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Design of Parasitic-Insensitive 
Bilinear-Transformed Admittance-Scaled 

(BITAS) SC Ladder Filters 
E. HijKENEK AND GEORGE S. MOSCHYTZ, FELLOW, IEEE 

Absrract-A new method for the design of parasitic-insensitive 
switched-capacitor (SC) ladder filters is described. The filters are derived 
from analog LC prototypes utilizing the bilinear r-transform. The method 
is based on the signal-flowgraph (SFG) concept in the discrete-time 
domain. The resulting networks preserve the frequency response and low 
sensitivity properties of the equivalent continuous-time LC filters. 

I. INTRODUCTION 

R ECENT developments in MOS technology and the 
resulting feasibility of sampled-data networks using 

this technology are setting new horizons for the design of 
active filters based on the switched-capacitor (SC) concept. 
Numerous procedures for the design of SC filters have 
been proposed so far [l]-[14]. In most cases, the design is 
based on the simulation of an analog filter by converting it 
into the discrete-time domain utilizing a sampled-data 
transformation. In one approach, LC filters are simulated 
either by replacing inductors’and capacitors by SC integra- 
tors using the corresponding signal flowgraph (SFG) (ac- 
tive ladder or leapfrog design) [l]-[3], or by converting the 
series and shunt branches of analog filter models into the 
corresponding voltage-controlled current sources (VCS’s) 
and integrators [4]. Other methods use either capacitors 
and voltage inverter switches (i.e., they are based on the 
resonant-transfer principle [5]) or FDNR and gyrator 
simulations [6], [7]. In another important class of design 
techniques, the transfer functions are realized either by 
cascading second-order building blocks or coupled-biquad 
structures [8]-[ll]. 

A comparison of these design methods has shown that 
the active ladder structures, realized in SC form using the 
bilinear z-transform, are a particularly good choice for the 
realization of high-quality filters. Unfortunately, however, 
such filters are generally not insensitive to stray capaci- 
tances and therefore not useable in MOS IC form. 

In this paper, a new technique for the design of SC 
ladder filters is introduced that combines the advantages of 
the bilinear z-transform with the characteristics of stray- 
insensitive circuit configurations. In particular, the method 
takes the following two important design considerations 
into account: 

i) The filter circuits are completely stray-insensitive. This 
is achieved by using either stray-insensitive biquads or 
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Fig. 1. First-order low-pass building block. 

Fig. 2. The SFG representation of Fig. 1. 

first-order low-pass building blocks of the kind shown in 
Fig. 1. The transfer function of this circuit can readily be 
derived (e.g., by indefinite-admittance matrix (IAM) [15]), 
and is given by 

Ve = Cl& + c7)+ V’ _ c*w4 + cm - z-‘1 
4 A 1 A T 

GW4 + G) - 
A v 0) 

where 

A=(C,+C,)(C,+C,)-C&+C,)z-*. 

The individual terms in this expression can be interpreted 
as ratios of discrete-time impedances. Integrator-summer 
building blocks (lossy or lossless) such as those suggested 
in [3] can be realized using the circuit in Fig. 1. Its SFG 
representation is shown in Fig. 2. 

ii) The SC circuits can be derived from passive RLC 
ladder filters, by applying the bilinear s- to z-transform: 

so 1 1-z-* 
7 1+z-* (2) 
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where z = exp(s7) and 7 = 1/2f, (f, is the sampling 
frequency). 

As is well known, ladder structures are generally 
preferred for high-quality filters because of their low sensi- 
tivity to component variations. Being derived from passive 
RLC ladder filters, the bilinear z-transformed SC filters 
retain this important property. 

