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Simulation-Based Computation of Information Rates
for Channels With Memory
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Abstract—The information rate of finite-state source/channel
models can be accurately estimated by sampling both a long
channel input sequence and the corresponding channel output se-
quence, followed by a forward sum–product recursion on the joint
source/channel trellis. This method is extended to compute upper
and lower bounds on the information rate of very general channels
with memory by means of finite-state approximations. Further
upper and lower bounds can be computed by reduced-state
methods.

Index Terms—Bounds, channel capacity, finite-state models,
hidden-Markov models, information rate, sum–product algo-
rithm, trellises.

I. INTRODUCTION

WE consider the problem of computing the information
rate

(1)

between the input process and the output
process of a time-invariant discrete-time
channel with memory. We will assume that is Markov or
hidden Markov, and we will primarily be interested in the case
where the channel input alphabet (i.e., the set of possible
values of ) is finite.
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In many cases of practical interest, the computation of (1)
is a problem. Analytical simplifications of (1) are usually not
available even if the input symbols are independent and uni-
formly distributed (i.u.d.). The complexity of the direct numer-
ical computation of

(2)

is exponential in , and the sequence converges
rather slowly even for very simple examples.

Prior work on this subject includes investigations of i) linear
intersymbol interference (ISI) channels, ii) generalizations of
the Gilbert–Elliott channel, and iii) channels with constrained
input (cf. the examples in Section II). The binary-input linear ISI
channel was investigated by Hirt [21], who proposed a Monte
Carlo method to evaluate certain quantities closely related to the
i.u.d. information rate (cf. Section IV). Shamai et al. [36], [37]
also investigated the ISI channel and derived various closed-
form bounds on the capacity and on the i.u.d. information rate
as well as a lower bound conjecture.

The Gilbert–Elliott channel was analyzed by Mushkin and
Bar-David [29]. Goldsmith and Varaiya extended that work to
general channels with a freely evolving state [18] (cf. Example
2); they gave expressions for the channel capacity and the infor-
mation rate as well as recursive methods for their evaluation.

Zehavi and Wolf studied the binary symmetric channel with
run-length limited input [46]; they derived a set of lower bounds
for Markovian input and demonstrated some numerical results.
Both the binary symmetric channel and the Gaussian channel
with run-length limited binary input were studied by Shamai
and Kofman, who obtained upper and lower bounds on the i.u.d.
information rate [35]. A related topic is the continuous-time ad-
ditive white Gaussian noise (AWGN) channel with peak-ampli-
tude-constrained input, which was addressed by Heegard et al.
[19], [20].

Despite all this work, information rates of such channels
could not be computed accurately enough for most engineering
purposes except for the Gilbert–Elliott channel and its gener-
alizations.

The first and main result of our own work (first reported in [3])
is a practical algorithm to compute information rates for general
finite-state source/channel models (to be defined in Section II).
This algorithm was independently discovered also by Sharma
and Singh [38] and by Pfister et al. [32]. We will review this
algorithm in Section III.

Since the original submission of this paper, this algorithm has
been used and extended in various ways. For example, Zhang
et al. investigate information rates both of magnetic recording
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channels [48] and of fading multiple-input multiple-output
(MIMO) channels with ISI [49]; magnetic recording is also
considered by Ryan et al. [34] as well as by Pighi et al. [33].
Two-dimensional ISI channels are considered by Siegel et
al. [11], [40] and by Shental et al. [39]. Related analytical
results were presented by Sharma and Singh [38] as well as
by Holliday et al. [22], [23]; the latter explore, in particular,
the relation to Lyapunov exponents of the product of random
matrices. Further related work by the authors of the present
paper (not covered here) includes [42], [13], [47]; see also [43]
and [5].

In this paper, after describing the basic algorithm, we ex-
tend the method to very general (non-finite-state) channels with
memory. In Section V-C and Appendix III, we demonstrate the
use of reduced-state recursions to compute upper and lower
bounds on the information rate. In Section VI, we use finite-
state approximations of the channel; by simulations of the actual
source/channel and computations using the finite-state model,
both an upper bound and a lower bound on the information rate
of the actual channel are obtained. The bounds will be tight if the
finite-state model is a good approximation of the actual channel.
The lower bound holds under very weak assumptions; the upper
bound requires a lower bound on the conditional entropy rate

.
In this paper, we will always assume that the channel input

process is given; in the numerical examples, we will often as-
sume it to be i.u.d. Our parallel work on optimizing the process

over finite-state hidden-Markov sources (cf. [24]) will be re-
ported in a separate paper [43]. Computational upper bounds on
the channel capacity were proposed in [42] and [45].

