
Partitioning Cryptanalysis

Carlo Harpes, James L. Massey

ETH Z�urich, Signal and Info. Proc. Lab., CH-8092 Z�urich
email: fharpes,masseyg@isi.ee.ethz.ch

Abstract. Matsui's linear cryptanalysis for iterated block ciphers is
generalized to an attack called �. This attack exploits a weakness that can
be described by an e�ective partition-pair, i.e., a partition of the plaintext
set and a partition of the next-to-last-round output set such that, for
every key, the next-to-last-round outputs are non-uniformly distributed
over the blocks of the second partition when the plaintexts are chosen
uniformly at random from a particular block of the �rst partition. The
last-round attack by �is formalized and requirements for it to be successful
are stated. The success probability is approximated and a procedure
for �nding e�ective partition-pairs is formulated. The usefulness of �is
demonstrated by applying it successfully to six rounds of the DES.
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1 Introduction

In cryptography, frequent use is made of iterated block ciphers in which a
keyed function, called the round function, is iterated r times. Linear cryptanal-
ysis , introduced by Matsui in [Mat94b, Mat94a] is a known-plaintext attack
that requires the existence of \unbalanced linear expressions". In [HKM95],
linear cryptanalysis was generalized by replacing linear expressions with \in-
put/output (I/O) sums". In [Har96, Har94], an even more general attack called
�

was introduced. This attack is based on the same principle as the statistical
attacks independently developed in [MPWW94] and [Vau96]. Similarly to linear
and di�erential cryptanalysis [BS93], �can be used to evaluate the strength of
iterated block ciphers or to detect the existence of backdoors in such ciphers.
This paper is intended to provide a thorough treatment of �and, as a side bene�t,
to give additional insight into linear cryptanalysis.

In a last-round attack, many plaintext/ciphertext-pairs, hereafter called p/c-
pairs, are considered. For every considered ciphertext, one guesses the next-to-
last-round output by decrypting the last-round with a guessed key. Then, one
computes an empirical decision metric for this guessed key, which is an estimate
of the expectation of some function of some random variable that depends on
the plaintext and the guessed next-to-last round output. One repeats this com-
putation for all last-round key guesses and chooses the key with largest empirical
decision metric as the \cryptanalyst's guess" for the actual last-round key.



In the last-round attack by the generalization of linear cryptanalysis , the
empirical decision metric is the sample-mean estimate of the \imbalance" of
an \I/O sum". The imbalance of a binary random variable V is de�ned to be
I(V ) := j2P [V = 0] � 1j, where P [V = 0] denotes the probability that V is 0.
An I/O sum is a modulo-two sum of a balanced binary-valued function of the
plaintext random variable and a balanced binary-valued function of the guessed
next-to-last-round output random variable.

In �, only p/c-pairs whose plaintexts lie in some �xed block of a partition
of the plaintext set, called the input partition, are considered. Let J(~k) be the
random variable specifying the block of some chosen output partition containing
the guessed next-to-last round output, where ~k is the guessed key used to decrypt
the last round. The decision metric is an estimate of the \imbalance" of J(~k),
where an imbalance of an m-ary random variable V is a measure for how non-
uniformly distributed V is. The weakness exploited in �is thus described by a
partition-pair, i.e., a pair consisting of an input partition and an output partition,
and we will introduce an imbalance to measure the e�ectiveness of a partition-
pair in �. The success of �relies on the fact that J(~k) is less balanced when ~k is
the true last-round key than when ~k is a wrong guess.

In Section 2, we introduce some preliminaries. The last-round attack by �is
developed in Section 3. In Section 4, we give conditions for a successful attack.
In Section 5, we consider ciphers in which a part of the round key is inserted
by means of a group operation at the inputs to the rounds and we de�ne coset-
partitions as partitions whose elements are the cosets of some subgroup with
respect to this group operation. To apply �, there must exist a su�ciently e�ective
partition-pair and the cryptanalyst must have a practical method to �nd it; in
Section 6, we discuss such a method. In Section 7, we apply �successfully to
6-round DES. We close in Section 8 with a summary of the main results.

In Appendix A, we formulate combined �as an attack that combines several
attacks by �, which attacks exploit the same partition-pair but use p/c-pairs
with plaintexts from di�erent blocks of the plaintext partition. In Appendix B,
we approximate the success probability of �. In Appendix C, we provide some
details of the �of 6-round DES.

