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Abstract— We introduce a preorder on the line-of-sight (LOS)
matrices in coherent multiple-input multiple-output (MIM O)
Rician fading channels. We demonstrate that under this pre-
order, the information rate and the rate-R outage probability
corresponding to zero-mean multivariate circularly symmetric
Gaussian inputs of arbitrary but fixed covariance matrices are
monotonic in the LOS matrix. This result extends previous
results obtained by Kim & Lapidoth, ISIT, 2003, and Ḧosli
& Lapidoth, ITG Conference on SCC, 2004, i.e., our result
implies the monotonicity of the information rates corresponding
to isotropic Gaussian inputs and of channel capacity in the
singular values of the LOS matrix. It is particularly useful in
scenarios such as MIMO Rician multiple-access channels, where
the achievable rates depend on the LOS matrices of the different
users and cannot be determined based on their corresponding
singular values alone. We also prove a converse to the main result.
That is, given two different LOS matrices, we show that if for
all zero-mean multivariate circularly symmetric Gaussian inputs
the induced mutual information over one channel is at least as
large as over the other channel, then the two LOS matrices can
be ordered.

I. I NTRODUCTION

It is not difficult to demonstrate that the capacity of a single-
input single-output coherent Rician (or Ricean) fading channel
is monotonic in the magnitude of the line-of-sight (LOS)
component. This follows from the fact that channel capacity
is achieved by a zero-mean circularly symmetric Gaussian
input and that a non-central chi-square random variable is
stochastically monotonic in the non-centrality parameter[1,
Lemma 6.2 b)], [2]. This result even extends naturally to the
single-input multiple-output scenario.

The extension of this monotonicity result to multiple-input
multiple-output (MIMO) Rician channels requires some care,
however. The first difficulty one encounters is that to demon-
strate monotonicity one has to introduce an ordering on the
LOS matrices and it isa priori unclear what the natural
ordering for the problem at hand is. The second difficulty
is that there is no closed-form expression for the capacity-
achieving input distribution. While it is straightforwardto
demonstrate that it is a circularly symmetric multivariate
Gaussian, no closed-form solution for the eigenvalues of the
optimal covariance matrix are known. Finally, for a given input
distribution, the question of which of two LOS matrices gives
rise to a larger mutual information for a given realization of
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the fading matrix depends on the realization. Thus, while one
LOS matrix may give rise to a larger information rate for a
given realization, it may actually perform worse when one
averages over the fading realizations.

In this paper we shall show that the natural partial ordering
for the problem at hand is to define that them × n LOS
matrix D is “greater or equal” to them× n LOS matrixD̃ if
D

†
D−D̃

†
D̃ is a positive semidefiniten×n matrix, i.e., ifD†

D

is greater or equal tõD†
D̃ in the Loewner sense. (Here and

hereafter(·)† denotes Hermitian conjugation, i.e., the result
of transposing the matrix and then applying componentwise
complex conjugation.) With this definition we shall show the
monotonicity of channel capacity, the monotonicity of the
isotropic Gaussian input information rates, and the monotonic-
ity of outage probability.

II. M AIN RESULT

The main result from which the monotonicity results will
follow can be stated as follows.

Theorem 1: Let H be a randomm × n matrix whose
components are independent, each with a zero-mean unit-
variance circularly symmetric complex Gaussian distribution.
If two deterministic complexm × n matricesD, D̃ are such
that

D
†
D � D̃

†
D̃

then

Pr
[

log det
(

Im + (H + D)K(H + D)†
)

≤ t
]

≤ Pr
[

log det
(

Im + (H + D̃)K(H + D̃)†
)

≤ t
]

, (1)

t ≥ 0, K ∈ H+(n).
Proof: The proof of the theorem is based on a theorem

by T. W. Anderson [3] and can be found in [4].
In this theorem and throughout the relationA � B indicates

that A − B is positive semidefinite;H+(n) denotes the set of
n×n positive semidefinite Hermitian matrices;U(n) denotes
the set of unitaryn×n matrices;Im denotes them×m identity
matrix; andlog(·) denotes the natural logarithmic function. All
vectors will be column vectors.

