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Abstract

We consider a MIMO Ricean fading channel with perfect side information at the
receiver. We derive an analytic upper bound on the difference between the capacity
of this channel and the mutual information that is induced by an isotropic circularly-
symmetric Gaussian input. This bound is based on a dual expression for mutual
information. If the number of receiver antennas m is at least equal to the number
of transmitter antennas n, i.e., m ≥ n, this bound tends to zero as the signal-to-
noise ratio tends to infinity. This shows that for this case a uniform power allocation
is asymptotically optimal. If m < n such a uniform power allocation need not be
asymptotically optimal.

1 Introduction

We consider a discrete-time memoryless multiple-input multiple-output (MIMO) channel
whose output Y takes value in the m-dimensional complex Euclidean space C

m and is
given by

Y = Hx + Z (1)

where x ∈ C
n is the channel input; the random vector Z has a NC

(
0, σ2Im

)
distribution;

and the random matrix H ∈ C
m×n can be written as

H = H̃ + D (2)

where D ∈ C
m×n is a deterministic m×n matrix and where the m ·n random components

of the random matrix H̃ ∈ C
m×n are IID NC(0, 1). It is assumed that H̃ and Z are

independent, and that their joint law does not depend on the input x. Hereafter we refer
to H̃ and D as the channel state matrix and the line-of-sight matrix, respectively.

Here NC(0,K) denotes the zero-mean circularly-symmetric multivariate Gaussian dis-
tribution of covariance matrix K, and Im denotes the m × m identity matrix.

We shall consider the capacity of this channel when the realization of the fading ma-
trix H is known to the receiver, but only its probability law is known at the transmitter.
We assume that the transmitted signal is subject to an average power constraint

E
[
X†X

]
≤ Es (3)

where we use A† to denote the Hermitian conjugate of A.
The capacity C of this channel is achieved by a multivariate circularly-symmetric

Gaussian input [1]. Using the fact that the capacity-achieving input meets (3) with equality
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and combining the input power and the noise power to a single “signal-to-noise ratio”
parameter

ρ =
Es

σ2
(4)

one can show that capacity can be expressed as

C = sup
K̂

E
H̃

[
log det

(
Im + ρ(H̃ + D)K̂(H̃ + D)†

)]
(5)

where the supremum is over all diagonal positive semi-definite matrices K̂ with

tr
(
K̂
)

= 1. (6)

The supremum is achieved by a unique matrix K̂∗.
Further, if D is “diagonal”1, then K̂∗ is diagonal [1, 2]. Hereafter we will consider only

“diagonal” line-of-sight matrices D and therefore diagonal covariance matrices K̂.

2 Main Results

As the optimal power allocation, i.e., K̂∗ is unknown, it is natural to ask how much we lose
with respect to capacity by applying a uniform power allocation, i.e., by using an isotropic
circularly-symmetric Gaussian input

XGI ∼ NC

(
0,

Es

n
In

)
. (7)

This question was also addressed in [3].

Lemma 1. Consider the MIMO Ricean channel (1) with a “diagonal” line-of-sight ma-
trix D. If the input X is NC

(
0, EsK̂

)
distributed with diagonal K̂ satisfying tr

(
K̂
)

= 1,
then the difference between capacity and the induced mutual information is upper bounded
by

C − I(X;Y, H̃) ≤ max
i

Mi,i − tr
(
K̂M
)

(8)

where the matrix M is defined by

M = EH

[
H

†
(

HK̂H
† +

1
ρ
Im

)−1

H

]
. (9)

The bound is met with equality if and only if K̂ achieves the maximum in (5), in which
case both sides of (8) are equal to zero.

Figure 1(a) shows numerical examples of the upper bound (8) for the case m = 1,
n = 2. In this figure the normalized input covariance matrix is K̂ = diag (1/2, 1/2), and
the bounds are plotted for the two line-of-sight matrices D = [1, 0] and D = [10, 0]. Also
depicted is the upper bound (13) that can be computed analytically. It is described in
Theorem 1 ahead.

