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Abstract— We introduce a preorder on the line-of-sight (LOS) the fading matrix depends on the realization. Thus, while on
matrices in coherent multiple-input multiple-output (MIM O) | OS matrix may give rise to a larger information rate for a

Rician fading channels. We demonstrate that under this pre- gian realization, it may actually perform worse when one
order, the information rate and the rate-R outage probability . .
averages over the fading realizations.

corresponding to zero-mean multivariate circularly symmaric ) . .
Gaussian inputs of arbitrary but fixed covariance matrices ae In this paper we shall show that the natural partial ordering
monotonic in the LOS matrix. This result extends previous for the problem at hand is to define that the x n LOS
results obtained by Kim & Lapidoth, ISIT, 2003, and Hsli  matrix D is “greater or equal” to then x n LOS matrixD if
& Lapidoth, ITG Conference on SCC, 2004, i.e, our result pip  Hip js a positive semidefinite x n matrix, i.e., if DD

implies the monotonicity of the information rates correspmding . =

to isotropic Gaussian inputs and of channel capacity in the IS 9reater or equal t®7D in the Loewner sense. (Here and
singular values of the LOS matrix. It is particularly useful in hereafter(-)! denotes Hermitian conjugation, i.e., the result
scenarios such as MIMO Rician multiple-access channels, vee  of transposing the matrix and then applying componentwise
the achievable rates depend on the LOS matrices of the diffent complex conjugation.) With this definition we shall show the
users and cannot be determined based on their corresponding monotonicity of channel capacity, the monotonicity of the

singular values alone. We also prove a converse to the maingelt. . - L . . .
That is, given two different LOS matrices, we show that if for isotropic Gaussian input information rates, and the mamioto

all zero-mean multivariate circularly symmetric Gaussianinputs ity of outage probability.
the induced mutual information over one channel is at least &
large as over the other channel, then the two LOS matrices can Il. MAIN RESULT

be ordered. The main result from which the monotonicity results will
follow can be stated as follows.

) o ) ) Theorem 1. Let H be a randomm x n matrix whose
It is not difficult to demonstrate that the capacity of a sing| components are independent, each with a zero-mean unit-

input single-output coherent Rician (or Ricean) fadingst®  yariance circularly symmetric complex Gaussian distitut

is monotonic in the magnitude of the line-of-sight (LOS)t two deterministic complexn x n matricesD, D are such
component. This follows from the fact that channel capacify 5

is achieved by a zero-mean circularly symmetric Gaussian D'D = DD
input and that a non-central chi-square random variable is h
stochastically monotonic in the non-centrality paramgfer then
Lgmma 6.2 b)], [2]. This result even extends naturally to the Pr[logdet (Im + (H + D)K(H + D)T) < ﬂ
single-input multiple-output scenario. - /
The extension of this monotonicity result to multiple-itpu < Pr[log det (Im + (H+ D)KH + D)T) < t}, Q)

multiple-output (MIMO) Rician channels requires some care +
however. The first difficulty one encounters is that to demon- 620, K e (n).

: Proof: The proof of the theorem is based on a theorem

strate monotonicity one has to introduce an ordering on tla@ T. W, Anderson [3] and can be found in [4] -

L%S .matfrlcetsh and Ik;l IS prtlor:l lfjnglea_lr_hwhat thed ”d?;f‘?ra: In this theorem and throughout the relatiar- B indicates
orcering for the probiem at hand 1s. The second diiCUly, i o B js positive semidefiniteH ™ (n) denotes the set of

'S that. there 'S NO c!ose_d-form expression fpr the capacity-, ., positive semidefinite Hermitian matricdg{n) denotes
achieving input distribution. While it is straightforwari the set of unitary, x n. matrices,, denotes then x m identity

dezrzggzzatﬁo t?lz(i)tseltj If?)rri (S:gl(; L:ils:]l};oﬂ?em;trEn\gllﬂg\éagﬁgnatrix; andlog(-) denotes the natural logarithmic function. All
’ 9 ectors will be column vectors.