2 Preliminaries

In this section, Y denotes the output of some keyed function � whose input is
X and whose key is Z, i.e., Y = �Z(X). It may be that � is the round function
of a cipher or the composition of several round functions. It may also be that �
is unkeyed and not invertible, as when � is the function realized by an S-box of
DES.

A partition of a set S is a �nite set whose elements are pairwise-disjoint non-
empty subsets of S whose union is S. These subsets are called the blocks of the
partition.

De�nition 1. Let F = fF0; F1; . . . ;Fl�1g and G = fG0; G1; . . . ;Gm�1g be par-
titions of the input set and the output set, respectively, of a keyed function �Z .

2



The pair (F ;G) is a partition-pair for � if all blocks of F contain the same num-
ber (at least two) of elements, as also do all blocks of G, and if both l and m are
at least two.

The blocks of the input partition F will be called input blocks and the blocks
of the output partition G will be called output blocks. The function from the
input set of � onto f0; 1; . . . ; l� 1g that maps an element x to the index i of the
block Fi containing x will be called the partitioning function of F and denoted
by f . Similarly, g will denote the partitioning function of G. Note that f and g
are always balanced functions, i.e., functions that take on each of their possible
values for the same number of arguments.

Fig. 1. Representation of a partition-pair (F ;G) for � given the key z.

We use capital letters X, Y , Z, etc., to denote random variables and the
corresponding lowercase letters x, y, z, etc., to denote speci�c values of these
random variables. The experiment on which �relies is the random experiment in
which the plaintext and all round keys are chosen independently and uniformly
at random over the appropriate sets. Note that, because all blocks of F have the
same size, f(X) is uniformly distributed.

A function of an m-ary random variable taking on real values between 0
and 1, inclusive, and measuring how non-uniformly the random variable is dis-
tributed, will be called an imbalance. The imbalance of the random variable V
will be denoted I(V ). We will consider two imbalance measures, namely, the peak
imbalance

Ip(V ) :=
m

m� 1

�
max
0�i<m

P [V = i]� 1

m

�

and the squared Euclidean imbalance

I22 (V ) :=
m

m� 1

m�1X
i=0

�
P [V = i]� 1

m

�2

=
m

m� 1

m�1X
i=0

(P [V = i])2 � 1

m� 1
:

The usefulness of a partition-pair for �will be characterized by a partition-pair
imbalance, which also lies between 0 and 1, inclusive.

De�nition 2. Let (F ;G) be a partition-pair for the function with input X and
output Y and let I(:) be an imbalance measure form-ary random variables where
m = jGj. Let I( g(Y ) j f(X) = i ) denote the imbalance of the random variable
g(Y ) when conditioned on the event that f(X) = i. The imbalance I((F ;G)) of
the partition-pair (F ;G) is the quantity

I((F ;G)) :=
1

l

l�1X
i=0

I( g(Y ) j f(X)= i ) ;
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where l = jFj and where f and g are the partitioning functions of F and G,
respectively.

The notion of key-dependent imbalance is of special importance. Consider the
keyed function �Z with key Z taken from a set Z. Let I(g(Y ) j f(X)= i; Z=z )
denote the imbalance of the m-ary random variable g(Y ) when conditioned on
the joint event that f(X) = i and Z = z. We will call this quantity the key-
dependent input-block-dependent imbalance of the partition-pair (F ;G) for �.
The key-dependent imbalance of the partition-pair (F ;G) given the key z is the
quantity

I((F ;G)jz) :=
1

l

l�1X
i=0

I(g(Y ) j f(X)= i; Z=z ) :

The average-key imbalance of (F ;G) is the quantity

I((F ;G)) :=
1

jZj
X
z2Z

I((F ;G) j z) =
1

l

l�1X
i=0

I( g(Y ) j f(X)= i ) ;

where I( g(Y ) j f(X)= i ) denotes the average-key input-block-dependent imbal-
ance of (F ;G) for the input block Fi.

The imbalance I((F ;G)) of the partition-pair (F ;G) can be calculated from
the key-dependent transition probabilities pjji;z for 0 � i < l, 0 � j < m, and z
in Z, where pjji;z is the conditional probability that the output Y = �Z(X) lies
in the output block Gj given that the input X is chosen uniformly at random in
the input block Fi and that Z = z (cf. Fig. 1).