We will use the notation and
.

II. FINITE-STATE SOURCE/CHANNEL MODELS

In this section, we will assume that the channel input
process , the channel output process

, and some auxiliary state process
satisfy

(3)

for all and with not depending on
. We will assume that the state takes values in some finite

set and we will assume that the process is ergodic; under
the stated conditions, a sufficient condition for ergodicity is

for all , for all sufficiently large .
For the sake of clarity, we will further assume that the channel

input alphabet is a finite set and that the channel output
takes values in ; none of these assumptions is essential, how-
ever. With these assumptions, the left-hand side of (3) should be
understood as a probability mass function in and and as a
probability density in . We will also assume that

(4)

Fig. 1. The factor graph of (3).

Fig. 2. Finite-state machine describing a run-length constraint.

for all , , , in order to guarantee the existence of certain
limits, cf. [27]. This condition formally excludes a finite channel
output alphabet, but all results of this paper are easily reformu-
lated to hold for that case.

The factorization (3) is expressed by the factor graph of Fig. 1.
(This graph is a Forney-style factor graph, see [16], [28]; add a
circle on each branch to obtain a factor graph as in [26].)

Example 1 (Channel With Binary-Input Finite Impulse Re-
sponse (FIR) Filter and With AWGN): Let

(5)

with fixed real coefficients , with taking values in
, and where is white Gaussian

noise. If is Markov of order , i.e.,

(6)

for , then (3) holds for
with .

As shown in Appendix II, the extension of this example to
colored noise can be reduced to the case of white noise.

Example 2 (Channel With Freely Evolving State): Let
be a first-order Markov process that is

independent of and with taking values in some finite set.
Consider a channel with

(7)
for all . If is Markov of order , then (3) holds for

. This class of channels in-
cludes the Gilbert–Elliott channel [29].

Example 3 (Channel With Constrained Input): Consider a
memoryless channel with input alphabet , and assume that
no channel input sequence may contain more than two consecu-
tive ones. Note that the admissible channel input sequences cor-
respond to the walks through the directed graph shown in Fig. 2.

A finite-state process that complies with these constraints
may be obtained by assigning probabilities to the
edges of Fig. 2 such that . (The problem of
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finding “good” branching probabilities is treated in
[43].) We then have

(8)
which is of the form (3).

Under the assumptions stated at the beginning of this sec-
tion, the limit (1) exists. Moreover, the sequence
converges with probability to the entropy rate , the se-
quence converges with probability to the dif-
ferential entropy rate , and converges
with probability to , cf. [9], [27], and [14,
Sec. IV-D]. The corresponding results for the case of a finite
channel output alphabet are contained already in [31].

III. COMPUTING FOR FINITE-STATE CHANNELS

From the remarks above, an obvious algorithm for the numer-
ical computation of is as follows:

1) Sample two “very long” sequences and . (The
meaning of “very long” is discussed in Section IV.)

2) Compute , , and . If
is known analytically, then it suffices to compute
.

3) Conclude with the estimate

(9)

or, if is known analytically

(10)

The computations in Step 2 can be carried out by forward
sum–product message passing through the factor graph of (3),
as illustrated in Fig. 3. Since the graph represents a trellis, this
computation is just the forward sum–product recursion of the
Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [8].

Consider, for example, the computation of

(11)

Define the state metric . By straightforward
application of the sum–product algorithm [26], we recursively
compute the messages (state metrics)

(12)

(13)

Fig. 3. Computation of p(y ) by message passing through the factor graph of
(3).

for , as illustrated in Fig. 3. The desired quantity
(11) is then obtained as

(14)

the sum of all final state metrics.
For large , the state metrics computed according to

(12) quickly tend to zero. In practice, the recursion (12) is there-
fore changed to

(15)

where are positive scale factors. If these scale factors
are chosen such that , then

(16)

The quantity thus appears as the average of the
logarithms of the scale factors, which converges (almost surely)
to .

If necessary, the quantities and can
be computed by the same method: for , the recursion cor-
responding to (15) is

(17)

and for , the corresponding recursion is

(18)

If there is no feedback from the channel to the source, the com-
putation (17) needs only the source model rather than the joint
source/channel model. In this case, if (6) holds, can be
computed in closed form as the entropy of a Markov source [12].

IV. NUMERICAL EXAMPLES

We will focus here on channels as in Example 1. Further nu-
merical examples (including channels as in Example 3 as well
as the nonlinear channel of [2]) are given in [5] and [43].

