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Abstract

It has recently become feasible to compute information rates of finite-state
source/channel models with not too many states. We review such methods and
demonstrate their extension to compute upper and lower bounds on the infor-
mation rate of very general (non-finite-state) channels by means of finite-state
approximations.

1 Introduction

We consider the problem of computing the information rate

I(X; Y )
4
= lim

n→∞

1

n
I(X1, . . . , Xn; Y1, . . . , Yn), (1)

between the input process X = (X1, X2, . . .) and the output process Y = (Y1, Y2, . . .)
of a time-invariant channel with memory. We will assume that X is Markov or hidden
Markov, and we will primarily be interested in the case where the channel input alphabet
X (i.e., the set of possible values of Xk) is finite.

In many cases of practical interest, the computation of (1) is a problem. Analytical
simplifications of (1) are usually not available even if the input symbols Xk are i.u.d.
(independent and uniformly distributed). The complexity of the direct numerical com-
putation of

In
4
=

1

n
I(X1, . . . , Xn; Y1, . . . , Yn) (2)

is exponential in n, but the sequence I1, I2, I3, . . . converges rather slowly even for very
simple examples.

For finite-state channels (to be defined in Section 2), a practical method for the
computation of (1) was recently presented independently by Arnold and Loeliger [2], by
Sharma and Singh [17], and by Pfister et al. [16]. The new method consists essentially

of sampling both a long input sequence xn 4
= (x1, . . . , xn) and the corresponding output

sequence yn 4
= (y1, . . . , yn), followed by the computation of log p(yn) (and, if necessary, of

log p(yn|xn)) by means of a forward sum-product recursion on the joint source/channel
trellis. We will review this method in Section 3.



In Section 4, we show that essentially the same method can be used to compute upper
and lower bounds on the information rate of very general channels with memory. (The
upper bound was presented in [3].) The basic idea is to approximate the given “difficult”
channel by a finite-state model; we then use simulated (or measured) input/output pairs
from the actual channel as inputs to a computation on the trellis of the finite-state model.
The bounds will be tight if the finite-state model is a good approximation of the actual
channel. The lower bound holds under very weak assumptions; the upper bound requires
a lower bound on the conditional entropy rate h(Y |X). A numerical example is given in
Section 5.

To conclude this introduction, we wish to mention same earlier and some related re-
cent work on similar topics. Hirt [10] proposed a Monte-Carlo method to evaluate lower
and upper bounds on the i.u.d. rate of binary-input intersymbol interference channels
(see Example 1 below). Shamai et al. [18] [19] also investigated the intersymbol interfer-
ence channel and derived various closed-form bounds on the capacity and on the i.u.d.
information rate as well as a lower-bound conjecture. Mushkin and Bar-David [15] an-
alyzed the Gilbert-Elliot channel and Goldsmith and Varaiya [9] extended that work to
general channels with a freely evolving state (see Example 2 below); they gave expres-
sions for the channel capacity and the information rate as well as recursive methods for
their evaluation.

Subsequent to [2] [17], Kavčić presented a highly nontrivial generalization of the
Blahut-Arimoto algorithm to maximize the information rate over finite-state Markov
sources [11]. Vontobel and Arnold [21] proposed an algorithm to compute an upper
bound on the capacity of finite-state channels; that algorithm appears to be practical
only for small examples, however. Many of these topics are discussed in [4]; none of these
topics will be further considered in the present paper.

2 Finite-State Source/Channel Models

We will assume that X, Y , and S = (S0, S1, S2, . . .) are stochastic processes such that

p(x1, . . . , xn, y1, . . . , yn, s0, . . . , sn) = p(s0)
n∏

k=1

p(xk, yk, sk|sk−1) (3)

for all n > 0 and with p(xk, yk, sk|sk−1) not depending on k. We will assume that the
state Sk takes values in a finite set and we will assume that the process S is ergodic;
under the stated conditions, a sufficient condition for ergodicity is p(sk|s0) > 0 for all
s0, sk for all sufficiently large k.

For the sake of clarity, we will further assume that the channel input alphabet X is
a finite set and that the channel output Yk takes values in R; none of these assumptions
is essential, however. With these assumptions, the left-hand side of (3) should be un-
derstood as a probability mass function in xk and sk, and as a probability density in
yk.

Example 1 (Binary-input FIR filter with AWGN). Let

Yk =
m∑

i=0

giXk−i + Zk
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Figure 1: The (Forney-style) factor graph of (3).

with fixed real coefficients gi, with Xk taking values in {+1,−1}, and where Z = (Z1, Z2, . . .)
is white Gaussian noise. If X is Markov of order L, i.e.,

p(xk|xk−1, xk−2, . . .) = p(xk|xk−1, . . . , xk−L),

then (3) holds for Sk
4= (Xk, Xk−1, . . . , Xk−M+1) with M = max{m,L}.