The partition-pair (F ;G) will be said to have guaranteed transitions if its
average-key imbalance is 1. Guaranteed transitions mean that, for each key, the
block of G in which the output lies is uniquely determined by the key and the
block of F in which the input lies, i.e., the key and the input block uniquely
determine the output block. The partition-pair is e�ective if its average-key im-
balance is substantially greater than zero. This means that the output block
is determined with substantially large probability by the key and by the input
block.

In the following, we apply �to iterated block ciphers as de�ned in Fig. 2.

3 Last-Round Attack by Partitioning Cryptanalysis

In the last-round attack by �, we consider a partition-pair (F ;G) for the keyed
function consisting of the �rst r � 1 rounds of a cipher. Such a partition-pair
will be called an (r � 1)-round partition-pair. F and G are partitions of IBn so
that the numbers m and l of blocks in these partitions must both be powers
of 2. Typically, m will be 2, 4, 8, or 16, and l � m. For the last-round attack,
Z = K(1::r�1) and this key lies in the set Kr�1. Let Fi be the input block used
in the attack and suppose that N p/c-pairs with plaintexts in Fi are known.
The attack proceeds as follows.
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0. For each ~k in the set ~K of possible last-round keys, set up m counters with
one counter c[~k; j] for each j, 0 � j < m, and initialize all counters to 0.

1. Consider a known p/c-pair (x; y) with plaintext x in Fi.
2. For each ~k in ~K, evaluate ~y(r�1) := R�1~k (y) and increment the counter

c[~k; g(~y(r�1))] of the output block in which ~y(r�1) lies by 1.
3. Repeat Steps 1 and 2 for all N known p/c-pairs (x; y) with x in Fi.

4. Output the key(s) ~k maximizing �̂(~k) = I
�
c[~k; 0]N; c[~k; 1]N; . . . ; c[~k;m� 1]N

�
(which, with slight abuse of notation, denotes the imbalance of the random
variable whose probability distribution is shown as the argument) as the
candidate(s) for the actual key in the last round.

Note that I(:) can be either the peak imbalance or the Euclidean imbalance.
The quantity �̂(~k) is an empirical estimate of the decision metric

�(~k) = I( g(R�1~K (Y )) j f(X)= i; K(1::r) ~K=k(1::r)~k ) ;

which is the key-dependent input-block dependent imbalance of the partition-
pair (F ;G) for the keyed function whose input is X, whose key is the concate-
nation of K(1::r) and ~K, and whose output is R�1~K (Y ).

The last-round attack must in practice be speeded up by exploiting \key
equivalence". Two last-round keys k and k0 are equivalent if there is a bijection
 of f0; 1; . . . ;m�1g such that g(R�1k (y)) =  (g(R�1k0 (y))) for all y in IB

n. Keys
belonging to the same key equivalence class produce counter lists (c[k; 0]; c[k; 1];
. . . ; c[k;m�1]) that di�er only by a permutation and hence yield the same empir-
ical decision metric so that they are indistinguishable by the attack. Therefore,
we need to consider in Step 2 only one representative of each key (equivalence)
class. We will write ~K to denote a set containing exactly one representative ~k
of each key class. Partitioning cryptanalysis determines only the class in which
the true last-round key k(r) lies. This class is called the right class and its rep-
resentative is the right key ~kr. The other key classes are wrong classes and their
representatives are wrong keys ~kw lying in ~K n f~krg.

The success probability p is the probability that the last-round attack outputs
only the right key when the round keys are chosen independently and uniformly
at random. The key-dependent success probability pk(1::r) is the conditional prob-
ability of this event conditioned on the event that K(1::r) = k(1::r). Note that
pk(1::r) depends on the input block used in the attack, but the success probability
p is generally independent of this input block. In most cases of practical interest,
pk(1::r) is also independent of the actual value of k

(r).

The generalization of linear cryptanalysis in [HKM95] exploits an (r � 1)-
round I/O sum where f and g are balanced binary-valued functions on IBn. The
key-dependent imbalance of the I/O sum S is de�ned as I(Sjk(1::r�1)) := j2 �
P [S=0 j K(1::r�1)=k(1::r�1)]�1j [HKM95]. Let F and G be the partitions whose
partitioning functions are f and g, respectively. Then, I((F ;G) j k(1::r�1)) =
I(S(1::r�1) j k(1::r�1)). Thus, the last-round attack by �performs a last-round
generalized linear cryptanalysis attack with one di�erence: �can use only half of
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the plaintexts, either those in F0 or those in F1, whereas the generalization of
linear cryptanalysis can use all plaintexts. Since jFj = jGj = 2, this di�erence
can be removed by modifying Steps 1 and 2 in the procedure of �as follows:

1'. Consider a known p/c-pair (x; y) with arbitrary plaintext.