The filter coefficients in Example 1 are often
compactly represented by the formal sum
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Fig. 4. Information rates of the 1�D (dicode) channel.

Fig. 5. Convergence of the algorithm.

The signal-to-noise ratio (SNR) will be defined as

(19)

(It is clear that this SNR definition is inadequate for some ap-
plications, but this qualification seems to apply also to alterna-
tive definitions including that of [44].) For channels, as in Ex-
ample 1, is known analytically, which means
that the algorithm of Section III is only needed to compute .

In all numerical examples reported in this paper, the sequence
length proved to be sufficient to obtain reliable plots
(cf. the discussion of Fig. 5 below).

Our first example is a channel as in Example 1 with transfer
function . In the magnetic recording literature,
this channel is known as the dicode channel. Fig. 4 shows the
following information rates for this channel.

1) The information rate for i.u.d. input.
2) The maximum information rate for Markov of order

.

3) The maximum information rate for Markov of order
.

The maximization of the information rate over the Markov
sources can be done by the methods of [43] or (in this simple
example) by brute force. For comparison, Fig. 4 also shows:

1) The capacity of the memoryless AWGN channel.
2) The capacity of the dicode channel for Gaussian (rather

than binary) input.
The latter is obtained by the well-known waterfilling principle
[12]. As the definition (19) allows the channel to provide a
power gain for nonwhite input, the waterfilling capacity exceeds
the capacity of the memoryless AWGN channel at low SNR.

The convergence behavior of the algorithm is illustrated by
Fig. 5. The i.u.d.-input information rate for the dicode channel
at 3.01 dB was computed 1110 times, each time by a simula-
tion run of symbols and with a new random seed (both for
the pseudorandom channel input sequence and for the pseudo-
random noise sample sequence). For every block length , Fig. 5
shows the minimum and the maximum computed estimate of
the information rate among the first 10, the next 100, and the
remaining 1000 simulation runs. As the figure shows, all these
1110 independent estimates converge very nicely to the same
value, up to the accuracy of the plot. This kind of good-natured
convergence was encountered in all our numerical experiments
with many different channels.

The convergence slows down, of course, if a higher accuracy
is required; in fact, for most channels, it is not feasible to obtain
more than three decimal digits of the information rate.

Note that plots such as Fig. 5 give a partial answer to the
practical need to choose a sequence length : for some candidate
length , run the algorithm about 10 times (each time with a new
random seed) and check whether all estimates of the information
rate agree up to the desired accuracy.

Fig. 6 shows information rates for a channel as in Example 1
with

(This particular example was used by Hirt [21].) The following
information rates are shown.

1) The information rate for i.u.d. input.
2) The maximum information rate for a Markov source of

order .
3) The capacity of the memoryless AWGN channel.
4) The capacity of the channel for Gaussian (rather than bi-

nary) input.
Fig. 7 illustrates the performance of Hirt’s method [21] as

well as a conjectured lower bound on the channel capacity due
to Shamai and Laroia [37]. The latter can be computed by eval-
uating a single one-dimensional integral. Fig. 7 shows several
rates for the channel of Fig. 6, each evaluated at 5, 3, and 8 dB.

1) (see below) as a function of .
2) (see below) as a function of .
3) The Shamai–Laroia conjectured lower bound (SLLB).
4) The true information rate for i.u.d. input (computed by the

algorithm of Section III).
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Fig. 6. Information rates of an FIR channel with memory 6.

Fig. 7. Comparison with Hirt’s method and the Shamai–Laroia conjectured
lower bound (SLLB) for the channel of Fig. 6.

As the figure shows, the SLLB is extremely tight for low
SNR.

Hirt defined

(20)

and

(21)
where the input process is assumed to be i.u.d. Hirt computed
these quantities by numerical integration based on Monte Carlo
simulation. By standard arguments

(22)

and

(23)

V. EXTENSIONS

A. Continuous Input Alphabet

As mentioned in Section II, the assumption that the input al-
phabet is finite is by no means essential. Assume, for ex-
ample, that and that is a probability density con-
sistent with (3). If is sufficiently nice (which we do not
wish to discuss further), then the sequence con-
verges with probability to the differential entropy rate
and the sequence converges with probability

to . The only modification to the algorithm of Sec-
tion III is that the recursion (15) becomes

(24)
which may be evaluated analytically or numerically.

