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ABSTRACT text of CNNs. In fact, its definition requires a set of desired trajec-
tories djj (t) which, in turn, implicitly assumes a template set of
the task to be trained for. Moreover, the algorithms based on (2)
require larger computational storage capabilities than RBA[1,2].
In this paper we introduce a class of learning algorithms that
seeks to minimize (1), on the one hand, and to take into account
the dynamic nature of the particular task, on the other. The algo-
1. INTRODUCTION rithm considered here was originally motivated by [3]. We first
introduce a modified version of the learning algorithm described
Cellular neural networks (CNNs) are examples of recurrent net-in [3] and extend it to more involved applications. Simulations
works defined by the following system of differential equations are provided for a number of coupled CNNs. For later conve-
dx; (1) nience, we adopt the following notation and apply the notion of

A learning algorithm based on the decomposition of the
A-template into symmetric and anti-symmetric parts is intro-
duced. The performance of the algorithm is investigated in partic-
ular for coupled CNNs exhibiting diffusion-like and propagating
behavior.

i = —xij )+ Z amnymn(t) + Z BrnUmn=+ 1, “weight” to the parameters of a template set
t . -
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1<i<M,1<j<Nandy=(x+1|—|x—1])/2. The state, ag1 azx as3 b31 bsz bss

input and output of a cell are defined By , uj; andyjj , respec-
tively. We assume a nearest neighborhood CNN. The output at
an equilibrium point, when one exists, is denoted)t;y The
parameters of a CNN are gathered into the so-calle@dmplate,
the B-template and the bias |. Let the errore; [K] of the cell G at the iteration stefx be de-

In view of learning algorithms, since a CNN is a recurrent fined by
neural network, one can apply the learning algorithms known for
this class of networks [1], such as the recurrent back-propagation ai[K] = }(d — v [K) 3)
algorithm (RBA) by replacing the non-linear function sptgy J 2V i
a smoother similar one [2]. Algorithms like RBA are based on anaj0g0usly to the perceptron learning algorithm, define an up-
the minimization of a cost function E that compares the output dating of the weights according to
of the networky;; with the desired outpudi; :

2. ABACKPROPAGATION-LIKE LEARNING
ALGORITHM

1 amn[K + 1] = amn[K] + nAamn[K]
E=> ) o) @) brmnlK + 1] = brmn[K] + 17 Abmn[K] 4)
1<i<M,1<j<N I[k+1]=I[K] +nAl[K]

Comparisons of this kind inherently neglect the evolution of a i,
cell from its initial state to the final state. However, the structure
of a template set depends crucially on the kind of dynamics in- 0 if m=n=2,
volved, and vice-versa, e.g., symmetric templates are normally
assumed for diffusion-type applications. Hence a learning algo-

Aamn[K] = i Z

& [K] yi*+m—2j+n—2[k] else

rithm only based on (1) may not be capable of tracing a desired MN 1<i<M,1<j<N
set of parameters, if it is not provided with information of this 1
kind. Abmn[K] = MN Z &j [K Ui+ m-2j+n-2[K]
A different approach may be taken by minimizing the cost 1<i<M,1<j<N
function 1
E= E_/ Z (xij (t) — dij (1)) “dit . 2 1<i<M,1<j<N
0 1<i<M,1<j<N (5)

Although this approach takes into account the temporal evolutionwhere m,n € {1, 2, 3, and the learning rate > 0. By (5), at
of the system, it would also not be an appropriate one in the con-a given time stefk, the change in a template parameter or the
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bias is obtained by taking the product of the error and the corre-nature of a task suggestsBatemplate of the form
sponding “input”, and then averaging over all cells. In particular,
a constant input of unity is assigned to the bias. 0 b 0

The algorithm (4) differs in two ways from the original one B= g % g '
proposed in [3]. First, we do not update the center eitry
but rather set it initially to some fixed valug,[0] > 1. This then it is updated by
is motivated by the fact that usually one is interestetipolar

outputs. Moreover, an update af, according to 0 Ab[K] 0
1 AB[K] = | ADb[K] Aby[k] Ab[K] ,
ago[K+ 1] = agy[K] + "N Z e [KIy;[K, (6) 0 Ab[K] 0
1<i<M,1<j<N with

Abyo[K] + Abz1[K] 4 Abos[K] 4- Abz,[K]
4

as proposed in [3], may lead to inconsistencies, since (6) up-
datesay, only in one direction, namely it either increasas

by somepositivefraction of » or leaves it unchanged. Other ap-
proaches may be applied to includg in the training procedure

as well [4]. Second, we have introduced an update of the bias
which is a required parameter for many applications.