OP“Wa' povariance mgtrix are kpown. Finally, for a g_ivepup As we shall see, Theorem 1 has applications in both single-
distribution, the question of which of two LOS matrices 8V€ser and multiple-access communication over coheren&Rici

rise to a larger mutual information for a given realizatidn 0fading channels. In single-user communication it can bel use

This work was presented in part at theinterschool on Coding and L0 Prove that channel capacity as well as the informatioesrat
Information Theory, Bratislava, February 20-25, 2005. corresponding to isotropic Gaussian inputs are both maonoto
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in the singular values of the matrl¥, to which we shall refer Proof: Instead of proving Proposition 3 directly, we will
as the “mean matrix”. prove the equivalent statement

In multiple-access communications it is used to establishtD 5B K.D K. D) f K N
monotonicity results both for the capacity region and fof a = I(K,D) <Z(K,D) for someK € H™ (n).

the information rates corresponding to the case where eag first note thaD'™D % DD means that there exists a vector
sender uses isotropic Gaussian inputs of the user’s allowed cn gych that
power. Such monotonicity results cannot be obtained usiag t o
techniques of [5] and [6] because the problems of computing a'D'Da < a'D'Da. (6)
these regions do not d|agonallze. That is, these reglonmt:an':Or such a vector leo — aal € H*(n). We will show that
be determined from the singular values of the mean matrlbesfo C o . ~
the different users alone. In addition to the singular valog Or K, the strict inequalityZ (Ko, D) < Z(Ko, D) holds.

' By (4) it suffices to show thaf'(¢; Ko,D) > F(t; Ko, D)

each mean matrix, one also needs to know how these matriFes
or all £ > 0. Indeed, for any such
relate to each other.

Before we discuss the aforementioned applications we if(t; Ky, D) = Pr[log det (|m + (H + D)aa (H + D)T) < 1:]

D e o e = Pl (1+a/(E+D) - D)) <] 7)
>0, K € H(n), andD € C™>" = Prllog (1+ (G +Db)'(G + b)) < ¢] (8)
F(t;K,D) £ Prllogdet (l,,, + (H+ D)K(H + D)) < ¢] - Pr[log (1 +(G+B)'(G+ B)) = t} ©)
and = Pr[log (1 +af (H+ D)t (H + D)a) < t]
Z(K,D) 2 E[logdet (I, + (H+ D)KE +D)N)] . (2) = Prllogdet, (1 + (B + D)aal (i1 + D)) < 1

Note the rotational symmetry i#"(¢; K, D) and Z(K, D). = £(t; Ko, D)
First observe that the law dfl is invariant under left and where in (7) we have used thddt (1, + AB) = det(l,, + BA)
right rotations, i.e., for any) € U(m) andV € U(n), for any A € C*" andB € C™*"™; in (8) we have defined
UEV £ | G = H-a, which isN¢(0,a'a - I,,,) distributed, and = D-a;
- and to get (9) we have used the fact tli&t + b)"(G + b)

suchU andV non-centrality parameteb’b. Definingb = D - a we note
that (G +b)(G + b) in (9) is also a scaled non-central chi-
F(t;K,UDVT) square random variable, which, by (6), has a strictly larger
= Pr[log det (l,,, + (E + UDV!)K(H + UDV!)T) < ¢] non-centrality parar_’neteﬁb > b'b. HenceT,(G+b)T(G+b)
— Prflog det (U (I, + (H + D)VIKV(H + D)7) UT) < {] is stochastically strictly larger tha{G +b)'(G + b), so that
; ; the strict inequality in (9) is justified for ang> 0. ]
= Prflogdet (I, + (H + D)V'KV(H + D)") < ¢] Theorem 1 and Corollary 2 can be restated as monotonicity
= F(t;VIKV, D). (3) results in the mean matrices by introducing a preorder on the
. set of complexn x n matrices. Simply define the matrix €
Observing further that C™*" to be “larger than or equal to” the matrx € C"*"
o0 if
0 =
we thus also have Note that this preorder is not a partial order since the d@ndi
; ; DD = D'D only implies thatD = UD for someU € U(m);
Z(K,UDVT) = Z(V'KV, D). (%) it doesnot imply D =D [7], [8].
With (4) we also obtain the following corollary of Theo- 1. APPLICATIONS

rergoic.ﬂlary 2 If DID > D'D, then A. The Single-User Rician Fading Channel

_ We first apply the main result to a coherent single-user
I(K,D) > Z(K,D), VK€ H*(n). Rician fading channel. Its outpyH, Y) consists of a random

