast to an “on-line”
training, where an update of the weights is performed after the
presentation of each input/output pattern.

As previously mentioned, a shortcoming of the algorithm (4)
is that it is based only on the information contained in the com-
parison of the outputy∗i j with the desired outputdi j and that it
neglects the temporal evolution of the system. In some instances
the output alone may not provide sufficient information to obtain
a desired template set. Particularly for those tasks that exhibit
propagating solutions, such as connected component detection
or shadowing, the algorithm (4) tends to fail. In the following
section we seek to extend this algorithm in a direction that allows
us to partially overcome this shortcoming.

3. THE CENTER OF MASS LEARNING ALGORITHM

To overcome the limitations of the algorithm (4) we propose a
modified version which differs from (4) in the update of theA
and B-templates. The bias will still be updated as in (4). For
reasons to follow, we will denote the new algorithm as thecenter
of mass algorithm(CMA).

The update of theB-template is essentially done according to
(4) with the only difference that we now require the updating to
respect the symmetry of theB-template. In other words, if the

nature of a task suggests aB-template of the form

B=
 0 b 0

b bc b
0 b 0

 ,

then it is updated by

1B[k] =
 0 1b[k] 0
1b[k] 1b22[k] 1b[k]

0 1b[k] 0

 ,

with

1b[k] = 1b12[k]+1b21[k]+1b23[k]+1b32[k]

4

and1bmn[k] as given in (5).
To update theA-template, we consider it as being composed

of three partsA= Ac+ As+ Aa , with

As = 1

2

 a11+a33 a12+a32 a13+a31
a21+a23 0 a21+a23
a13+a31 a12+a32 a11+a33

 ,

Aa = 1

2

 a11−a33 a12−a32 a13−a31
a21−a23 0 a23−a21
a31−a13 a32−a12 a33−a11

 ,

and Ac = A− As− Aa . The symmetricpart As is then con-
sidered to account for the local and diffusion-like dynamics and
the anti-symmetricpart Aa for the global and propagation-like
dynamics. Correspondingly, we apply different updating proce-
dures toAs and Aa .

The symmetric partAs is updated asAs[k+ 1] = As[k] +
η1As[k] , with

1As = 1

2

 1a11+1a33 1a12+1a32 1a13+1a31
1a21+1a23 0 1a21+1a23
1a13+1a31 1a12+1a32 1a11+1a33

 ,

where1amn is given by (5) and for compactness we have left
out the iteration step [k] . Furthermore, the updating is assumed
to respect the initial symmetry ofAs .

To update the anti-symmetric partAa , we first define the no-
tion of thecenter of mass. The center of mass of a 2-dimensional
grid with positive massesmij assigned to vertices along an axis
l is defined by

rl = 1

Mtotal

∑
1≤i≤M,1≤ j≤N

D(l)i j mi j , (7)

where D(l)i j is the distance ofCi j from l and

Mtotal=
∑

1≤i≤M,1≤ j≤N

mi j .

is the total mass.
We now assign to each cell on the CNN grid a “mass”mij

defined by

mij =
1+ y∗i j

2
.

Note that 0≤mij ≤ 1, where the lower bound is obtained for a
white cell and the upper bound for a black cell. Consider now the
centers of mass with respect to the axes indicated in Fig. 1:

0-7803-4455-3/98/$10.00 (c) 1998 IEEE

lx

ly

l+45

l
�45

i j

D(l+45)ij

Figure 1:Center of Mass Axes

rx = 1

Mtotal

∑
1≤i≤M,1≤ j≤N

j mi j

r y = 1

Mtotal

∑
1≤i≤M,1≤ j≤N

imi j

r45= 1

Mtotal

√
2

2

∑
1≤i≤M,1≤ j≤N

|i − j |mij

r−45= 1

Mtotal

√
2

2

∑
1≤i≤M,1≤ j≤N

(i + j)mij .

(8)

The center of massr45 is obtained by calculating the distance
D(l45)i j of the cellCi j from the corresponding axisl45:

D(l45)i j =
√

(
i + j

2
− j)2+ (

i + j

2
− i)2=

√
2

2
|i − j | .

Similarly, r−45 can be obtained.
The update of the anti-symmetric partAa can now be formu-

lated asAa[k+1]= Aa[k]+η1Aa[k] , where

1Aa[k] =
 1−45 1y 145

1x 0 −1x
−145 −1y −1−45

 , (9)

and

1x = r d
x [k]− r y∗

x [k] 145 = r d
45[k]− r y∗

45 [k]

1y = r d
y [k]− r y∗

y [k] 1−45= r d
−45[k]− r y∗

−45[k] .
(10)

The superscriptsd and y∗ indicate the centers of mass of the
desired output and the CNN output, respectively. By (10), the
update of the anti-symmetric partAa becomes small as soon as
the centers of mass of the desired image and of the CNN output
along the considered axes almost coincide. In other words, CMA
seeks to update the weights in a direction that brings the centers
of mass ofy∗ andd closer to each other.

4. SIMULATION RESULTS

In the following we investigate the performance of the CMA for
a number of tasks. In view of an analog implementation, the
search space for template parameters is confined to [−4, 4], i.e.,
if during the training procedure a template parameter leaves the
specified region, it is reset to the corresponding boundary value,
e.g., 4.2 is reset to 4.0. Parameters are randomly initialized in
[−4, 4] and the initialization is assumed to obey the symmetry of
a template set, e.g., if theA-template is assumed to be anti-sym-
metric, so will be its initialization. The boundary of the CNN is

(a) Input (b) Output

Figure 2:Training Set

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

a
21

z

Figure 3:Template Parameter Trajectories

set to−1. Adaptation is terminated after 60 steps if no desired
template set is yet obtained. The convergence times given below
are to be understood in relation to the given input/output images
used for the training; other sets of images may result in other
convergence times.

