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Abstract—The entropy rate of a finite-state hidden
Markov model can be estimated by forward sum-product
trellis processing (i.e., the forward recursion of the Baum-
Welch/BCJR algorithm) of simulated model output data.
This can be used to compute information rates of binary-

input AWGN channels with memory.

I. INTRODUCTION

The magnetic recording channel is often modeled as
a binary-input linear channel with memory and additive
white Gaussian noise (AWGN). Channels of this type,
which are often called partial response (PR) channels,
arise also in many communication systems. Despite their
ubiquity, no practical algorithm for computing the capac-
ity of such channels is known.

A simpler problem is the computation of the mutual
information I(X;Y’) between the input X and the output
Y of such a channel for the case where Xg, k € Z, are
independent and identically distributed (i.i.d.) random
variables with uniform distribution over the (binary) in-
put alphabet. That mutual information will be called the
uniform-input information rate.

The problem of computing the uniform-input informa-
tion rate for binary-input partial response channels was
studied by Hirt [1] and by Shamai et al. [2]. Hirt [1]
obtains upper and lower bounds from Monte-Carlo sim-
ulation using input blocks of finite length n. If m is the
channel memory, the difference between the upper bound
and the lower bound is at most m/n bits/symbol, and
the complexity of this method is proportional to 2. The
bounds reported in [2] yield less accurate results even for
channels with small memory.

Recently, a lower bound on the capacity has been con-
jectured by Shamai and Laroia [3]. In contrast to Hirt’s
method, this conjectured lower bound is easy to com-
pute also for channels with large memory. By numerical
comparison, it has been observed [3] that the conjectured
Shamai-Laroia lower bound (SLLB) on the capacity co-
incides with the uniform-input information rate for the
channels with small memory considered in [1].

In this paper, we present a new practical method to
compute uniform-input and nonuniform-input informa-
tion rates of such channels. Like Hirt’s method, our
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method is simulation-based; however, its complexity is
only proportional to 2™. The new method applies, in fact,
to the more general class of channels consisting of a deter-
ministic finite-state channel followed by an additive noise
channel, and it extends also to finite-state hidden-Markov
input processes. The pivotal observation behind the new
method is that the entropy rate of the channel output
can be computed by standard forward sum-product trel-
lis processing of simulated channel output.

This paper is structured as follows. The new method is
described in Section II. Numerical results for some stan-
dard PR channel models as well as a comparison with
Hirt’s method are given in Section III. In Section IV,
we go beyond uniform i.i.d. input: for selected channels
higher information rates—i.e., improved lower bounds on
channel capacity—are obtained with input processes that
have memory. Some concluding remarks are given in Sec-
tion V.

II. COMPUTING THE INFORMATION RATES

Consider a channel with binary input X; € {+1, -1},
t € Z, and output Y;, ¢ € Z, given by

Y, = Z 9 Xik + Zi, (1)
E=0
where go, g1, - -,9m are fixed real parameters and where

the “noise” Z; € R is assumed to be a white (ie.,
iid.) process. The channel input process X is as-
sumed to be stationary. We will use the notation X™ 2
(X1,Xa,...,X,). Entropy rates and information rates
are defined in the usual way; e.g., the differential entropy
rate h(Z) is defined as h(Z) £ lim,_ oo h(Z™)/n. The
results of this paper apply also if Z;, 1 € Z, is discrete. In
this case, h(Z), h(Y), and h(Y|X) are replaced by H(Z),
H(Y), and H(Y|X) respectively. We consider the prob-
lem of computing

I(X;Y) = h(Y) - h(Y|X) (2)

(or an estimate thereof), for the case that X is a pro-
cess with memory at most m, i.e., p(xp|Tr—1,Zr—2,...) =
P(zE|Te—1,...,Tk—m), for all k € Z. Since h(Y|X) =



h(Z), the problem reduces to the computation of h(Y)
(or an estimate thereof).