II. A FREQUENCY-DEPENDENT IMMITTANCE 
TRANSFORMATION 

In the design procedure to be described in the next 
section, starting from an analog LCR prototype ladder 
filter, each branch admittance is transformed from the s- to 
the z-plane by applying the bilinear z-transform, i.e., (2). 
The resulting SC integrators are susceptible to stray- 
capacitive effects, which is in contradiction with our stipu- 
lation i) above. In order to overcome this drawback we 
now apply a frequency-dependent scaling factor S to each 
bilinearly transformed branch of the filter. The resulting 
branches are realizable by so-called backward- and for- 
ward-difference integrators, both of which are realizable in 
stray-insensitive form [3]. 

The use of scaling techniques, e.g., using a scaling factor 
S, is well known in classical network theory. If all branch 
admittances j, of a network are replaced by the uniformly 
scaled admittances yi /S, then all network functions will be 
scaled accordingly; in particular, transfer admittances Y 
(or transfer impedances 2) will become Y/S (or SZ), while 
voltage and current transfer functions will remain unal- 
tered. The problem at hand was to find a scaling factor S, 
i.e., a frequency-dependent admittance transformation, 
which, when applied to the. bilinearly transformed reac- 
tances obtained from the LCR prototype filter, would 
result in reactances corresponding to backward- and for- 
ward-difference transformations. A scaling factor satisfy- 
ing this requirement is [20] 

s=l/r(l+z-2). 

Note that S has the dimension of frequency. 

(3) 

In Table I the corresponding admittance transformation, 
converting bilinearly transformed reactances into a combi- 
nation of reactances obtained by the backward and 
forward-difference transformations, is given. Note that 
capacitors are converted into discrete-time admittances 
obtainable by the backward-difference transformation, 
while inductors are transformed into parallel connections 
of reactances obtainable by backward- and forward- 
difference transformations. Consequently, the branch 
transmittances of the resulting discrete-time SFG consist of 
stray-insensitive difference integrators which are realizable 
by the general building block depicted in Fig. 1. 

One disadvantage of this transformation would seem to 
be that resistors in the continuous-time filter are converted 
into frequency-dependent impedances in the discrete-time 
domain, i.e., that resistively terminated filters in the s- 
domain are transformed into generally terminated filters in 
the z-domain. Fortunately, as will be shown, these general 

terminations can be realized, requiring neither supplemen- 
tary predistortion (beside tanh(sT) prewarping, due to the 
bilinear transformation) nor additional active devices. 

The scaling factor given by (3) is not unique, i.e., others 
exist, each of which results in a different combination of 
discrete-time reactances. Although the one given by (3) 
appears to be ideal for the problem at hand, some of the 
others may be useful, either to compare the resulting 
circuits with the solutions of other methods, or to obtain 
some favorable properties in a given design example. Some 
of them will be discussed in section VII. 

III. THE GENERAL DESIGN PROCEDURE 

The conventional procedure for the design of an SC 
ladder filter involves the transformation of a continuous- 
time prototype filter into an equivalent discrete-time filter 
meeting prescribed specifications. Since the approximation 
methods of analog filter design are highly advanced, yield- 
ing useful results in the form of classical filter tables or 
other numerical design data, it is advantageous to start out 
using the design techniques already developed for analog 
LC filters. Such filters have a very low sensitivity to 
component variations. Having obtained an appropriate 
analog LC filter, the bilinear z-transform permits an accu- 
rate mapping of the analog filter specifications into the 
z-domain. 

Thus the purpose of our design technique is to combine 
the favorable properties of passive LCR ladder filters with 
those of the bilinear transformation, while permitting the 
resulting SC ladder structure to be realized in a stray- 
insensitive form. This is achieved by carrying out the 
following design steps. 

Step I: 
Solve the approximation problem in the continuous 

frequency domain and obtain the corresponding prototype 
LCR ladder filter (e.g., from filter tables, computer pro- 
grams). 