Example 2 (Channels with freely evolving state). Let S′ = (S′0, S
′
1, . . .) be a first order

Markov process that is independent of X and with S′k taking values in some finite set. Consider
a channel with

p(y1, . . . , yn, s′0, . . . , s
′
n|x1, . . . , xn) = p(s′0)

n∏
k=1

p(yk|xk, s
′
k−1) p(s′k|s′k−1)

for all n > 0. If X is Markov of order L, then (3) holds for Sk
4= (S′k, Xk, . . . , Xk−L+1). This

class of channels, which includes the Gilbert-Elliot channel, was investigated in [9].

Under the stated assumptions, the limit (1) exists. Moreover, the sequence− 1
n

log p(Xn)
converges with probability 1 to the entropy rate H(X), the sequence − 1

n
log p(Y n) con-

verges with probability 1 to the differential entropy rate h(Y ), and − 1
n

log p(Xn, Y n)
converges with probability 1 to H(X) + h(Y |X), cf. [6] [13].

We conclude this section by noting that the factorization (3) may be expressed by
the graph of Fig. 1. (This graph is a Forney-style factor graph, see [8] [14]; add a circle
on each branch to obtain a factor graph as in [12].) From this graph, the computations
described in the next section will be obvious.

3 Computing I(X ; Y ) for Finite-State Models

From the above remarks, an obvious algorithm for the numerical computation of I(X; Y ) =
h(Y )− h(Y |X) is as follows:

1. Sample two “very long” sequences xn and yn.

2. Compute log p(xn), log p(yn), and log p(xn, yn). If h(Y |X) is known analytically,
then it suffices to compute log p(yn).

3. Conclude with the estimate

Î(X; Y ) =
1

n
log p(xn, yn)− 1

n
log p(xn)− 1

n
log p(yn), (4)

or, if h(Y |X) is known analytically, Î(X; Y ) = − 1
n

log p(yn)− h(Y |X).
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Figure 2: Computation of p(yn) by message passing through Fig. 1.

Obviously, this algorithm is practical only if the computations in Step 2 are feasible.
For finite-state source/channel models as defined in Section 2, these computations can
be carried out by forward sum-product message passing through the graph of Fig. 1, as
illustrated in Fig. 2. Since Fig. 1 represents a trellis, this computation is just the forward
sum-product recursion of the BCJR algorithm [5].

Consider, for example, the computation of

p(yn) =
∑
xn,sn

p(xn, yn, sn) (5)

with sn 4
= (s0, s1, . . . , sn). By straightforward application of the sum-product algorithm

(cf. [12] [8]), we recursively compute the messages (i.e., state metrics)

µf(sk) =
∑

xk,sk−1

µf(sk−1) p(xk, yk, sk|sk−1) (6)

=
∑

xk,sk−1

p(xk, yk, sk) (7)

for k = 1, 2, 3, . . ., as illustrated in Fig. 2. The desired quantity (5) is then obtained as

p(yn) =
∑
sn

µf(sn), (8)

the sum of all final state metrics.
For large n, the state metrics µf(.) computed according to (6) quickly tend to zero.

In practice, the recursion rule (6) is therefore changed to

µ′f(sk) = λk

∑
xk,sk−1

µ′f(sk−1) p(xk, yk, sk|sk−1) (9)

where λ1, λ2, . . . are positive scale factors. If these scale factors are chosen such that∑
sn

µ′f(sn) = 1, then

1

n

n∑
k=1

log λk = − 1

n
log p(yn). (10)

The quantity − 1
n

log p(yn) thus appears as the sum of the logarithms of the scale factors,
which converges (almost surely) to h(Y ).

If necessary, the quantities log p(xn) and log p(xn, yn) can be computed by the same
method. If there is no feedback from the channel to the source, the computation of
log p(xn) uses only the source model rather than the joint source/channel model.



4 Bounds on I(X ; Y ) for General Channels

The methods of the previous section can be extended to compute upper and lower bounds
on the information rate of very general (non-finite-state) channels. For the sake of clarity,
we begin by stating the bounds for the discrete memoryless case.