2'. For each ~k in ~K, calculate ~y(r�1) := R�1~k (y); increment c[k; g(~y(r�1))] by 1 if
x is in F0, and increment c[k; g(~y(r�1))� 1] by 1 if x is in F1.

4 Success Probability of Partitioning Cryptanalysis using

Peak Imbalance

Partitioning cryptanalysis using peak imbalance can be applied successfully if
one can �nd an (r � 1)-round partition-pair (F ;G) and an input block Fi that
satisfy the following conditions:

1) E�ectiveness: (F ;G) is e�ective.
2) Smallness of the number of key classes: The partition G is such that
the number � := j ~Kj of key classes is reasonably small. (The computational
complexity of the attack will be proportional to this number.)

3) Hypothesis of wrong-key randomization: The key-dependent input-
block-dependent peak imbalance Ip( g(Y

(r�1)) j f(X)= i; K(1::r�1) = k(1::r�1) )
of the partition-pair (F ;G) for X and Y (r�1) (i.e., for the �rst r � 1 rounds) is
substantially larger than the maximum over wrong keys ~kw of this same imbal-
ance for X and the guess R�1~kw (Y ) for Y

(r�1) computed from the ciphertext Y

by using the wrong key ~kw in the last round. More precisely, let the minimum
wrong-key peak imbalance decrease be de�ned by

�Ip(k
(1::r)) := Ip( g(Y

(r�1)) j f(X)= i; K(1::r�1) = k(1::r�1) )

� max
~kw2 ~Knfkrg

Ip( g(R
�1
~K
(Y )) j f(X)= i; K(1::r) ~K=k(1::r)~kw ):

Then, the hypothesis is that there exists a positive real number �min, substan-
tially larger than 0, such that, for virtually all k(1::r) that can result from the
cipher's key scheduling algorithm, �Ip(k

(1::r)) > �min.

It is insightful to consider Ip( g(R
�1
~K
(Y )) j f(X)= i; K(1::r) ~K=k(1::r)~kw ) as

the key-dependent input-block-dependent imbalance of the partition-pair (F ;G)
for an (r+1)-round \iterated" block cipher obtained by appending to the original
cipher an (r + 1)-th round with round function R�1 and round key ~K. If ~K is
the right key ~kr, then the r + 1 rounds collapse to r � 1 rounds, and the above
imbalance equals Ip( g(Y

(r�1)) j f(X)= i; K(1::r�1) = k(1::r�1) ). Otherwise, for
good ciphers, we would naturally expect the (r+1)-round partition-pair to have
substantially lower key-dependent imbalance than an (r�1)-round partition-pair
for virtually all keys K(1::r) = k(1::r).
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By assuming hypotheses similar to those that Matsui used for approximat-
ing the success probability of linear cryptanalysis , one �nds that the success
probability of �can be approximated as

p �
Z 1

�
p

N(m�1)Ir2
1
p
�e�

t
2

2 Q
�
�(1� I)(t+

p
N(m�1)Ir2)

���1
dt (1)

wherem = jGj, where Q(�) := 1p
2�

R1
�
e�

t
2

2 dt, and where Ir := Ip( g(Y
(r�1)) j

f(X)= i ) (cf. Appendix B). This approximation gives p as an increasing function
of Ir, which suggests that the average-key peak imbalance Ip(:) is a good measure
for the usefulness of the partition-pair (F ;G).

5 Coset-Partition-Pairs

Since there is generally an infeasibly large number of partitions with blocks of
equal sizes, we must concentrate on partitions with properties that suggest their
usefulness for �. Many ciphers use a group operation to insert the round keys
at the input of each round. For such ciphers, it is natural to consider \coset-
partitions" of IBn with respect to this group operation.