B. Time-Varying And/Or Nonergodic Source/Channel Model

If the factor in (3) depends on , the quan-
tity defined by (9) may still be computed as described
in Section III, but there is no general guarantee that this estimate
converges to .

If the source/channel model is not ergodic, one may sample
many sequences and and compute , ,
and for each sample sequence. By averaging over
these quantities, we obtain estimates of , of ,
and of . The significance of these quantities de-
pends on the application.

C. Bounds on Entropy Rates From Reduced-State Recursions

The basic recursion (12) can be modified to yield upper and
lower bounds on and thus on (and similarly for

and ). The modified recursions can be computed
for channels where the number of states is large.

Let be a subset of the time- states. If the sum in the re-
cursion (12) is modified to

(25)

the sum of the final state metrics will be a lower bound on
and the corresponding estimate of will be increased. We
thus have the following theorem.

Theorem (Reduced-State Upper Bound): Omitting states
from the computation (12) yields an upper bound on .

The sets may be chosen arbitrarily. An obvious strategy is
to keep only a fixed number of states with the largest metrics.

By a similar argument, one may also obtain lower bounds on
. A particular case is worked out in Appendix III.

The upper bound can also be applied to certain nonfinite-state
channels as follows. Consider, e.g., the autoregressive channel
of Fig. 9 and assume that, at time zero, the channel is in some
fixed initial state. At time one, there will be two states; at time
two, there will be four states, etc. We track all these states ac-
cording to (12) until there are too many of them, and then we
switch to the reduced-state recursion (25).
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Some numerical examples for the upper bound of this section
are given in Section VII.

VI. BOUNDS ON USING AN AUXILIARY CHANNEL

Upper and lower bounds on the information rate of very gen-
eral (non-finite-state) channels can be computed by methods of
the following general character.

1) Choose a finite-state (or otherwise tractable) auxiliary
channel model that somehow approximates the actual
(difficult) channel. (The accuracy of this approximation
will affect the tightness, but not the validity of the bounds.)

2) Sample a “very long” channel input sequence and the cor-
responding channel output sequence of the actual channel.

3) Use these sequences for a computation (in the style of Sec-
tions III–V) using the auxiliary channel model.

We begin by reviewing the underlying analytical bounds,
which are well known. For the sake of clarity, we first state these
bounds for a discrete memoryless channel. Let and be two
discrete random variables with joint probability mass function

. We will call the source and the channel law.
Let be the law of an arbitrary auxiliary channel with the
same input and output alphabets as the original channel. We
will imagine that the auxiliary channel is connected to the same
source ; its output distribution is then

(26)

In the following, we will assume that is chosen such that
whenever .

Theorem (Auxiliary-Channel Upper Bound):

(27)

(28)

where the sum in (27) should be read as running over the support
of . Equality holds in (27) if and only if for
all .

This bound appears to have been observed first by Topsøe
[41]. The proof is straightforward. Let be the right-
hand side of (27). Then

(29)

(30)

(31)

(32)

(33)

Theorem (Auxiliary-Channel Lower Bound):

(34)

(35)

where the sum in (34) should be read as running over the support
of .

This bound is implicit in the classic papers by Blahut [10] and
Arimoto [1]. Moreover, it may also be obtained as a special case
of a bound due to Fischer [15] on mismatched decoding, which
in turn is a special case of a general result by Ganti et al. [17, eq.
(12) for ]. It then follows from the results in [15] and [17]
that the lower bound is achievable by a maximum-likelihood
decoder for the auxiliary channel.

A simple proof of (34) goes as follows. Let be the
right-hand side of (34) and for satisfying (which by
the assumption after (26) implies ) let

(36)

be the “reverse channel” of the auxiliary channel. Then

(37)

(38)

(39)

(40)

(41)

As is easily verified, the difference between the two bounds
above can be written as

(42)

The generalization of these bounds to the information rate of
channels with memory is straightforward. For any finite ,
the bounds clearly apply to as in (2). If the required limits for

exist, the upper bound becomes

(43)

and the lower bound becomes

(44)

Now assume that is some “difficult” (non-finite-state)
ergodic channel. We can compute bounds on its information rate
by the following algorithm:
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1) Choose a finite-state source and an auxiliary finite-
state channel so that their concatenation is a finite-
state source/channel model as defined in Section III.

2) Concatenate the source to the original channel and
sample two “very long” sequences and .

3) Compute and, if necessary, and
by the method described in Section III.

4) Conclude with the estimates

(45)

and

(46)

Note that the term in the upper bound (45) refers to
the original channel and cannot be computed by means of the
auxiliary channel. However, this term can often be determined
analytically.