Let X and Y be two discrete random variables with joint probability mass function
p(x, y). We will call X the source and p(y|x) the channel law. Let q(y|x) be the law of
an arbitrary auxiliary channel with the same input and output alphabets as the original
channel. We will imagine that the auxiliary channel is connected to the same source X;
its output distribution is then

qp(y)
4
=

∑
x

p(x) q(y|x). (11)

Theorem (Upper-Bound):

I(X; Y ) ≤
∑
x,y

p(x, y) log
p(y|x)

qp(y)
(12)

= Ep(x,y)

[
log p(Y |X)− log qp(Y )

]
. (13)

This bound appears to have been observed first by Topsøe [20]. (It was brought to
our attention by recent work of A. Lapidoth.) The proof is straightforward. Let Iq(X; Y )
be the right-hand side of (12). Then

Iq(X; Y )− I(X; Y ) =
∑
x,y

p(x, y)

[
log

p(y|x)

qp(y)
− log

p(y|x)

p(y)

]
(14)

=
∑
x,y

p(x, y) log
p(y)

qp(y)
(15)

=
∑

y

p(y) log
p(y)

qp(y)
(16)

= D
(
p(y)||qp(y)

)
(17)

≥ 0. (18)

Theorem (Lower Bound):

I(X; Y ) ≥
∑
x,y

p(x, y) log
q(y|x)

qp(y)
(19)

= Ep(x,y)

[
log q(Y |X)− log qp(Y )

]
. (20)

This bound is implicit in the classical papers by Blahut [7] and Arimoto [1]. The
proof goes as follows. Let Iq(X; Y ) be the right-hand side of (19) and let

rp(x|y)
4
=

p(x)q(y|x)

qp(y)
(21)



be the “reverse channel” of the auxiliary channel. Then

I(X; Y )− Iq(X; Y ) =
∑
x,y

p(x, y)

[
log

p(x, y)

p(x)p(y)
− log

q(y|x)

qp(y)

]
(22)

=
∑
x,y

p(x, y) log
p(x, y)

p(y)p(x)q(y|x)/qp(y)
(23)

=
∑
x,y

p(x, y) log
p(x, y)

p(y)rp(x|y)
(24)

= D
(
p(x, y)||p(y)rp(x|y)

)
(25)

≥ 0. (26)

It is obvious from these proofs that both the upper bound (12) and the lower bound
(19) are tight if and only if p(x)q(y|x) = p(x, y) for all x and y.

The generalization of these bounds to the information rate of channels with memory
is straightforward: the upper bound becomes

Iq(X; Y )
4
= lim

n→∞
Ep(·,·)

[
1

n
log p(Y n|Xn)− 1

n
log qp(Y

n)

]
(27)

and the lower bound becomes

Iq(X; Y )
4
= lim

n→∞
Ep(·,·)

[
1

n
log q(Y n|Xn)− 1

n
log qp(Y

n)

]
. (28)

Now assume that p(·|·) is some “difficult” (non-finite-state) ergodic channel. We can
compute bounds on its information rate by the following algorithm:

1. Choose a finite-state source p(·) and an auxiliary finite-state channel q(·|·) so that
their concatenation is a finite-state source/channel model as defined in Section 2.

2. Concatenate the source to the original channel p(·|·) and sample two “very long”
sequences xn and yn.

3. Compute log qp(y
n) and, if necessary, log p(xn) and log q(yn|xn)p(xn) by the method

described in Section 3.

4. Conclude with the estimates

Îq(X; Y ) = − 1

n
log qp(y

n)− h(Y |X) (29)

and

Îq(X; Y ) =
1

n
log q(yn|xn)p(xn)− 1

n
log p(xn)− 1

n
log qp(y

n). (30)

Note that the term h(Y |X) in the upper bound (29) refers to the original channel and
cannot be computed by means of the auxiliary channel.



5 An Example

Consider the channel consisting of a linear filter with impulse response

1/(1− αD) = 1 + αD + α2D2 + . . .

and additive white Gaussian noise with variance σ2, as illustrated in Fig. 3. The channel
input is restricted to {+1,−1}.

A natural finite-state approximation is obtained by truncating the impulse response.
Another finite-state approximation is obtained by inserting a quantizer in the feedback
loop as shown in Fig. 4. Note that the channel of Fig. 4 is nonlinear.

Some numerical results for this example are shown in Fig. 5. The figure shows the
upper bound and the lower bound on the i.u.d. information rate, both for the truncated
impulse response model and for the quantized-feedback model. The horizontal axis shows
log2 M , where M is the number of states of the finite-state model. The particular numbers
shown in Fig. 5 correspond to the values α = 0.8 and σ2 = 1. The quantizer in Fig. 4
was chosen to be a uniform quantizer optimized to give as good bounds as possible; the
parameter σ′ in Fig. 4 was also optimized. As Fig. 5 shows, the quantized-feedback model
yields better bounds with less states than the truncated-impulse-response model.

6 Conclusions

Information rates of finite-state source/channel models (with not too many states) can
now be computed accurately. By a new extension of such methods, we can compute
upper and lower bounds on the information rate of very general non-finite-state channels
(used with finite-state sources) by means of finite-state approximations of the channel.
The bounds are tight if the approximation is good. The lower bound requires only that
the channel is ergodic and can be simulated (or measured); the upper bound requires
also a lower bound on h(Y |X).
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Figure 4: A quantized version of the channel of Figure 3.
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