De�nition 3. Let \
" be a group operation in IBn and e the neutral element for
\
". A coset-partition for \
" is a partition F for which the block containing
e, F(e), is a subgroup of (IBn;
) and whose other blocks are the cosets of this
subgroup; i.e., a coset-partition is a partition that can be written as

F = fx
F(e) : x2 IBng :

A coset-partition-pair is a partition-pair both of whose components are coset-
partitions. A coset-partition for the component-wise XOR operation on n-tuples
will be called a linear partition and a partition-pair whose input and output
partitions are both linear will be called a linear partition-pair. The following
lemma gives a fundamental property of coset-partitions.

Lemma4. Let �z be the automorphism �z : IB
n ! IBn; x 7! z
x. A partition

is a coset-partition for the group operation \
" in IBn if and only if, for every
z in IBn, the automorphism �z maps all elements of each block of F onto one
block of F , i.e., if and only if the block containing z 
 x is uniquely determined
by z and by the block containing x, or, again equivalently, if and only if (F ;F)
has guaranteed transitions for \
", i.e., for every �z with z in IBn.

6 Finding E�ective Partition-Pairs

We now suppose that the round function R of an iterated block cipher is de�ned
by

Y (i) = RK(i)(Y (i�1)) = �(Y (i�1) 
K
(i)
L ;K

(i)
R ) ;
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where \
" is a group operation in IBn, where K
(i)
L and K

(i)
R denote the left and

the right part of K(i), and where �(:; k
(i)
R ) is invertible for all k

(i)
R .

We propose a method for �nding e�ective coset-partition-pairs for such ci-
phers. For linear cryptanalysis and the attack in [HKM95], there exists a pro-
cedure for �nding e�ective linear expressions and e�ective I/O sums. With the
help of Matsui's piling-up lemma, the imbalance of multi-round homomorphic
I/O sums can be lower bounded in terms of the imbalances of one-round homo-
morphic threefold sums [HKM95]. Fortunately, the most e�ective I/O sums are
often those for which this lower bound is the largest. For �, there is no general way
to compute a good lower bound on the imbalance of a multi-round partition-pair
given imbalances of the one-round partition-pairs that it comprises. We must set-
tle for approximating the average-key imbalance of a multi-round partition-pair.

Piling-up hypothesis for partition-pairs. Consider a cascade of � rounds
with round function R as de�ned above. Consider a list F (0); F (1); . . . ;F (�) of

coset-partitions for \
" and let I
(i)
(F (i�1);F (i)) be the average-key imbalance

of (F (i�1);F (i)) for �. Then, the average-key imbalance I
(1::�)

((F (0);F (�))) for
X(1) and Y (�) can be well approximated by

~I(1::�)((F (0);F (�))) := max I
(�)

((F (0);F (1))) � . . . � I(�)((F (��1);F (�))) (2)

where the maximum is taken over all coset-partitions F (1); F (2); . . . F (��1) for

 for which jF (0)j � jF (1)j � . . . � jF (�)j.

We have not been able to prove any result of this kind, but we have found
experimentally that the \piling-up approximation" (2) is often so descriptive of
the actual average-key imbalance that it can safely be used for �nding e�ective
multi-round partition-pairs.

Procedure for �nding e�ective �-round coset-partition-pairs

1. Find the set S
 of all coset-partitions for \
".
2. For all (F ;G) in S2
 where jFj � jGj, �nd the imbalance of the partition-pair

(F ;G) for the input and the output of a round. Discard the partition-pairs
with small imbalance from further consideration.

3. For each (l;m), where l and m are powers of two with l � m, consider all
retained partition-pairs (F ;G) in S2
 for the input of the �rst and the output
of the �-th round with jFj = l and jGj = m; use the piling-up approximation
(2) to estimate their average-key imbalance; �nd the most e�ective such
partition-pairs and their approximate average-key imbalances.

4. Use (1) to approximate the success probability of �. Decide for which l and
for which m the most successful attack can be obtained.

The complexity of this procedure depends crucially on the number of coset-
partitions. For cyclic group operations of IBn, there are only n � 2 non-trivial
coset-partitions, whereas there exist many more linear partitions. There seems
to be little chance of �nding an e�ective partition-pair for ciphers using cyclic
group operations on IBn and �seems not to be powerful against such ciphers. For
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ciphers using bitwise XOR to insert the keys, there are so many coset-partitions
that it is generally infeasible to compute the maximum speci�ed in the piling-up
hypothesis.

7 Partitioning Cryptanalysis of DES

We applied the last-round attack by �to six rounds of the Data Encryption Stan-
dard (DES). Details of this attack are given in Appendix C.