For this algorithm to work, (45) and (46) should converge
with probability one to (43) and (44), respectively. Sufficient
conditions for the existence of such limits are discussed in [31],
[9], [27], [14, Sec. IV-D]. In particular, the following conditions
are sufficient.

1) The original source/channel model is of the form
(3) with finite state space, with not de-
pending on , and with for all sufficiently
large .

2) The auxiliary channel model (together with the
original source ) is of the same form.

3) In addition to (4), we also have

for all , , .
Quantities very similar to (43) and (44) seem to have been

computed by essentially the same algorithm as far back as 1985,
cf. [25].

VII. NUMERICAL EXAMPLES FOR THE BOUNDS

We illustrate the methods of Sections V-C and VI by some
numerical examples. As in Section IV, we focus on channels as
in Example 1 (and we will use the same definition of the SNR).
The input process will always be assumed to be i.u.d.

Our first example is a memory-10 FIR filter with

Fig. 8 shows the following curves.
1) Bottom: the exact information rate computed as described

in Section III.
2) Top: the reduced-state upper bound (RSUB) of Sec-

tion V-C, using the 100 (out of 1024) states with the
largest state metric.

3) Middle: the reduced-state upper bound (still with 100
states) applied to an equivalent channel which is obtained

Fig. 8. Memory-10 FIR filter.

by replacing by the corresponding minimum-phase
polynomial.

The notion of a minimum-phase filter is reviewed in Appendix I,
and the justification for replacing by the corresponding
minimum-phase polynomial (i.e., the minimum-phase filter
with the same amplitude response) is given in Appendix II. The
motivation for this replacement is that minimum-phase filters
concentrate the signal energy into the leading tap weights [30],
which makes the reduced-state bound tighter.

It is obvious from Fig. 8 that the reduced-state upper bound
works fine for high SNR and becomes useless for low SNR. This
may be explained by noting that, for high SNR, only very few
states carry substantial probability mass; for low SNR, however,
the probability mass is spread over almost all states.

Our next example is the channel of Fig. 9 with an autoregres-
sive filter

for . We apply the auxiliary-channel bound of Sec-
tion VI, where the auxiliary channel is obtained from the orig-
inal channel by inserting a uniform quantizer in the feedback
loop, which results in the finite-state channel of Fig. 10. Both
the range of the quantizer and the noise variance of the auxil-
iary channel are numerically optimized to give as good bounds
as possible. Fig. 11 shows the following curves.

1) Rightmost: the (indistinguishable) upper and lower bounds
(AUB and ALB) using the auxiliary channel of Fig. 10 with
512 states.

2) Leftmost: the memoryless binary-input (BPSK) channel.
In this example, the auxiliary-channel bounds yield the true in-
formation rate up to the accuracy of the plot. For this same setup,
Fig. 12 shows these two bounds as a function of the number of
states (for SNR 7.45 dB).

VIII. CONCLUSION

We have presented a general method for the numerical
computation of information rates of finite-state source/channel
models. By extensions of this method, upper and lower bounds
on the information rate can be computed for very general
(non-finite-state) channels. A lower bound can be computed
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Fig. 9. Autoregressive-filter channel.

Fig. 10. A quantized version of Fig. 9.

Fig. 11. Bounds for Fig. 9 versus SNR. L log (number of states).

Fig. 12. Bounds for Fig. 9 versus L log (number of states).

from simulated (or measured) channel input/output data alone;
for the corresponding upper bound, an additional assumption
(such as a lower bound on ) is needed. Bounds from
channel approximations and bounds from reduced-state trellis
computations can be combined in several ways.

APPENDIX I
ON MINIMUM-PHASE FILTERS

This appendix summarizes some basic and well-known facts
on discrete-time linear time-invariant (LTI) systems, cf. [30].

For a discrete-time signal , we write .
Such a signal is left-sided if, for some , for

; it is right-sided if, for some , for ;
and it is causal if for .

An LTI system, or “filter,” is specified by its impulse response
; the output signal resulting from an arbitrary input signal

is given by . The filter is stable (bounded-
input bounded-output) if and only if . The filter
is causal if and only if is a causal signal.