Ab[K] =

and Abmn[K] as given in (5).
To update theA-template, we consider it as being composed
of three partsA = A + As+ Aa, with

Beside the apalogy of (4) to the perceptron Iegrning algorithm, 1 [ a1tass axtasz aiztas
(4) can be motivated by the following observation. A cél| As = > a1+ ag3 0 a1+ax |,
contributes to the update of weights only whep## 0. In the auz+az aotaz ain+ass
case ofgj =1, y* is 1 and it should become-1. Therefore,
4 a11—ag3 a;p—az az—asy
to update, saymn, we seek to decreasg,, by n for those cells 1
: ; SE ; : Aa=2| ax1—as 0 az—ax |,
Cmn in the neighborhoodVi; with yi,,= 1 and increase it by 2 _a _a _a
for those withy;,, = —1. Averaging over all cells then provides G113 d2—a12 A3—an

the amount by which updating is done. Similar reasoning appliesand A, = A— A; — A;. The symmetricpart As is then con-
to the case ofyj = —1. sidered to account for the local and diffusion-like dynamics and

In contrast to the back-propagation algorithm, the algorithm the anti-symmetricpart A, for the global and propagation-like
(4), as a whole, cannot be derived as a gradient descent algodynamics. Correspondingly, we apply different updating proce-
rithm by minimizing the cost function (1). However, if the CNN  dures toAs and A,.
were only to operate in its uncoupled mode, then an update of the The symmetric partAs is updated asAs[k + 1] = As[K] +
B-template by (4) would correspond to the back-propagation al-nA Ag[K], with
gorithm obtained by minimizing (1) with respect to the weights.

Furthermore, we note that (4) corresponds to “batch” training, 1 [ Aaut+Adgs Aaipt+Aazp Adyz+Aads

meaning that we first average over the partial updates of cells AAs= - | Aax+Aaz 0 Aax1+ Aaxz |,

due to the corresponding input/output patterns, and then perform Aaiz+Aag Aaiz+Aazz Ay + Adss

the updating of the weights. This is in contrast to an “on-line”
training, where an update of the weights is performed after the
presentatign of each iﬁputjoutput patterr.L . to respect the initial symmetry ofs.

As previously mentioned, a shortcoming of the algorithm (4) 14 ypdate the anti-symmetric paft, we first define the no-
is that it is based only on the information contained in the com- tion of thecenter of massThe center of mass of a 2-dimensional
parison of the outpuy;; with the desired outputhj and thatit  grig with positive massesn; assigned to vertices along an axis
neglects the temporal evolution of the system. In some instanceq s defined by
the output alone may not provide sufficient information to obtain
a desired template set. Particularly for those tasks that exhibit M= 1 Z D(@)ij mii @)
propagating solutions, such as connected component detection Miotal S
or shadowing, the algorithm (4) tends to fail. In the following
section we seek to extend this algorithm in a direction that allows where D(1);; is the distance of;; from | and
us to partially overcome this shortcoming.

Miotal = Z mij .

1<i<M,1<j<N

where Aanp, is given by (5) and for compactness we have left
out the iteration stepk]. Furthermore, the updating is assumed

1<i<M,1<j<N

3. THE CENTER OF MASS LEARNING ALGORITHM
is the total mass.
To overcome the limitations of the algorithm (4) we propose a  We now assign to each cell on the CNN grid a “mass|
modified version which differs from (4) in the update of tite defined by
and B-templates. The bias will still be updated as in (4). For
reasons to follow, we will denote the new algorithm asdbster mij =
of mass algorithn{CMA). 2
The update of theB-template is essentially done according to Note that 0< mj; < 1, where the lower bound is obtained for a
(4) with the only difference that we now require the updating to white cell and the upper bound for a black cell. Consider now the
respect the symmetry of thB-template. In other words, if the  centers of mass with respect to the axes indicated in Fig. 1:
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Figure 1:Center of Mass Axes
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The center of massys is obtained by calculating the distance
D(I4s)ij of the cell Cjj from the corresponding axigs:

i+ ] V2
D(I4s5)ij = \/(T -
Similarly, r _45 can be obtained.

The update of the anti-symmetric paks, can now be formu-
lated asAg[k + 1] = Aa[k] +nA AgK], where

S (e iy

A_gs Ay Ags
AA[K] = Ax — Ay : ©)
—Ays —Ay —A_y5
and
Ax=rSK -1 Ass =rk 2K (10)

Ay = r?[k] - fyy*[k] A a5 =15k —r¥ [k .