As we shall see, Theorem 1 has applications in both single-
user and multiple-access communication over coherent Rician
fading channels. In single-user communication it can be used
to prove that channel capacity as well as the information rates
corresponding to isotropic Gaussian inputs are both monotonic



in the singular values of the matrixD, to which we shall refer
as the “mean matrix”.

In multiple-access communications it is used to establish
monotonicity results both for the capacity region and for
the information rates corresponding to the case where each
sender uses isotropic Gaussian inputs of the user’s allowed
power. Such monotonicity results cannot be obtained using the
techniques of [5] and [6] because the problems of computing
these regions do not diagonalize. That is, these regions cannot
be determined from the singular values of the mean matrices of
the different users alone. In addition to the singular values of
each mean matrix, one also needs to know how these matrices
relate to each other.

Before we discuss the aforementioned applications we in-
troduce two functions that will simplify the notation in the
following. In the notation of Theorem 1, we define for any
t ≥ 0, K ∈ H+(n), andD ∈ Cm×n

F (t; K, D) , Pr
[

log det
(

Im + (H + D)K(H + D)†
)

≤ t
]

and

I(K, D) , E
[

log det
(

Im + (H + D)K(H + D)†
)]

. (2)

Note the rotational symmetry inF (t; K, D) and I(K, D).
First observe that the law ofH is invariant under left and
right rotations, i.e., for anyU ∈ U(m) andV ∈ U(n),

UHV
† L

= H

where
L

= denotesequality in law. Consequently, we have for
suchU andV

F (t; K, UDV
†)

= Pr
[

log det
(

Im + (H + UDV
†)K(H + UDV

†)†
)

≤ t
]

= Pr
[

log det
(

U
(

Im + (H + D)V†
KV(H + D)†

)

U
†
)

≤ t
]

= Pr
[

log det
(

Im + (H + D)V†
KV(H + D)†

)

≤ t
]

= F (t; V†
KV, D). (3)

Observing further that

I(K, D) =

∫ ∞

0

(

1 − F (t; K, D)
)

dt (4)

we thus also have

I(K, UDV
†) = I(V†

KV, D). (5)

With (4) we also obtain the following corollary of Theo-
rem 1.

Corollary 2: If D
†
D � D̃

†
D̃, then

I(K, D) ≥ I(K, D̃), ∀K ∈ H+(n).
That the partial ordering on the mean matrices is “natural”

is supported by the following proposition, which shows that
the reverse of the corollary is also true:

Proposition 3: If I(K, D) ≥ I(K, D̃) for all K ∈ H+(n),
then

D
†
D � D̃

†
D̃.

Proof: Instead of proving Proposition 3 directly, we will
prove the equivalent statement

D
†
D � D̃

†
D̃ ⇒ I(K, D) < I(K, D̃) for someK ∈ H+(n).

We first note thatD†
D � D̃

†
D̃ means that there exists a vector

a ∈ Cn such that

a
†
D

†
Da < a

†
D̃

†
D̃a. (6)

For such a vector letK0 = aa
† ∈ H+(n). We will show that

for K0 the strict inequalityI(K0, D) < I(K0, D̃) holds.
By (4) it suffices to show thatF (t; K0, D) > F (t; K0, D̃)

for all t > 0. Indeed, for any sucht

F (t; K0, D) = Pr
[

log det
(

Im + (H + D)aa†(H + D)†
)

≤ t
]

= Pr
[

log
(

1 + a
†(H + D)†(H + D)a

)

≤ t
]

(7)

= Pr
[

log
(

1 + (G + b)†(G + b)
)

≤ t
]

(8)

> Pr
[

log
(

1 + (G + b̃)†(G + b̃)
)