The transfer function of such a filter is

(47)

which may be interpreted either as a formal series in the inde-
terminate (i.e., for ) or as a function

with domain (essentially the region of con-
vergence of (47)) of the form ,
where is a nonnegative real number and . If

is right-sided, then . If contains the unit circle,
then the filter is stable. An inverse to an LTI filter with transfer
function is an LTI filter with transfer function such that

.
Now assume that is a rational function. Then the fol-

lowing conditions are equivalent.
1) is called minimum-phase.
2) All zeros and all poles of are inside the unit circle,

and the degree (in ) of the numerator equals the degree of
the denominator.

3) The filter is causal and stable and has an inverse that is also
causal and stable.

A filter is an all-pass filter if for all .

Theorem (Minimum-Phase/All-Pass Decomposition): Let
be a rational function such that all poles of are inside

the unit circle and no zeros of lie on the unit circle. Then
can be written as

(48)

where is minimum-phase and is an all-pass filter.
Moreover, can be realized as a stable filter with a right-
sided impulse response and can be realized as a stable
filter with a left-sided impulse response.

(A proof of this theorem may be obtained from the following
observations.) Clearly, for all . For

(49)

the corresponding minimum-phase filter is

(50)

where denotes the complex conjugate of .



3506 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 8, AUGUST 2006

Fig. 13. On linear channels with additive noise.

APPENDIX II
ON LINEAR CHANNELS WITH ADDITIVE NOISE

Consider the channel of Fig. 13 A): the input process ,
which is assumed to be stationary, is filtered by a linear filter

and then the noise process is added. The function
is assumed to be rational without poles or zeros on the unit
circle. We will review the following facts.

1) If the noise is white Gaussian, replacing by the corre-
sponding minimum-phase filter (as in (48) and (50))
does not change the information rate .

2) The case of colored Gaussian noise without a spectral null
(as defined below) can be converted into the case of white
Gaussian noise.

We begin with the first case. Clearly, when is decom-
posed according to (48), the information rate remains
unchanged (Fig. 13 B)). It is then obvious that the channel of
Fig. 13 C) also has the same information rate . Omit-
ting the stable all-pass at the output does not increase
the information rate, and thus the information rate
of the channel in Fig. 13 D) equals of the original
channel of Fig. 13 A). Finally, the (noncausal stable) all-pass
filter in Fig. 13 D) transforms white Gaussian noise into
white Gaussian noise and can be omitted without changing the
information rate.

Now to the second case. Recall that colored Gaussian noise is
filtered white Gaussian noise. This case may thus be represented
by Fig. 13 D), where is white Gaussian noise and where

is (the transfer function of) a suitable filter. The filter
is arbitrary; in particular, we could have .

We now assume that is rational with all poles in-
side the unit circle and without zeros on the unit circle. In this
case, we can and we will assume without loss of generality that

(and thus also ) is minimum-phase. Appending
the minimum-phase filter at the output (which results in
Fig. 13 C)) does not change the information rate. As before, Fig.
13 C) and B) are equivalent, and defining ,
all channels in Fig. 13 have again the same information rate. If
the noise-coloring filter is autoregressive, is an
FIR filter.

APPENDIX III
A REDUCED-STATE LOWER BOUND ON

In Section V-C, it was pointed out that omitting states in the
basic recursion (12) yields an upper bound on the entropy rate

. Lower bounds on (and thus on ) may be
obtained by merging states. In this section, we give a particular
example of this type.

We consider a binary-input linear channel with

(51)

with channel memory , with fixed known channel co-
efficients , and where is
white Gaussian noise with variance . For the sake of clarity,
the channel input process is assumed to be a
sequence of i.u.d. random variables taking values in .

The channel state at time is the -tuple
of the past channel inputs.

We will consider merged states of the form

(52)

for some positive integer (which need not be the same
for all merged states).

As in Section V-C, we begin by assuming that the channel
is in some known state at time zero. At time one, there will be
two states; at time two, there will be four states, etc. We first
compute the recursion (12) with all these states until there are
too many of them. From that moment on, we merge states into
the form (52), and we keep expanding and merging (merged)
states according to some strategy that will not be detailed here.
(One such strategy is described in [5].)

The crucial quantity in this computation is

(53)

with

(54)
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For each state in some merged state
, lies in the interval with

(55)

(56)

and

(57)

(58)

For each state in the merged state
, we thus have

(59)

where

if
if
else

(60)

depends only on the merged state. Using the right-hand side of
(59) in the recursion (12) yields a lower bound on .

In our numerical experiments so far, the lower bound of this
section turned out to be consistently weaker than (a comparable
version of) the lower bound of Section VI. It should be noted,
however, that the latter bound depends on the auxiliary channel;
if no good auxiliary channel model is available, the bound of
this section may be the method of choice.
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