Step 2: 
Perform the bilinear s- to z-transformation on each 

branch reactance of the prototype LCR filter obtained in 
Step 1. After subsequently admittance scaling each branch 
reactance by S = l/r(l + z-‘), the discrete-time equivalent 
network is obtained. This transformation can also be car- 
ried out directly by converting the continuous-time reac- 
tances into discrete-time reactances according to Table I. 
The system of equations associated with the transfer char- 
acteristics of the equivalent network obtained in this step 
can be derived using Kirchoffs laws. Consequently, the 
resulting network equations can be represented graphically 
by a discrete-time SFG. Note that this SFG contains only 
branch transmittances consisting of backward- and for- 
ward-difference integrators (damped or undamped), which, 
as we have pointed out above, can be realized by parasitic- 
insensitive circuits. 

Step 3: 
The SC ladder equivalent of the SFG obtained in Step 2 

can readily be derived by replacing the branch transmit- 
tances by the corresponding integrator-summer circuits. 
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TABLE I 
ADMIITANCETRANSFORMATION 

element admittance admittance scaled definitions 
s-domain z-domain admittance 

S.rl!L 

&i- 

Y w/s 
T(l+?) 

Tl +2-Z S =scaling frequency 

R G=l/R G CG(l +2) CG = TG 

C SC c 1-z-2 

rl+z-2 
C&l 2) cc =c 

-- -__.- 

L l/s L T 1tz -2 

:1-z-2 
~~=cL-$CcL(l -2) CL=? & cc;+ 

D s2 D $$I$ pkcJLcD(, -z-2)- 2cD53$3 CD 2! 
T 

‘\ -2 

\ 
=cD(l+z-2)-4cD-* 

The reader may have noticed that this design procedure 
resembles the so-called leapfrog design method [l]-[3]. 
Nevertheless, there are some important differences. In the 
leapfrog synthesis, the SFG of the continuous-time proto- 
type filter is derived first. The integrators in this SFG are 
then replaced by SC integrators applying the LDI transfor- 
mation. By contrast, in this new technique, the bilinear 
z-transform is carried out first. The SFG and SC equivalent 
of the discrete-time filter are then derived using the admit- 
tance scaling summarized in Table I. Thus this design 
procedure is based on a reactance transformation which 
converts the reactances in the s-plane into reactances in the 
z-plane. This leads to a conceptually easy design procedure 
for active ladder structures: (i) design a prototype filter, (ii) 
make element substitutions as in Table I and derive the 
SFG of the transformed filter, (iii) realize the SC equiva- 
lent of the SFG. 

It should be noted that this design procedure can be 
applied to any kind of continuous-time LCR structures or 
their FDNR-transformed equivalents. In fact, any discrete- 
time network, whose branch impedances have been obtained 
by the bilinear s- to z-transformation, can be realized with 
parasitic-insensitive (forward- and backward-difference) in- 
tegrators by first applying the impedance-scaling factor given 
by (3). 

In the following three sections, the design procedure 
outlined above will be illustrated for low-pass, bandpass, 
and high-pass filters. The general properties of filters ob- 
tained by our proposed design technique will then be given 
in Section VII, followed by some explicit design examples 
in Section VIII. 

IV. DESIGN OF LOW-PASS FILTERS 

In this section, the synthesis of a fifth-oroer elliptic 
low-pass filter is given using the proposed design proce- 
dure. 

Step 1: 
Without loss of generality, we suppose that the desired 

specifications are fulfilled by the doubly terminated elliptic 
low-pass filter shown in Fig. 3(a). Note that singly 
terminated and all-pole networks can also be included as 
special cases of such filters in that one of the termination 
resistors, or the feedforward capacitors (C, and C,), will be 
zero, respectively. 

Step 2: 
After admittance scaling each branch reactance accord- 

ing to Table I the discrete-time equivalent circuit shown in 
Fig. 3(b) is obtained. The particular transformation of 
each component results in “backward”- and “forward- 
difference” admittances. Note that the structure of the 
transformed filter remains unchanged. 