As is well known, for any given block length n and
any given channel output y™ = (y1,¥2, ..., Yn), the prob-
ability p(y™) can be computed by the forward recur-
sion of the Baum-Welch/BCJR algorithm [4], [5], which
operates on the trellis of the channel. For this com-
putation, each trellis branch b is assigned the “metric”
w(b) = p(b]1st(b))p(y|b), where lst(b) is the starting (left-
hand) state of b, and each of the initial (leftmost) states
of the trellis is assigned the “metric” u(s) = p(s) accord-
ing to the stationary state distribution. The trellis is then
processed from left (initial states) to right (final states),
computing state metrics u(s) according to the rule

we)= D nllst(®)u(b), 3)

b: rst(b)=s

where 1st(b) and rst(b) denote the left-hand (starting) and
right-hand (ending) state, respectively, of branch b. Then
the sum of u(s) over all final (rightmost) trellis states s
equals p(y™).

An estimate of h(Y™) = —E[log(p(y™))] is thus ob-
tained by the following algorithm. Simulate the channel
N times, each time starting with the stationary state dis-
tribution and simulating n channel inputs z™ and outputs
y™. For each such simulation, compute p(y™) as described
above. Let pg be the resulting p(y™) of the k-th simula-
tion. Then —4 3™ | log(px) is an estimate of h(Y™) that
converges (with probability 1) to h(Y™) for N — oo.

The above algorithm for the computation of h(Y™) was
formulated mainly to give some intuition. We now de-
scribe the algorithm that will actually be used. For a
stationary ergodic finite-state hidden-Markov process Y
(and thus certainly for models as in (1)), the Shannon-
McMillan-Breimann theorem [6, Section 15.7] applies also
if Y is continuous [7]. Hence,

-~ log(p(¥"™)) - h(Y) @

with probability one.

An estimate of h(Y) = lim,,_, o, A(Y™) is thus obtained
by a single long simulation of y™, n = 1,2,3,..., and
the corresponding single forward sum-product recursion,
which yields p(y™), n = 1,2, 3,. .., as the sum of the time-
n state metrics. Due to (4), the sequence of estimates
—Llog(p(y™)) converges to h(Y).

For large n, the state metrics u(s) computed according
to (3) quickly tend to zero. In practice, the recursion rule
(3) is therefore changed to

Y Aeu(lst(b)u(d), (5)

b: rst(b)=s

p(s) =
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Fig. 1. Uniform-input information rates of selected channels.

where A is a scale factor for the k-th trellis section. If
A is chosen such that, for each time k, the sum of the
time-k state metrics equals 1, then

© 3 log() = - log(p(u™)- ©
k=1

The left-hand side of (6) thus converges to h(Y).

III. UNIFORM-INPUT INFORMATION RATES

The algorithm described in Section I was used to com-
pute the uniform-input information rate for the channels
listed in Table I. The channel input alphabet is the set
{+1,—1}. The channel tap coefficients go,g1,- .., gm are
normalized so that > 7* g: = 1. The input energy is
E; =1 and the noise is AWGN with variance N, /2.

TABLE I
IMPULSE RESPONSES OF SELECTED CHANNELS.

Channel name Normalized impulse response

DICODE g9(D) = 1 - D)/V2

EPR4 g(D)= (14D —D?*—-D3)/2

E2PR4 ¢(D) = (142D —2D® — DY /v/10

CHS6 g(D) = 0.1940.35D 4 0.46 D* 4 0.5D3+
0.46D* 4 0.35D% 4 0.19D°

The resulting uniform-input information rates are
shown in Fig. 1. Note that, for the memoryless channel
g(D)=1, which is also shown in Fig. 1, the uniform-input
information rate coincides with the channel capacity. The
following observations can be made:

o For a given signal to noise ratio (SNR), the uniform-
input information rate decreases with increasing memory.
o At arate of 0.9 bits/symbol, the uniform-input informa-
tion rate of the DICODE channel is 0.8 dB away from the
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Fig. 2. Convergence behaviour of the new algorithm.

capacity of the memoryless channel. The E2PR4 chan-
nel is another dB off. This is in agreement with results
reported in [1], [3].