For a certain partition-pair, we analyzed in our attack all 256 p/c-pairs with
plaintexts in one input block. The success probability was about 95% for �using
the Euclidean imbalance but was only 74% for �using the peak imbalance [Har96].
Our better success probability is about the same as that obtained by Biham and
Shamir for di�erential cryptanalysis of 6-round DES (i.e., a success probability
of 95% using 240 p/c-pairs with chosen plaintexts [BS93, page 31]), and it is
slightly worse than the attack of Knudsen95, but a new weakness of 6-round
DES is exploited in �.

8 Conclusions

Partitioning cryptanalysis of iterated block ciphers was introduced. This is a
generalization of linear cryptanalysis and exploits a weakness that can be de-
scribed by an e�ective partition-pair, i.e., a pair of partitions such that, for every
key, the next-to-last-round outputs are substantially non-uniformly distributed
over the blocks of the second partition when the plaintexts are chosen uniformly
from a particular block of the �rst partition. The success probability of �was
approximated by assuming hypotheses similar to those that Matsui assumed to
estimate the success probability of linear cryptanalysis . The crucial problem
of �, namely the problem of �nding e�ective partition-pairs, was addressed. Our
procedure for �nding e�ective coset-partition-pairs requires extensive computa-
tion for ciphers in which the round keys are inserted with the XOR operation.
When the keys are inserted with group operations for large cyclic groups, our
procedure is considerably faster, but the chance to �nd an e�ective partition-
pair is generally small. To illustrate the potential usefulness of �, we applied it to
DES. For 6-round DES, attacks by �are chosen-plaintext attacks that are about
as successful as di�erential cryptanalysis , although they are based on a di�er-
ent weakness. We close by remarking that ciphers that are very weak against
�, but quite strong against both linear and di�erential cryptanalysis have been
designed in [Har96].
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A Combined Partitioning Cryptanalysis

Partitioning cryptanalysis is a chosen-plaintext attack because only p/c-pairs
with plaintexts from one input block can be considered, but any input block in
F can generally be used. We may extend �to form a known-plaintext attack by
combining �attacks that use di�erent input blocks in the following way.

0. Set up a counter c[i; ~k; j] for each i such that 0 � i < l, for each j such that
0 � j < m, and for each ~k in ~K; and initialize all counters to 0.

1. Choose a known p/c-pair (x; y) with arbitrary plaintext.
2. For each ~k in ~K, calculate ~y(r�1) := R�1~k (y) and

increment c[f(x); ~k; g(~y(r�1))] by 1.
3. Repeat Steps 1 and 2 for all known p/c-pairs .
4. For each i such that 0 � i < l and each ~k in ~K, reorder the values of

the counters c[i; ~k; 0]; c[i; ~k; 1]; . . . ; c[i; ~k;m � 1] so that c[i; ~k; 0] � . . . �
c[i; ~k;m� 1].
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5. For each ~k in ~K and each j such that 0 � j < m,
set c0[~k; j] =

Pl�1
i=0 c[i;

~k; j].

6. Output the key(s) ~k maximizing �̂(~k) = I( c
0[~k;0]
N

;
c0[~k;1]
N

; . . . ; c
0[~k;m�1]

N
) as

candidate(s) for the key actually used in the last round.

We will call this attack combined�(CPC). The combined �attack is similar to the
attack by linear cryptanalysis using multiple approximations [KR95]. Note that
combined �is a known-plaintext attack and that it will not be successful if l is
large as there will be generally too few p/c-pairs with plaintexts in the same
input block unless the plaintexts have been chosen such that they lie in a small
number of input blocks. The complexity of the attack is considerably reduced if
peak imbalance is used.

B Approximation of the Success Probability

We assume that the imbalance used in �is the peak imbalance Ip(:). We �rst
propose a model of how the various counters in the last-round attack increment.
Let ~J(~k) denote the random variable indicating which counter is incremented for
the key guess ~k when a certain p/c-pair is analyzed, i.e., ~J(~k) = g( ~Y (r�1)(~k) ),
and let J = g(Y (r�1)) indicate which counter is incremented for the right key
~kr.