That the partial ordering on the mean matrices is “naturaf, « », matrix i whosem - n components are independent and

is supported by the following proposition, which shows tha§ientically distributed (1ID) according to the zero-meanitu

the reverse of the corollary is also true: variance circularly symmetric complex Gaussian distitdmut
Proposition 3: If Z(K,D) > Z(K,D) for all K € H*(n), A¢(0,1) and of a randomn-vectorY € C™ which is given
then by

DD = D'D. Y=(H+D)x+2Z (11)



wherex € C" is the channel inputD is a deterministic and for the capacity’ (€, D) of the Rician channel under the
m x n complex matrix called théine-of-sight (LOS) matrix; average input power constraiEt[XTX] < &, which is given
and the random vectoZ takes value inC™ according to by

the V¢ (0,0°l,,) law for somes? > 0. Here N (0, K) de- C(£,D) £ max Z(K,D) (16)
notes the zero-mean circularly symmetric multivariate ptax K

Gaussian distribution of covariance matik Thus, them where the maximum is taken over the set of all covariance
components o¥% are IIDJ\/@(O, 02). It is assumed thdll and matricesK satisfying the trace constraint

Z are independent, and that their joint law does not depend

on the inputx. tr(K) < €. 17)

Since the law oftl does not depend on the input we can |t follows immediately from Corollary 2 that, iD'D = DD,
express the mutual information between the channel inpait agpep, ['G(£,D) > I'S(£,D) and C(£,D) > C(€,D).
output as Another refinement of Theorem 1 is obtained for the outage
I(X;(H,Y)) = I(X; Y|H). (12)  probability corresponding to isotropic Gaussian inputs

trix, the zero-mean circularly symmetric multivariate com out

plex Gaussian maximizes the conditional mutual infornratio . -
I(X;Y|H = H), irrespective of the realizatiohl. Conse- and for the optimal powef rate outage probability

guently, it must also maximize the average mutual inforomati Pou(R,€,D), which is the smallest outage probability that

I(X;Y|H). We shall therefore consider the mutual informaZa" be achieved for the rafe and the average powef and

tion induced byN¢(0,K) inputs, and we will be primarily Is given by

interested in the dependence of mutual information on the P (R, €,D) 2 min F(R,K,D) (18)

LOS matrix D when the input distribution, i.eK, is held K

fixed. Also, since we can absorb the dependencedinto where the minimum is over all positive semidefinite matri-

K, we assume = 1 throughout without loss of generality. cesK satisfying (17). From Theorem 1 we now obtain that
For a given realizationl = H, we can express theDD > DD implies thatPIG(R,E,D) < pIG(R,g,D) and

out out
conditional mutual informatiod (X; Y |H = H) for Gaussian P} (R,&,D) < Pi(R,E,D).

Of all input distributions of a given covariance ma- PIS(R,£.D) éF(R,éln,D)
n

inputs as Using the rotational invariance (5), we can strengthenehes
) refinements by stating them in terms of the singular values of
I(X; Y[H = H) = logdet (I, + (H + D)K(H + D)), the LOS matrices. Indeed, for any unitary matvixwe have

X ~ Ne(0,K). (13) tr (VIKV) = tr(K), and hence it follows from (5) that for

o _ L anyU € U(m) andV € U(n)
The average conditional mutual information induced by a

Nz (0,K) input can be thus expressed [9] as an explicit I'6(g,UubVvh) = 1'°(£,D)

function of K and D as
and

I(X; Y[H) = E [logdet (l,,, + (H + D)K(H + D)")] (14) C(E,UDVT) = C(€,D)

— + mxn
=I(K,D), KeH"(n),DeC - (19) i.e., that the isotropic Gaussian input information rated a

Thus Corollary 2 can be interpreted as the monotonicigPacity depend on the LOS matrix only via its singular value
of the average conditional mutual information of the RiciaBy @ similar argument, it can be verified that, by (3), both the
fading channel (11) with fixed input covariance matrix. Wa caoutage probability corresponding to isotropic Gaussiguis
also give a more direct interpretation of Theorem 1 through (R, €, D) and the optimal outage probabilif;,( R, £, D)
the notion ofoutage probability. Consider the probability =~ depend on the LOS matrix also only via its singular values.