In general, if n > m one can show that if K̂ is non-singular, then

I(X;Y, H̃) = m · log ρ + EH

[
log det

(
HK̂H

†
)]

+ o(1) (10)

1By a “diagonal” m× n matrix we refer to a matrix whose (i, j) component is zero whenever i 6= j, for
1 ≤ i ≤ m and 1 ≤ j ≤ n
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Figure 1: Examples of the upper bound (8) for K̂ = diag (1/2, 1/2) and the analytic upper
bound (13). (The units on the vertical axis are nats.)

where o(1) tends to zero as ρ → ∞. Let K̂∗ denote the matrix that achieves

sup
K̂

EH

[
log det

(
HK̂H

†
)]

(11)

where the supremum is over all diagonal positive definite matrices K̂ with tr
(
K̂
)

= 1.

By numerical examples one can show that if n > m, then K̂ = In/n need not fulfill the
Karush-Kuhn-Tucker optimality conditions [4] for the concave optimization problem (11).
This shows that if n > m, then with X∗ ∼ NC

(
0, EsK̂

∗
)

the difference

I(X∗;Y, H̃) − I(XGI;Y, H̃) (12)

need not tend to zero as ρ → ∞, and hence that a uniform power allocation can be
asymptotically suboptimal if n > m.

We next turn to an upper bound that is looser than (8) but easier to compute. It does
not require any Monte-Carlo simulations to compute M.

Theorem 1. If the MIMO Ricean channel (1) has a “diagonal” line-of-sight matrix and if
XGI ∼ NC

(
0, Es

n In
)

is used as the input to the channel, then the difference between capacity
and the induced mutual information is upper bounded by

C − I(XGI;Y, H̃) ≤ n − l − nl2

ρ
· enl

ρ · Ei
(
−nl

ρ

)
(13)

where l = min{m, n} and Ei (−x) = − ∫∞
x

e−t

t dt, x > 0.

Figure 1(b) compares the analytic upper bound (13) with the upper bound (8) for the
examples D = diag (1, 0) and D = diag (10, 0) (i.e., m = n = 2). It can be seen that
generally if n ≤ m, then the analytic upper bound is asymptotically tight in that both the
RHS and LHS of (13) tend to zero as ρ → ∞.

3 Outline of Proofs

3.1 Proof of Lemma 1

The upper bound (8) is based on a dual expression for mutual information, which was
applied in [5] to MIMO fading channels. Here we apply it to the MIMO Ricean channel (1)
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with input x ∈ C
n, output Y ∈ C

m, state H̃ ∈ C
m×n, “diagonal” line-of-sight matrix D,

and with perfect side information at the receiver. We use this channel with the random
input X ∼ NC(0,K) of diagonal covariance matrix K with tr (K) = Es and consider the
pair (Y, H̃) as a compound output of the channel. Then, using the dual expression, we
have the following upper bound on the mutual information:

I(X;Y, H̃) ≤ EX[D (W (·, ·|X)‖R(·, ·))] (14)

where D(·‖·) denotes relative entropy; W (·, ·|·) is the channel law; and R(·, ·) is any joint
probability distribution on (Y, H̃). Equality in (14) holds if and only if R(·, ·) is the joint
distribution on the pair (Y, H̃) induced by X. Since X and H̃ are independent, the channel
law can be written as

W (y, H̃|x) = p
Y|H̃,X

(y|H̃,x) · p
H̃
(H̃), y ∈ C

m, x ∈ C
n, H̃ ∈ C

m×n. (15)

Here p
Y|H̃,X

(·|H̃,x) denotes the probability density of Y given that H̃ = H̃ and X = x,

and p
H̃
(·) denotes the probability density of H̃.

To arrive at the upper bound (8) we choose R(·, ·) to be of the form

R(ỹ, H̃) = p
Ỹ|H̃(ỹ|H̃) · p

H̃
(H̃), ỹ ∈ C

m, H̃ ∈ C
m×n (16)

where Ỹ denotes the output of the channel that is induced by a multivariate circularly-
symmetric Gaussian input X̃ of diagonal covariance matrix K̃ with tr

(
K̃
)

= Es, i.e.,

X̃ ∼ NC

(
0, K̃

)
(17)

and p
Ỹ|H̃(·|H̃) is the probability density of Ỹ given that the channel state is H̃ = H̃. Note

however that any other joint distribution R(·, ·) would also lead to an upper bound (14).
Using the above setting we obtain the following upper bound on the mutual informa-

tion:

I(X;Y, H̃) ≤ −m + E
H̃

[
log det

(
1
σ2

L̃

)]
+ tr

(
E

H̃

[
σ2L̃−1

])
+tr

(
KE

H̃

[
(H̃ + D)†L̃−1(H̃ + D)

])
(18)

where
L̃ = (H̃ + D)K̃(H̃ + D)† + σ2Im (19)

and where equality holds if and only if X = X̃, i.e., if and only if X is circularly-symmetric
Gaussian with covariance matrix K = K̃.

We now define the normalized covariance matrices K̂ = K/Es and K̂∗ = K∗/Es, where
K∗ denotes the capacity-achieving input covariance matrix. Let

M = EH

[
H

†
(

HK̂H
† +

1
ρ
Im

)−1

H

]
. (20)

By the Karush-Kuhn-Tucker optimality conditions of (5) one can show that tr
(
K̂∗M

)
=

maxi Mi,i. Using the bound (18) once for the capacity-achieving input X = X∗, i.e., for
K = K∗, and another time for X = X̃, i.e., for K = K̃, we get

C − I(X;Y, H̃) ≤ max
i

Mi,i − tr
(
K̂M
)

(21)

where equality holds if and only if X = X∗, in which case both sides are equal to zero.
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3.2 Proof of Theorem 1

Applying Lemma 1 with K̂ = In/n, i.e., for X = XGI (7) we obtain

C − I(XGI;Y, H̃) ≤ max
i

Mi,i − 1
n

tr (M) (22)

where

M = n · EH

[
H

†
(

HH
† +

n

ρ
Im

)−1

H

]
. (23)

Consider a singular-value decomposition (SVD) of H, i.e.,

H = UĤV
† (24)

where U ∈ Cm×m and V ∈ Cn×n are unitary random matrices, and where Ĥ ∈ Cm×n

is a random “diagonal” matrix where the diagonal elements are the decreasingly ordered
singular values of H, i.e.,√

Λ1 = Ĥ1,1 ≥
√

Λ2 = Ĥ2,2 ≥ . . . ≥
√

Λl = Ĥl,l ≥ 0 (25)

where l = min{m, n}. Note that for a particular realization of H the matrix Ĥ is uniquely
determined, whereas the matrices U and V are not.

We notice that the random matrix

W = H
†
H ∈ C

n×n (26)

has a non-central Wishart distribution and that it can be diagonalized as

W = VLV
† (27)

where L = Ĥ†Ĥ = diag (Λ1, . . . ,Λl, 0, . . . , 0) ∈ Cn×n so that {Λi} and {Vi} are the
decreasingly ordered eigenvalues and corresponding eigenvectors of W, respectively, where
Vi denotes the i-th column of V. (Note that if n > m, then W has n − m eigenvalues
which are deterministically zero.)

Using the SVD of H we can write the matrix M as

M = n · EW

[
VĤ

†
(

ĤĤ
† +

n

ρ
Im

)−1

ĤV
†
]

(28)

= n · EW

[
V diag

(
Λ1

Λ1 + n
ρ

, . . . ,
Λl

Λl + n
ρ

, 0, . . . , 0

)
V
†
]

(29)

so that tr (M) depends only on L, i.e., only on the eigenvalues of W:

tr (M) = n · tr
(

EW

[
V diag

(
Λ1

Λ1 + n
ρ

, . . . ,
Λl

Λl + n
ρ

, 0, . . . , 0

)
V
†
])

(30)

= n ·
l∑

i=1

EW

[
Λi

Λi + n
ρ

]
(31)

and the diagonal elements of M are

Mi,i = n · EW

 l∑
j=1

|Vi,j |2 Λj

Λj + n
ρ

 , i ∈ {1, . . . , n}. (32)
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From the above we now derive the upper bound (13). Since V is unitary, so that any
of its rows has Euclidean norm one, we get from (32) the upper bound

max
i

Mi,i ≤ n. (33)

We next find a lower bound for the sum (31). To do so we use the fact that the decreasingly
ordered eigenvalues of a non-central Wishart matrix are stochastically larger [6] than the
corresponding eigenvalues of a central Wishart matrix [7], i.e., that