Model for counter incrementing. For each wrong key ~kw in ~K n f~krg,
independently for all ~kw, ~J(~kw) is the output of an m-ary symmetric channel
with dominant probability q, where q � 1

m
, and input J , where J = ~J(~kr), i.e.,

P [ ~J(~kw)=~| j J=j ] =

(
q if~| = �~kw(j)

1-q
m�1if ~| 6= �~kw(j) ,

where �~kw is some permutation of f0; 1; . . . ;m � 1g. Moreover, q = m�1
m

I + 1
m

and I, which will be called the imbalance of the m-ary symmetric channel with
dominant probability q, is well approximated as

I � E[ Ip(J( ~Kw)) ]

Ip(J)
: (3)

The parameter I or, equivalently, the parameter q, characterizes the random-
ization caused by the last round.

To �nd I in �using peak imbalance, we may approximate Ip(J) and Ip( ~J(~kw))

by obvious estimates, namely by the empirical decision metrics �̂(~kr) and �̂(~kw),
respectively. Moreover, if we assume that Ip( ~J(~kw)) � E[ Ip(J( ~Kw)) ] for all ~kw,
then (3) follows from the following lemma.

Lemma5. Let the random variable J be the input to an m-ary symmetric chan-
nel with dominant probability q or, equivalently, with imbalance I = m

m�1 (q� 1
m
),

and let ~J(~kw) be the output. Then, for any probability distribution for J ,

Ip( ~J(~kw)) = Ip(J) � I :

11



Note that if the model for counter incrementing is satis�ed for an e�ective
partition-pair and if I is substantially smaller than 1, then the hypothesis of
wrong-key randomization is also ful�lled. The following theorem is based on the
given model for counter incrementing and provides a good approximation of the
success probability of �.

Theorem6. (Success probability of �) Consider the last-round attack by
�for the partition-pair (F ;G), using peak imbalance, analyzing N p/c-pairs with
plaintexts in an input block Fi, and distinguishing � key classes. Suppose �rst
that N is su�ciently large. Suppose second that the above model for counter in-
crementing holds. Suppose third that, for each of the � key guesses, the count that
is the most likely to be incremented dominates the other counts. Then, the suc-
cess probability of this attack, when the key in use is k(1::r), is well approximated
by

pk(1::r) �
Z 1

�
p
N(m�1)I2r

1
p
�e�

t
2

2 Q
�
�(1� I)(t+

p
N(m�1)I2r )

���1
dt ; (4)

where m = jGj, where Q(�) := 1p
2�

R1
�
e�

t
2

2 dt = 1
2 (1� erf( �p

2
)), and where Ir

is the key-dependent input-block-dependent imbalance of (F ;G) for the �rst r�1
rounds given that Fi is the input block used in the attack and that K(1::r�1) =
k(1::r�1).

In the following �gure, we show the approximate success probability as a
function of N(m� 1)I2r for di�erent values of � and I, where I is well estimated
by the quotient of the wrong-key and the right-key empirical decision metrics.

succpc2.c.eps

Now, if for virtually all keys k(1::r�1) in Kr�1 and for all i, 0 � i < l,

Ip( g(Y
(r�1)) j f(X)= i; K(1::r�1) = k(1::r�1) ) � Ip( g(Y

(r�1)) j f(X)= i )

| this assumption may be called the hypothesis of �xed-key equivalence in�

| then (1) follows. In practice, however, the hypothesis of �xed-key equiv-
alence for �is generally not well satis�ed. We observe that the approximation on
the right of (1) is often a convex-[ function of the key-dependent imbalance Ir
for small imbalances and a convex-\ (or concave) function of Ir for large imbal-
ances. By Jensen's inequality, we then expect this approximation to be smaller
than the true success probability when the key-dependent imbalances are low
(or, equivalently, when the success probability is low) and vice versa. We now
con�rm these expectations for DES.
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C Partitioning Cryptanalysis of DES

A linear partition F can be described by a parity-check matrix HF whose rows
are the n-tuples �1; �2; . . . ; �d. Given HF , the partition F is the set of cosets
of the linear code F(0) for which HF is a parity-check matrix, i.e., F is the set
of cosets of the subgroup F(0) = fx : x 2 IBn; xHT

F = 0g. The partitioning
function of F can be chosen as f : x 7! xHT

F . The parity-check matrix HF is
called reduced if its rows are linearly independent. In this case, the blocks of F
can be labeled with d = log2(jFj) binary digits.