The convergence behavior of the algorithm is illustrated
by Fig. 2. The uniform-input information rate for the
DICODE channel at 0 dB was computed 10+100+1000
times, each time by a simulation run of 10 symbols and
with a new random seed. For each blocklength n, Fig. 2
shows the minimum and the maximum computed esti-
mate of the information rate among the first 10, the next
100, and the remaining 1000 simulation runs.

We next compare the method of Section II with that
used by Hirt [1]. The latter method computes the quan-
tities I,, and fn, which are defined as follows:

L2 I(X™ Y™ X0, X 1y, X1m)/n, (7)
and

L2 I(X™ Y™™ X0,y X1y Xng1s- - Xnkm) /T,
(8)
both for uniform i.i.d. binary input X. By standard ar-
guments, )
I, <1, (9)

and .
lim I, = lim [, =I(X;Y).

n—oo n—roo

(10)

The difference between I,, and fn is at most m/n. For
i.i.d. inputs I,, is a lower bound on the information rate
I(X;Y),ie. I, <I(X;Y)forn > 1.

Hirt computes I,, and I, by numerical integration based
on Monte-Carlo simulation. Note that this could also be
done by the algorithm for the computation of A(Y™) de-
scribed in Section II.

Numerical results for Hirt’s method are shown in Fig-
ures 3 and 4 for the DICODE channel and the channel
CHS6, respectively, at -8 dB, 0 dB, and 5 dB. The plots
show I,, (there denoted by “Lower bound”) and I, (“Up-
per bound”) as a function of n. For comparison, the plots
also show the exact uniform-input information rate com-
puted by the algorithm of Section IT (denoted by FSPA) as
well as the Shamai-Laroia conjectured lower bound on ca-
pacity (SLLB) [3]. The latter is computed by evaluating a
single 1-dimensional integral. In the computed examples,
it is very close to the uniform-input information rate.
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different methods for the DICODE-channel.
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IV. NONUNIFORM-INPUT INFORMATION RATES

We now go beyond uniform iid. input and
consider stationary input distributions of the form
p(Tr|Tr—1,Zr—2,...) = P(@k|Tk—1,...,Zk—m). Clearly,
the method of Section II can still be used to compute the
information rate I(X;Y). If necessary, the channel mem-
ory parameter m may be artificially increased to allow for
input processes with larger memory.

In the sequel, we focus on the DICODE channel, which
is equivalent to the PR4-channel (with g(D) = (1 —
D?)/+/2) that is widely used in magnetic recording. We
computed the maximum information rate of this channel
for input processes with memory 1 and 2 (i.e., 2 states and
4 states, respectively). The results are shown in Fig. 5.
The branching probabilities of the Markov model were
numerically optimized for maximum h(Y). It is easy to
see that, for SNR — o0, the uniform i.i.d. process is op-
timal. For low SNR, however, the optimal input distri-
bution tries to produce more output symbols with high
energy.

Also shown in Fig. 5 are the capacity both of the
memoryless AWGN channel and of the DICODE channel
for nonbinary power-limited (Gaussian) input. The plot
shows that, at low SNR, the optimized Markov models
achieve noticeably higher information rates than uniform
i.i.d. processes. These information rates exceed even the
capacity of the memoryless Gaussian channel. Similar
results were obtained for the CH6 channel by systemat-
ically optimizing the branching transition probabilities.
At rate one half, a memory 6 input process improves the
lower bound on capacity of the CH6 channel by 2 dB (see
Fig. 6).
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V. SUMMARY AND CONCLUSIONS

It has been pointed out that uniform-input and
nonuniform-input information rates for discrete-time
binary-input channels with memory can be computed by
standard forward sum-product processing of simulated
channel output. The complexity of this method is propor-
tional to 2™, where m is the channel memory; with todays
computing power, the method is easily applicable to chan-
nels with memory up to about 15. The method extends to
general finite-state channel input processes. For the DI-
CODE and the CH6 channel, maximum information rates
for input processes with memory were computed. By in-
creasing the memory, the capacity of these channels can
be closely approximated.
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