Applying Kirchhoffs current law to nodes, 1, 3, and 5, 
the network equations associated with the transfer char- 
acteristics are obtained as follows: 

v, 2 
-2 

= 
v, 

+ + v, 
a2(1-z-2) - v, 

1 1 A 
3 

1 

-,P1+v;) &5Z-2 

12 
(4) 

y,=-012(1-z-2) I/ yw2 
3 

A3 
1 r("'+"d 

2 3 

a&- z-2) a7z-2 - 
A3 

v,--&v;+vs) (5) 

J/ = _ 4-z-‘> v,- oL,z-2 

5 -(v+v5) 

As 3 AA 

(6) 
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C 22 %a 

(4 

Fig. 3. (a) The doubly terminated elliptic low-pass filter. (b) The bilk: 
ear-transformed discrete-time equivalent of Fig. 3(a). (c) SFG of Fig. 
3(b). (d) The SC ladder filter. 

where 
v,l= -v, 

A,=a,(1-~--2)+2~~ A2 = (l-~-~) 

A3 = q(l- z-‘) 

A,= (CZ-~) A, = a*(1 - z-~)+~cx, 

% = c,/c, ‘y2 = cc2 + cc,* >/c, a3 = C{/C, 

a‘4 = ( G + cc,, >/c, ff5 = c,,/cr c&j = c;/c, 

ff1= CLJCr lx* = q/c, a9 = G/C, 
c~=c~+c2+c,L,-cs 

c~=c2+cc,,+c3+c4~ccLl 

c; = c, + CC,>, + c, - c, 

Ci=Ccj (i=l;--, 5), and C, the normalization capacitor. 

(7) 

In (5) V,l must be introduced because the feedback and 
feedforward paths between Vi and I’,‘, V,l and V, can be 
performed only with a sign inversion [l]. The resulting 
network equations can be represented by the discrete-time 
SFG of Fig. 3(c). As pointed out in the preceding section, 
this SFG contains only branch transmittances consisting of 
backward- and forward-difference integrators (damped or 
undamped). Another modification associated with the im- 
plementation of the frequency-dependent source termina- 
tor C, should be noted. The branch transmittance (pi shown 
by the dotted line in the SFG is carried out by the 
product-transmittance of (- a,A,). Consequently, an addi- 
tional signal, which depends on the input voltage V, will be 
introduced to the input node of the branch transmittance 
l/A,. This additional signal must also be taken into account 
and removed by the equal and opposite signal of the 
transmittance (- a,). This modification permits the entire 
SC circuit to be designed insensitive to parasitics. 



HOKENEKANDMOSCHYTZ:DESIGNOF SC LADDERFILTERS 

Step 3: 
The SC ladder equivalent of Fig. 3(c) can now be 

obtained as shown in Fig. 3(d). Note that the circuit given 
in Fig. 1 is used to obtain the branch transmittances given 
in (7). The circuit of Fig. 3(d) provides the desired transfer 
function for “even” input and output, i.e., H”(z). 

Depending on the choice of the scaling factor S, there 
exists one-to-one relationship between the analog proto- 
type filter (Step 1) and its discrete-time equivalent (Step 2) 
and between the SFG structure (Step 2) and its SC realiza- 
tion (Step 3). The graphical representation of a discrete-time 
equivalent, however, is ambiguous, i.e., a number of SFG 
configurations can be derived by modifying the network 
equations in Step 2. The actual realization obtained is 
flexible and can be selected to provide further improve- 
ments with regard to the design requirements. Some mod- 
ified SFG’s and SC equivalents of the analog prototype 
(see Fig. 3(a)), which are of practical interest, will be 
illustrated here. 

First we consider (4)-(6). Multiplying each equation 
with (- 1) we obtain 

-2 

v;+Lv,2L~,- A 
a2(1 - z-2) v 

3 
1 1 1 

(Y5z-2 

--&T+ls) 
12 

v =-~20-z-2) y,-"5"-2 
3 

A3 
1 ~(v;+b) 

2 3 

- 

-2 

v, - *a',"h, -@+v5/). 