≤ t
]

(9)

= Pr
[

log
(

1 + a
†(H + D̃)†(H + D̃)a

)

≤ t
]

= Pr
[

log det
(

Im + (H + D̃)aa†(H + D̃)†
)

≤ t
]

= F (t; K0, D̃)

where in (7) we have used thatdet(Im +AB) = det(In +BA)
for any A ∈ Cm×n and B ∈ Cn×m; in (8) we have defined
G = H·a, which isNC

(

0,a†
a · Im

)

distributed, andb = D·a;
and to get (9) we have used the fact that(G + b)†(G + b)
has a scaled non-central chi-square distribution with (scaled)
non-centrality parameterb†

b. Defining b̃ = D̃ · a we note
that (G + b̃)†(G + b̃) in (9) is also a scaled non-central chi-
square random variable, which, by (6), has a strictly larger
non-centrality parameter̃b†

b̃ > b
†
b. Hence,(G+b̃)†(G+b̃)

is stochastically strictly larger than(G +b)†(G +b), so that
the strict inequality in (9) is justified for anyt > 0.

Theorem 1 and Corollary 2 can be restated as monotonicity
results in the mean matrices by introducing a preorder on the
set of complexm×n matrices. Simply define the matrixD ∈
Cm×n to be “larger than or equal to” the matrix̃D ∈ Cm×n

if
D

†
D � D̃

†
D̃. (10)

Note that this preorder is not a partial order since the condition
D

†
D = D̃

†
D̃ only implies thatD̃ = UD for someU ∈ U(m);

it doesnot imply D̃ = D [7], [8].

III. A PPLICATIONS

A. The Single-User Rician Fading Channel

We first apply the main result to a coherent single-user
Rician fading channel. Its output(H,Y) consists of a random
m×n matrix H whosem ·n components are independent and
identically distributed (IID) according to the zero-mean unit-
variance circularly symmetric complex Gaussian distribution
NC(0, 1) and of a randomm-vectorY ∈ Cm which is given
by

Y = (H + D)x + Z (11)



where x ∈ Cn is the channel input;D is a deterministic
m × n complex matrix called theline-of-sight (LOS) matrix;
and the random vectorZ takes value inCm according to
the NC

(

0, σ2
Im

)

law for someσ2 > 0. HereNC(0, K) de-
notes the zero-mean circularly symmetric multivariate complex
Gaussian distribution of covariance matrixK. Thus, them
components ofZ are IIDNC

(

0, σ2
)

. It is assumed thatH and
Z are independent, and that their joint law does not depend
on the inputx.

Since the law ofH does not depend on the inputx, we can
express the mutual information between the channel input and
output as

I
(

X; (H,Y)
)

= I
(

X;Y
∣

∣H
)

. (12)

Of all input distributions of a given covariance ma-
trix, the zero-mean circularly symmetric multivariate com-
plex Gaussian maximizes the conditional mutual information
I(X;Y|H = H), irrespective of the realizationH. Conse-
quently, it must also maximize the average mutual information
I(X;Y|H). We shall therefore consider the mutual informa-
tion induced byNC(0, K) inputs, and we will be primarily
interested in the dependence of mutual information on the
LOS matrix D when the input distribution, i.e.,K, is held
fixed. Also, since we can absorb the dependence onσ2 into
K, we assumeσ2 = 1 throughout without loss of generality.

For a given realizationH = H, we can express the
conditional mutual informationI(X;Y|H = H) for Gaussian
inputs as

I(X;Y|H = H) = log det
(

Im + (H + D)K(H + D)†
)

,

X ∼ NC(0, K) . (13)

The average conditional mutual information induced by a
NC(0, K) input can be thus expressed [9] as an explicit
function of K andD as

I(X;Y|H) = E
[

log det
(

Im + (H + D)K(H + D)†
)]

(14)

= I(K, D), K ∈ H+(n), D ∈ Cm×n. (15)

Thus Corollary 2 can be interpreted as the monotonicity
of the average conditional mutual information of the Rician
fading channel (11) with fixed input covariance matrix. We can
also give a more direct interpretation of Theorem 1 through
the notion ofoutage probability. Consider the probability

Pr
[

log det
(

Im + (H + D)K(H + D)†
)

≤ R
]

= F (R; K, D).