The superscriptgl and y* indicate the centers of mass of the

(a) Input (b) Output

Figure 2:Training Set

Figure 3:Template Parameter Trajectories

set to—1. Adaptation is terminated after 60 steps if no desired
template set is yet obtained. The convergence times given below
are to be understood in relation to the given input/output images
used for the training; other sets of images may result in other
convergence times.

4.1. Horizontal Line Detection (HLD)

Assume the template s&§ = [ap1 ap2 axs], | = z. In a first
approach, we take thé-template to be symmetricag; = ay3)
and apply the CMA to trairap; and z. The center entry is fixed
at app = 3. The A-template is updated such that its symmetry is
preserved, i.e.,

Aa; A& Aa; Aa;
AA=] 21+ 230 21+ Aaos

2 2 I
The network is trained with the input/output images given in
Fig. 2. We consider 30 runs with the learning rate being set
to n =2. The CMA converges in all 30 instances to template
sets performing HLD correctly. Fig. 3 shows the trajectories of

desired output and the CNN output, respectively. By (10), the the weights with their initial and final values indicated by circles
update of the anti-symmetric pa#, becomes small as soon as () and plus signs+ ), respectively. The filled polygon in Fig. 3
the centers of mass of the desired image and of the CNN outputindicates the region of correct operation [5].

along the considered axes almost coincide. In other WOI’dS, CMA To investigate the dependency of the convergence time as a
seeks to update the weights in a direction that brings the centersynction of n, we run the algorithm with various learning rates.

of mass ofy* andd closer to each other.

4. SIMULATION RESULTS

In the following we investigate the performance of the CMA for
a number of tasks. In view of an analog implementation, the

search space for template parameters is confined-th 4], i.e.,

if during the training procedure a template parameter leaves the
specified region, it is reset to the corresponding boundary value,
e.g., 4.2 isreset to 4.0. Parameters are randomly initialized in

An increase in the learning rate results in a decrease of the mean
convergence time, Fig. 4.

In a second approach, we seb = 3 and updated the remain-
ing parameters of thé\-template and the bias according to (4),
where the updating is not necessarily symmetric. #ef 2 we
obtain convergence within 60 iterations in all runs except two.
The average number of iterations is 15.67.

4.2. Shadowing (SH)

[—4, 4] and the initialization is assumed to obey the symmetry of By the nature of the task, we assume an asymme$siemplate

a template set, e.g., if thA-template is assumed to be anti-sym-

metric, so will be its initialization. The boundary of the CNN is

and train it by means of the input/output images given in Fig. 5.
First, we consider the template s&=[0 2 ap3], | = z.
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(a) Input (b) Output

Number of steps

n ‘ Figure 7:Training Set
Figure 4:Convergence Time versus Learning Rate and setag, — 3. The Atemplate is updated according to
AA=[Ayx 0 —A4].

Simulations are performed with input/output images given in
Fig. 7 for different values of; as shown in Fig. 4. The algorithm
converges for all values of and for all 30 runs.

A simpler search problem is obtained by excluding the bias

] w term, but maintaining the anti-symmetry, i. = [a21 3 —ap1].
__EREEN The region for the CCD operation [5] is then determinediby>
1. The CMA is applied to trairap; with n = 2. Convergence is
(&) Input (b) Output obtained for all 30 runs with a mean convergence time of 2.93
steps. Note that in this example, the probability of the random
initialization already performing the correct task is 60%.

Figure 5:Training Set

By [5], the filled polygon in Fig. 6 denotes the desired re- 5. CONCLUSIONS

gion of the parameters. ThA-template is trained according to

AA=[0 0 — Ay] and the bias according to (5) with=2. As A new algorithm based on the decomposition of #héemplate
shown in Fig. 6 the algorithm converges to the desired region for into symmetric and anti-symmetric parts is introduced. The up-
all 30 runs. Furthermore, we investigate the average convergencelating procedure takes the particular dynamics implied by each
time of the 30 runs as a function gf. The results are depicted part into account. Symmetric and anti-symmetric updates, the
in Fig. 4. In the case of) = 4, due to an overly high learning latter based on the evolution of the center of mass, are used to
rate, the updates are more likely to shift the weights passed thetrain the weights of the symmetric and anti-symmetric parts, re-
desired region to the undesired part, hence the increase in thespectively. The performance of the algorithm is investigated for

convergence time. a number of tasks requiring coupled CNNs.
As a second approach, we assume the asymmetric template set
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Figure 6:Weight Trajectories

0-7803-4455-3/98/$10.00 (c) 1998 IEEE