Λi ≥st Λ̃i, ∀i ∈ {1, . . . , l} (34)

where {Λi} and {Λ̃i} are the decreasingly ordered eigenvalues of W = (H̃ + D)†(H̃ + D)
and W̃ = H̃

†
H̃, respectively. Since the function f(λ) = λ

λ+n/ρ , λ ≥ 0, is strictly increasing
we get the bounds

EW

[
Λi

Λi + n
ρ

]
≥ E

W̃

[
Λ̃i

Λ̃i + n
ρ

]
, ∀i ∈ {1, . . . , l}. (35)

And because the eigenvalues are decreasingly ordered we further have

E
W̃

[
Λ̃i

Λ̃i + n
ρ

]
≥ E

W̃

[
Λ̃l

Λ̃l + n
ρ

]
, ∀i ∈ {1, . . . , l} (36)

so that we are left with finding a lower bound on E
W̃

[
Λ̃l

Λ̃l+
n
ρ

]
.

The l-th eigenvalue of H̃
†
H̃ equals the l-th eigenvalue of H̃H̃

†. Thus, without loss of gen-
erality we only consider the case n ≥ m. Writing H̃ = [H̃s, H̃r] where H̃s = [H̃1, . . . , H̃m] ∈
C

m×m is square and H̃r = [H̃m+1, . . . , H̃n] ∈ C
m×(n−m) (and where we write H̃ = H̃s and

define H̃r = 0 if n = m) we have

H̃H̃
† = H̃sH̃

†
s + H̃rH̃

†
r . (37)

The matrix H̃H̃
†−H̃sH̃

†
s = H̃rH̃

†
r is positive semi-definite, so that by definition H̃H̃

† < H̃sH̃
†
s

[8, Definition 7.7.1]. But, since H̃H̃
† and H̃sH̃

†
s are positive definite almost surely, this

means that
Λ̃l ≥ Σl almost surely (38)

where Σl is the l-th eigenvalue of H̃sH̃
†
s , i.e., the smallest of the l decreasingly ordered

eigenvalues of the square central Wishart matrix H̃
†
sH̃s [8, Corollary 7.7.4].

The joint probability density of the decreasingly ordered eigenvalues {Σi} of H̃
†
sH̃s and

in particular the marginal density of Σl are known [9]. The latter Σl is exponentially
distributed with mean 1/l, so that

EΣl

[
Σl

Σl + n
ρ

]
= 1 +

nl

ρ
· enl

ρ · Ei
(
−nl

ρ

)
. (39)

Combining (31), (35), (36), (38), and (39) we obtain

1
n

tr (M) ≥ l +
nl2

ρ
· enl

ρ Ei
(
−nl

ρ

)
. (40)

The result now follows from (33) and (40).

6



References

[1] Daniel Hösli and Amos Lapidoth. The capacity of a MIMO Ricean channel is monotonic
in the singular values of the mean. To appear in Proceedings of the 5th International
ITG Conference on Source and Channel Coding (SCC), 2004.

[2] Sivarama Venkatesan, Steven H. Simon, and Reinaldo A. Valenzuela. Capacity of a
Gaussian MIMO channel with nonzero mean. In Proceedings of the IEEE Semiannual
Vehicular Technology Conference, Orlando, FL, October 6–9 2003.

[3] Mahesh Godavarti and Alfred O. Hero-III. Multiple-antenna capacity in a determin-
istic Ricean fading channel. Submitted to IEEE Transactions on Information Theory,
September 2001.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press. To appear in February 2004.

[5] Amos Lapidoth and Stefan M. Moser. Capacity bounds via duality with applications to
multiple-antenna systems on flat fading channels. IEEE Transactions on Information
Theory, 49(10):2426–2467, October 2003.

[6] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and Its Applications.
Academic Press, 1979.

[7] Michael D. Perlman and Ingram Olkin. Unbiasedness of invariant test for MANOVA
and other multivariate problems. The Annals of Statistics, 8(6):1326–1341, November
1980.

[8] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[9] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM Journal
on Matrix Analysis and Applications, 9(4):543–560, October 1988.

7