We can interpret this quantity as the probability that the
achievable rate on the Gaussian channelY = (H + D)x + Z

corresponding to the particular channel realizationH = H and
the input distributionNC(0, K) does not exceedR. Under this
interpretation, Theorem 1 can be viewed as the monotonicity
of the outage probability in the channel LOS matrix.

These monotonicity results can be further refined for the
power-E isotropic Gaussian input information rates

IIG(E , D) , I

(

E

n
In, D

)

and for the capacityC(E , D) of the Rician channel under the
average input power constraintE

[

X
†
X
]

≤ E , which is given
by

C(E , D) , max
K

I(K, D) (16)

where the maximum is taken over the set of all covariance
matricesK satisfying the trace constraint

tr (K) ≤ E . (17)

It follows immediately from Corollary 2 that, ifD†
D � D̃

†
D̃,

thenIIG(E , D) ≥ IIG(E , D̃) andC(E , D) ≥ C(E , D̃).
Another refinement of Theorem 1 is obtained for the outage

probability corresponding to isotropic Gaussian inputs

P IG
out (R, E , D) , F

(

R,
E

n
In, D

)

and for the optimal power-E rate-R outage probability
P ∗

out(R, E , D), which is the smallest outage probability that
can be achieved for the rateR and the average powerE and
is given by

P ∗
out(R, E , D) , min

K

F (R, K, D) (18)

where the minimum is over all positive semidefinite matri-
cesK satisfying (17). From Theorem 1 we now obtain that
D

†
D � D̃

†
D̃ implies thatP IG

out (R, E , D) ≤ P IG
out (R, E , D̃) and

P ∗
out(R, E , D) ≤ P ∗

out(R, E , D̃).
Using the rotational invariance (5), we can strengthen these

refinements by stating them in terms of the singular values of
the LOS matrices. Indeed, for any unitary matrixV, we have
tr
(

V
†
KV
)

= tr (K) , and hence it follows from (5) that for
any U ∈ U(m) andV ∈ U(n)

IIG(E , UDV
†) = IIG(E , D)

and
C(E , UDV

†) = C(E , D)

i.e., that the isotropic Gaussian input information rates and
capacity depend on the LOS matrix only via its singular values.
By a similar argument, it can be verified that, by (3), both the
outage probability corresponding to isotropic Gaussian inputs
P IG

out (R, E , D) and the optimal outage probabilityP ∗
out(R, E , D)

depend on the LOS matrix also only via its singular values.
Consequently, all these quantities are monotonic in the singular
values of the LOS matrix:

Corollary 4: Let σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} and σ̃1 ≥
σ̃2 ≥ · · · ≥ σ̃min{m,n} be the singular values of the LOS
matricesD and D̃, respectively. Suppose thatσi ≥ σ̃i for all
i. Then

IIG(E , D) ≥ IIG(E , D̃)

C(E , D) ≥ C(E , D̃)

P IG
out (R, E , D) ≤ P IG

out (R, E , D̃)

and

P ∗
out(R, E , D) ≤ P ∗

out(R, E , D̃).



R(K1, . . . , Kk; D1, . . . , Dk)

=

{

(R1, . . . , Rk) ∈ Rk
+ :

∑

i∈S

Ri ≤ E

[

log det

(

Im +
∑

i∈S

(Hi + Di)Ki(Hi + Di)
†

)]

, ∀S ⊆ {1, . . . , k}

}

,

Ki ∈ H+(ni), Di ∈ Cm×ni (i = 1, . . . , k). (20)

B. The Rician Multiple-Access Channel

The application of the main result becomes more interesting
in a multiple-access scenario where the LOS matrices cannot
be assumed to be jointly diagonalizable, not even in the case
of (unequal power) isotropic inputs or in the calculation ofthe
capacity region.