A linear partition with parity-check matrix HF such that the Hamming
weight of each row is 1 will be called bit-selecting. Its subgroup can be writ-
ten as F(0) = fx : x2 IBn; �&x = 0g for some n-tuple � with Hamming weight
d, where \&" denotes bitwise AND and 0 represents the all-zero n-tuple. The n-
tuple � will be called the bit-selecting n-tuple of F . The i-th bit of a bit-selecting
n-tuple � will be called constrained by F if the i-th bit of � is 1, and called free
otherwise. A block of a linear partition is uniquely determined by specifying the
constrained bits for an element of this block.

Our procedure for �nding e�ective partition-pairs for DES is similar to the
procedure given in Section 6, but we use a simpler approximation of the partition-
pair average-key imbalances. Since it is infeasible for 5-round DES to compute
the product in (2) for all lists (F (0); F (1); . . . ;F (5)) such that jF (0)j � jF (1)j �
. . . � jF (5)j, we reduce the number of lists (F (0); F (1); . . . ;F (5)) for which we
actually compute the product as follows. The S-boxes from which constrained
bits emerge will be called active. box We restricted ourselves to lists of bit-
selecting linear partitions in which all bits that connect active S-boxes are con-
strained. Moreover, we used an appropriate approximation for the one-round
partition-pair peak imbalances. Our procedure provided us with many e�ective
partition-pairs. We empirically computed the peak imbalances of the most ef-
fective partition-pairs found and we veri�ed that the empirical peak imbalance
depends on the imbalance estimated in our procedure (cf. Fig. 3 left), which
shows that the imbalance estimate can be used for �nding e�ective partition-
pairs. We then approximated the success probability of attacks exploiting these
partition-pairs, performed the attacks many times, and empirically estimated
the success probability.

In Fig. 3 (right), we compared the approximate success probability and the
empirically estimated success probability. Note that to evaluate (1), I is given by
(3) in which the peak imbalances are replaced by empirical estimates of average-
key peak imbalances. The di�erence between the quantities shown in Fig. 3 can
be explained mainly by the fact that the hypothesis of �xed-key equivalence is not
well satis�ed (cf. Appendix B). Thus, our results suggest that Theorem 6 gives a
good approximation to the true success probability, although the approximation
(1) may be crude.

We also performed attacks by �using di�erent imbalance measures. Parti-
tioning cryptanalysis attacks using Euclidean imbalance were generally slightly
stronger than attacks using peak imbalance.

13



The most successful �attack on 6-round DES using 256 chosen p/c-pairs was
obtained when the attack used Euclidean imbalance, when the bit-selecting 64-
tuple of the input partition was 81fff9ff ffffffff and when the bit-selecting
64-tuple of the round four output partition was 00000000 0000f000 (i.e., when
the output block was de�ned only by the bits that are linked to the S-box S5
of the fourth round). The approximate imbalance computed in the procedure
for �nding e�ective bit-selecting linear partition-pairs is then 0:0638 and the
empirical imbalance is 0:0970. The empirical success probability is 95% for �using
Euclidean imbalance but is only 74% for �using peak imbalance when all 256 p/c-
pairs with plaintexts in one block are used. According to our approximation
with q empirically determined as 0:39, the latter success probability should be
95% instead of 74%, which is still high enough for most purposes.

This article was processed using the LaTEX macro package with LLNCS style
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X is the plaintext, Y is the ciphertext,
K(1); . . . ; K(r) are the round keys, K(1::r) :=
(K(1); . . . ;K(r)) is the full key, and R is the
round function. The round keys take values in
a set K, the round key set . X and Y take val-
ues in IBn, the set of binary n-tuples. For each
value k of the round key, the keyed round func-
tion Rk is an invertible function on IBn. Let Y (i)

denote the output n-tuple of the i-th round so
that Y = Y (r) and let Y (0) = X.

Fig. 2. Structure and notation for an r-round iterated block cipher.

= 5 cm desres1.c.eps = 5 cm desres2.c.eps

Fig. 3. Left: comparison of the approximate imbalances to the empirical imbalances of
partition-pairs for 5-round DES; right: comparison of the empirical success probability
and the approximate success probability of �using the peak imbalance for 6-round DES.
For many attacks all using di�erent partition-pairs whose input partition has 264�l

�

blocks where l� = 8 (light-grey points), 10, 12, or 14 (dark points), the empirical parti-
tion-pair imbalance and the empirical success probability are estimated after attacking
100 000 random keys. The number of known p/c-pairs in the attacks was N = 256 for
l� = 8 and N = 1024 otherwise.
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