4.1. Horizontal Line Detection (HLD)

Assume the template setA= [a21 a22 a23] , I = z. In a first
approach, we take theA-template to be symmetric (a21 = a23)
and apply the CMA to traina21 and z. The center entry is fixed
at a22= 3. The A-template is updated such that its symmetry is
preserved, i.e.,

1A= [
1a21+1a23

2
0
1a21+1a23

2
] .

The network is trained with the input/output images given in
Fig. 2. We consider 30 runs with the learning rate being set
to η = 2. The CMA converges in all 30 instances to template
sets performing HLD correctly. Fig. 3 shows the trajectories of
the weights with their initial and final values indicated by circles
(◦) and plus signs (+), respectively. The filled polygon in Fig. 3
indicates the region of correct operation [5].

To investigate the dependency of the convergence time as a
function of η , we run the algorithm with various learning rates.
An increase in the learning rate results in a decrease of the mean
convergence time, Fig. 4.

In a second approach, we seta22= 3 and updated the remain-
ing parameters of theA-template and the bias according to (4),
where the updating is not necessarily symmetric. Forη = 2 we
obtain convergence within 60 iterations in all runs except two.
The average number of iterations is 15.67.

4.2. Shadowing (SH)

By the nature of the task, we assume an asymmetricA-template
and train it by means of the input/output images given in Fig. 5.
First, we consider the template setA = [0 2 a23] , I = z.

0-7803-4455-3/98/$10.00 (c) 1998 IEEE

1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

η

N
um

be
r

of
 s

te
ps

HLD

SH

CCD

Figure 4:Convergence Time versus Learning Rate

(a) Input (b) Output

Figure 5:Training Set

By [5], the filled polygon in Fig. 6 denotes the desired re-
gion of the parameters. TheA-template is trained according to
1A= [0 0 −1x] and the bias according to (5) withη = 2. As
shown in Fig. 6 the algorithm converges to the desired region for
all 30 runs. Furthermore, we investigate the average convergence
time of the 30 runs as a function ofη . The results are depicted
in Fig. 4. In the case ofη = 4, due to an overly high learning
rate, the updates are more likely to shift the weights passed the
desired region to the undesired part, hence the increase in the
convergence time.

As a second approach, we assume the asymmetric template set
A= [a12 2 a23] , I = z and update theA-template according to

1A= [
1a21+1a23

2
+1x 0

1a21+1a23

2
−1x] .

The bias is updated as before andη = 2. The algorithm con-
verges for all 30 runs with an average convergence time of 19.23
steps.

4.3. Connected Component Detection (CCD)

The nature of the task suggests a template set with a near-
est neighbor anti-symmetricA-template A = [a21 a22 a23] ,
where a23 = −a21. We, further, assume a bias termI = z

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

a
23

z

Figure 6:Weight Trajectories

(a) Input (b) Output

Figure 7:Training Set

and set a22 = 3. The A-template is updated according to
1A= [1x 0 −1x] .

Simulations are performed with input/output images given in
Fig. 7 for different values ofη as shown in Fig. 4. The algorithm
converges for all values ofη and for all 30 runs.

A simpler search problem is obtained by excluding the bias
term, but maintaining the anti-symmetry, i.e.,A= [a21 3 −a21] .
The region for the CCD operation [5] is then determined bya21>

1. The CMA is applied to traina21 with η = 2. Convergence is
obtained for all 30 runs with a mean convergence time of 2.93
steps. Note that in this example, the probability of the random
initialization already performing the correct task is 60%.

5. CONCLUSIONS

A new algorithm based on the decomposition of theA-template
into symmetric and anti-symmetric parts is introduced. The up-
dating procedure takes the particular dynamics implied by each
part into account. Symmetric and anti-symmetric updates, the
latter based on the evolution of the center of mass, are used to
train the weights of the symmetric and anti-symmetric parts, re-
spectively. The performance of the algorithm is investigated for
a number of tasks requiring coupled CNNs.

6. REFERENCES

[1] John Hertz, Anders Krogh, and Richard G. Palmer,Introduc-
tion to the Theory of Neural Computation, Addison-Wesley,
1991, ISBN 0-201-51560-1.

[2] Josef A. Nossek, “Design and Learning with Cellular Neural
Networks,” in IEEE International Workshop on Cellular
Neural Networks and their Applications, Rome, Dec. 1994,
pp. 137–146.

[3] C. Güzeliş and S. Karamahmut, “Recurrent Perceptron
Learning Algorithm for Completely Stable Cellular Neural
Networks,” in IEEE International Workshop on Cellular
Neural Networks and their Applications, Rome, Dec. 1994,
pp. 177–182.

[4] Martin Hänggi and George S. Moschytz, “Genetic Opti-
mization of Cellular Neural Networks,” inIEEE Interna-
tional Conference on Evolutionary Computation, Anchor-
age, 1998,accepted for publication.

[5] Bahram Mirzai, Drahoslav Lím, and George S. Moschytz,
“Robust CNN Templates: Theory and Simulations,” inIEEE
International Workshop on Cellular Neural Networks and
their Applications, Seville, June 1996, pp. 393–398.

0-7803-4455-3/98/$10.00 (c) 1998 IEEE