The coherent MIMO Rician multiple-access channel (MAC)
with k senders is modeled as follows. The channel output
consists ofk independent random matricesH1, . . . , Hk, where
Hi is a randomm × ni matrix whose components are IID
NC(0, 1), and of a randomm-vectorY ∈ Cm of the form

Y =

k
∑

i=1

(Hi + Di)xi + Z (19)

wherexi ∈ Cni is the i-th transmitter’s input vector,Di is a
deterministicm×ni complex matrix corresponding to the LOS
matrix of thei-th user, andZ ∼ NC

(

0, σ2
Im

)

corresponds to
the additive noise vector. It is assumed that all fading matrices
are independent ofZ and that the joint law of(H1, . . . , Hk,Z)
does not depend on the inputs{xi}k

i=1. Again, without loss
of generality, we assumeσ2 = 1.

As in the single-user scenario, Gaussian inputs achieve
the capacity region of the multiple-access channel [10],
[11]. The rate region achieved by independent Gaussian in-
putsNC(0, Ki) with fixed input covariance matrices{Ki}k

i=1

over the MIMO Rician MAC with LOS matrices{Di}k
i=1 is

given (see, e.g., [12]) by (20) at the top of this page.
The capacity region of the MIMO Rician MAC, denoted as

an explicit function of the powers of the different users and
of their corresponding LOS matrices, can be written as

C(E1, . . . , Ek; D1, . . . , Dk)

=
⋃

{Ki}k

i=1

R(K1, . . . , Kk; D1, . . . , Dk) (21)

where the union is over all positive semidefinite matri-
ces {Ki}k

i=1 that satisfy the trace constraintstr (Ki) ≤ Ei,
i = 1, . . . , k. The achievable region corresponding to power-
Ei isotropic Gaussian inputs is given by

R

(

E1

n1

In1
, . . . ,

Ek

nk

Ink
; D1, . . . , Dk

)

.

Let now ntot =
∑k

i=1
ni. Then the monotonicity result for

the multiple-access scenario can be stated as follows.
Corollary 5: Consider the coherent MIMO Rician

MAC (19) and let thek transmitters useNC(0, Ki) inputs

with fixed covariance matricesKi ∈ H+(ni), i = 1, . . . , k.
Let D = [D1, . . . , Dk] andD̃ = [D̃1, . . . , D̃k] be twom×ntot

partitioned LOS matrices withDi, D̃i ∈ Cm×ni (i = 1, . . . , k)
such that

D
†
D � D̃

†
D̃. (22)

Then the rate region achieved over the MIMO Rician MAC
with partitioned LOS matrix̃D is contained in the rate region
achieved over the MIMO Rician MAC with partitioned LOS
matrix D, i.e.,

R(K1, . . . , Kk; D̃1, . . . , D̃k) ⊆ R(K1, . . . , Kk; D1, . . . , Dk).
(23)

In particular, ifKi = (Ei/ni)Ini
we obtain the analogous result

for isotropic inputs

R

(

E1

n1

In1
, . . . ,

Ek

nk

Ink
; D̃1, . . . , D̃k

)

⊆ R

(

E1

n1

In1
, . . . ,

Ek

nk

Ink
; D1, . . . , Dk

)

. (24)

And, by taking the union over all choices ofKi satisfying
tr (Ki) ≤ Ei in (23), we obtain

C(E1, . . . , Ek; D̃1, . . . , D̃k) ⊆ C(E1, . . . , Ek; D1, . . . , Dk).
(25)

Note that for the MAC scenario the monotonicity of the
isotropic Gaussian input information rates (24) and the mono-
tonicity of the capacity region (25) cannot be stated simply
in terms of the singular values of the partitioned LOS matrix
nor in terms of the singular values of the different users’ LOS
matrices. However, using the rotational invariance (5) we can
weaken the condition (22) for (24) and (25) to hold to the
requirement that there existk unitary matricesU1 ∈ U(n1),
. . . , Uk ∈ U(nk) such that

D
†
D � [D̃1U1, . . . , D̃kUk]†[D̃1U1, . . . , D̃kUk].