Consequently, all these quantities are monotonic in thgusim
Prllogdet (I, + (H+ D)K(H + D)') < R] = F(R;K,D).  values of the LOS matrix:

We can interpret this quantity as the probability that the Corollary 4: Let oy > 02 > -+ = Omin{m,n) @NdG1 >
achievable rate on the Gaussian charviek (H + D)x +Z 2 Z " 2 Omin{m.n}) be_ the singular values czf the LOS
corresponding to the particular channel realizafiba- H and matrlcesD andD, respectively. Suppose that > 5; for all
the input distribution\c (0, K) does not exceed®. Under this * Then
interpretation, Theorem 1 can be viewed as the monotonicity 1'S(£,D)
of the outage probability in the channel LOS matrix.

These monotonicity results can be further refined for the -
power< isotropic Gaussian input information rates Poit (R, €,D)

e and
I'sE,nD) 2T (Eln, D)

> I'%(€,D)
C(E,D) > C(€,D)
< RS (R,E,D)

Po*ut(Ra Sa D) S P(;kul(Ra Sa D)



R(Kl,...,Kk;Dl,...,Dk)

= {(Rl, R eRE: Y R <E [logdet <|m + ) (H; + DK (H; + Di)T>

i€S €S

’VSQ{]‘""7]€}}’

Ki € HT(n;), D; € C™*™ (i=1,...,k). (20)

B. The Rician Multiple-Access Channel with fixed covariance matricek; € Hf(ni), i=1,...,k.
The application of the main result becomes more interestik§t P = [D1.. .-, Di] andD = [Dy, ..., D,’,;]Xfe WO m X Tigot

in a multiple-access scenario where the LOS matrices canRgftitioned LOS matrices with;, D; € C™*™ (i =1,..., k)

be assumed to be jointly diagonalizable, not even in the cach that o

of (unequal power) isotropic inputs or in the calculatiorthod DD = D'D. (22)

capacity region.
The coherent MIMO Rician multiple-access channel (MAC

with k senders is modeled as follows. The channel Outpzli'chieved over the MIMO Rician MAC with partitioned LOS

hen the rate region achieved over the MIMO Rician MAC
gth partitioned LOS matriXD is contained in the rate region

consists ofc independent random matricls, . . ., Hy, where : .
. . matrix D, i.e.,
H; is a randomm x n; matrix whose components are [ID
Nc(0,1), and of a randomn-vectorY € C™ of the form R(Ki,...,Ki;D1,...,D) CR(Ky,...,Ki;Dy,. .., Dg).
" (23)
Y = Z(Hi +Di)x; +Z (19) Inparticular, ifK; = (&;/n;)l,, we obtain the analogous result
i1 for isotropic inputs
wherex, € C™ is thei-th transmitter’s input vecto; is a & & _ _
deterministicn x n; complex matrix corresponding to the LOS R <_In1; ce n_lnk; Dy,..., Dk)
1 k

matrix of thei-th user, andZ ~ N (0, 021,,,) corresponds to
the additive noise vector. It is assumed that all fading ioedr CR (ﬁhm o ﬁ|nk; Di,..., Dk) . (29)
are independent & and that the joint law ofHy, . .., Hy, Z) ni Nk
does not depend on the inpufs;}}_,. Again, without loss And, by taking the union over all choices ¢f; satisfying
of generality, we assume? = 1. tr (K;) < & in (23), we obtain

As in the single-user scenario, Gaussian inputs achieve . .
the capacity region of the multiple-access channel [10], C(€1s. .., Ek; D1, ..., Dr) C C(&r, ..., Ek; Dy, Dy).