To derive Corollary 5 from Corollary 2 we need some more
notation. For any subsetS ⊆ {1, . . . , k} of cardinality s
containing the ordered elements1 ≤ i1 < i2 < . . . < is ≤ k
we define the partitioned matrices

DS , [Di1 , . . . , Dis
]

and

HS , [Hi1 , . . . , His
]

and the block diagonal matrix

KS , diag (Ki1 , . . . , Kis
) .



With this notation we can write the achievable rate region (20)
corresponding to the different users employing zero-mean
circularly symmetric complex Gaussian inputs of respective
covariance matricesK1, . . . , Kk as

R(K1, . . . , Kk; D1, . . . , Dk) =

{

(R1, . . . , Rk) ∈ Rk
+ :

∑

i∈S

Ri ≤ E
[

log det
(

Im + (HS + DS)KS(HS + DS)†
)]

,

∀S ⊆ {1, . . . , k}

}

or, using (2),

R(K1, . . . , Kk; D1, . . . , Dk) =

{

(R1, . . . , Rk) ∈ Rk
+ :

∑

i∈S

Ri ≤ I(KS , DS), ∀S ⊆ {1, . . . , k}

}

. (26)

Corollary 5 now follows from (26) and from Corollary 2
by noting thatD†

D � D̃
†
D̃ implies D

†
SDS � D̃

†
S D̃S for all

S ⊆ {1, . . . , k}.

IV. CONCLUDING REMARKS

In this paper we have found a natural partial ordering of
MIMO Rician channels via their LOS matrices. We have
shown that for two LOS matricesD, D̃ ∈ Cm×n we have
D

†
D � D̃

†
D̃ if, and only if, I(K, D) ≥ I(K, D̃) for all

K ∈ H+(n), where I(K, D) = I(X;Y|H) is the mutual
information induced by aNC(0, K) input over a coherent
MIMO Ricean channel with LOS matrixD. From this result
we obtained monotonicity results for isotropic Gaussian input
information rates and for channel capacity, not only for the
single-user but also for the multiple-access channel.

Our monotonicity results, although intuitive, do not follow
straightforwardly from considering a MIMO Gaussian channel
Y = Hx + Z with channel matrixH ∈ Cm×n and additive
noiseZ with aNC

(

0, σ2
Im

)

distribution. In that case, for any
H an inputX induces the mutual informationI(X; HX+Z),
and one can show thatH

†
H � H̃

†
H̃ if, and only if, I(X; HX+

Z) ≥ I(X; H̃X+Z) for all input distributionsX. In the Rician
fading scenario, however, wecannot conclude fromD

†
D �

D̃
†
D̃ that for all fading realizationsH = H we have(H +

D)†(H+D) � (H+D̃)†(H+D̃). In fact, if H has IID zero-mean
unit-variance circularly symmetric Gaussian entries, then the
probability of the last inequality not being satisfied is strictly
positive.

It should also be emphasized that our monotonicity results
are proved when the distribution of the granular component,
i.e.,H, is held fixed. Consequently, as we vary the LOS matrix
the output power is not kept constant. These results fail when
we adjust the granular component so as to guarantee a fixed
output power [13], [14], [15]. In other words, examples can
be found where for a fixed input distribution and a fixed LOS
matrix the mutual information either increases or decreases

with the Rice factor, depending on the particular form of the
LOS matrix [16].
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