[11]. The rate region achieved by independent Gaussian in- (25)
puts Nz (0, K;) with fixed input covariance matrice¥<; }%_, Note that for the MAC scenario the monotonicity of the
over the MIMO Rician MAC with LOS matrice$D;}*_, is isotropic Gaussian input information rates (24) and the @aon
given (see, e.g., [12]) by (20) at the top of this page. tonicity of the capacity region (25) cannot be stated simply

The capacity region of the MIMO Rician MAC, denoted a§ terms of the singular values of the partitioned LOS matrix
an explicit function of the powers of the different users an@or in terms of the singular values of the different users9.0

of their Corresponding LOS matrices, can be written as matrices. However, USing the rotational invariance (5) ae C
weaken the condition (22) for (24) and (25) to hold to the

C(&1,...,&k;Dy,...,Dy) requirement that there exiét unitary matricesU; € U(n1),
_ U R(Ky,...,Ki:D1,...,Dp) (21) ..., Uy € U(ny) such that
{KiYs, DD = [DyUy,...,DrU;]T[D1Uy, ..., DpUyl.

where the union is over all positive semidefinite matr
ces {K;}k_, that satisfy the trace constraints(K;) < &,

it =1,...,k. The achievable region corresponding to powe
&; isotropic Gaussian inputs is given by

"o derive Corollary 5 from Corollary 2 we need some more
notation. For any subse$ C {1,...,k} of cardinality s
E’ontaining the ordered elements< i1 < i < ... <is < k

we define the partitioned matrices

& &
R (n—ilm,...,n—:Ink;Dl,...,Dk) . Ds 2 [Di,,...,Di.]
and
Let Nnow nior = Zle n;. Then the monotonicity result for
the multiple-access scenario can be stated as follows. _ )
Corollary 5: Consider the coherent MIMO Rician@nd the block diagonal matrix
MAC (19) and let thek transmitters useV¢(0,K;) inputs Ks 2 diag (K;,,...,Ks.).

s

Hs £ [H;,,...,H, ]



With this notation we can write the achievable rate regidd) (2with the Rice factor, depending on the particular form of the
corresponding to the different users employing zero-me&®S matrix [16].
circularly symmetric complex Gaussian inputs of respectiv

covariance matricek, ..., Ky as

R(Kl,...,Kk;Dl,...,Dk)z{(Rl,...,Rk)eRiz

Z R; < E[logdet (I, + (Hs + Ds)Ks(Hs + Ds)")] ,
€S

VSg{l,...,k}}

or, using (2),

R(Kl,...,Kk;Dl,...,Dk)z{(Rl,...,Rk)eRiz

ZRZ- <ZI(Ks,Ds), VYSC {1,...,k}}. (26)

i€S
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(1]

(2]
(3]

(4]

(5]

Corollary 5 now follows from (26) and from Corollary 2 [6]

by noting thatDD > DD implies D;Ds = DLDs for all
SC{l,... kb

IV. CONCLUDING REMARKS

(7]

In this paper we have found a natural partial ordering of

MIMO Rician channels via their LOS matrices. We havel

shown that for two LOS matriceB,D € C™*" we have
DD > DD if, and only if, Z(K,D) > Z(K,D) for all
K € HT(n), whereZ(K,D) = I[(X;Y|H) is the mutual

information induced by aVN¢(0,K) input over a coherent

MIMO Ricean channel with LOS matri®0. From this result
we obtained monotonicity results for isotropic Gaussigsutn

El
[20]

[11]

information rates and for channel capacity, not only for the

single-user but also for the multiple-access channel.
Our monotonicity results, although intuitive, do not fallo

[12]

straightforwardly from considering a MIMO Gaussian chdnng 3

Y = Hx + Z with channel matrixd € C™*" and additive

noiseZ with a ¢ (0, 0l,,,) distribution. In that case, for any

H an inputX induces the mutual information(X; HX + Z),
and one can show that'H = HTH if, and only if, I(X; HX +
Z) > I(X; HX+Z) for all input distributionsX. In the Rician
fading scenario, however, weannot conclude fromDD >
DD that for all fading realization§l = H we have(H +

[14]

[15]

D)f(H+D) = (H+D)T(H+D). In fact, if H has IID zero-mean 16!

unit-variance circularly symmetric Gaussian entriesntkige
probability of the last inequality not being satisfied iscity
positive.

It should also be emphasized that our monotonicity results
are proved when the distribution of the granular component,
i.e.,H, is held fixed. Consequently, as we vary the LOS matrix
the output power is not kept constant. These results failnwhe

we adjust the granular component so as to guarantee a fixed

output power [13], [14], [15]. In other words, examples can
be found where for a fixed input distribution and a fixed LOS
matrix the mutual information either increases or decrgase
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