(8) 

(9) 

00) 

The modified network equations require a sign inversion 
of the input voltage V,. This sign inversion is accomplished 
by the SFG in Fig. 4. The resulting representation is a 
modified version of the SFG in Fig. 3(c) in that some 
internal transmittance gains are exchanged. The structure 
of the SFG, however, remains unaltered. This implies 
changing only some switching phases of the initial SC 
circuit, as depicted in parantheses in Fig. 3(d). 

The frequency-dependent termination impedances of SC 
networks presented so far have been implemented by 
damping the input and output integrators. Note that, in the 
case of singly terminated LCR prototype filters, the capaci- 
tor C,, which simulates a load resistor, will be zero. These 
terminators can, however, be simulated in various ways. To 
illustrate an alternative realization, the network equations 
are modified by adding and subtracting new terms associ- 
ated with the input and output signals so that all internal 
integration transmittances l/Ai are undamped. We con- 
sider now (8)-(10). Adding the terms (-2c~,z-~/A,)v[ 
and (-2c~,z-~/A~)V,’ to (8) and (lo), respectively, the 

811 

,%ut 

tip 

Fig. 4. The modified SFG for the sign inversion of the input voltage VO. 

network equations become 

01) 

-2 

v; = - z v, - Y-- f/-, - 
(Y2(1- z-2) v 

A* A* 3 
1 1 1 

CXsz-2 
--&v;+v,)-+h; 

12 1 

p7 =-~20-z-2) v,--n,z-2 
3 

A3 
1 x0?+ v,> 

2 3 

a4(1 - z-2) 
-2 

- 

A3 

v,l- *a':a4. -Pi++) 

v'=-~40---2) v yw2 
5 A* 3 

5 

=(v,+v,.)-FQ 

4 5 5 

(12) 

where 
03) 

AT=(a3+2a,)(l-zP2) and A;=(((Y~+~(u~)(~-z-~). 

The other values remain unchanged, i.e., as given in (7). 
The SFG representation of the network (ll)-(13) and 

the equivalent SC network is shown in Fig. 5(a) and Fig. 
5(b), respectively. As a result of the modifications in 
(ll)-(13), the SFG topology of the network is changed by 
the additional product-transmittances (- 2a,A,, - 2c+,A4, 
2a,~-~, 2a,zP2) so that the termination impedances are 
implemented inherently. Note that the compensation trans- 
mittances 2a,zP2 and 2a,zP2 are necessary in order to 
eliminate the supplementary signals introduced by the 
product-transmittances (- 2a1A2, - 2a,A,). 

V. DESIGNOF BANDPASSFILTERS 

The design of bandpass filters is carried out following 
essentially the same design procedure as that outlined in 
the preceding sections. It is summarized here for the design 
of a sixth-order elliptic bandpass filter. 

Step I: 
As above, it is assumed that an LCR prototype satisfying 

the analog frequency specifications is obtained using either 
filter tables or synthesis programs. Note that the resulting 
configuration should contain as few nodes as possible. This 
is because the output voltages of integrators correspond to 
the node voltages of the analog prototype. Consequently, 
the number of required active devices is directly propor- 
tional to the number of nodes in the analog prototype. For 
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-t--------J 
c22 

(b) 
Fig. 5. (a) New SFG topology with the undamped integration transmit- 

tances. (b) The SC ladder equivalent of Fig. 5(a). 

our design example we consider the bandpass filter of Fig. where 
6(a), derived by the LP + BP transformation of a third- 
order low-pass filter. 

V, = _ y 

Step 2: 
A; = a,(;- z-~)+~cY, A2=(1-z-2) 

Applying admittance scaling as in Table I, the bilinear A3 = (I- Z-') 

transformed and S-scaled bandpass filter can be obtained 
as shown in Fig. 6(b). The Kirchhoff node equations of this A4 = ‘yiO(l- z-‘) A, = (1- z-‘) 

network are As = ‘yi2(1 - ~-~)+2ai, 

v 

1 

= 4+ z-‘) v _ (y&2 

Al 

0 aa v, - g v; 

1 2 1 2 

a1 = G/c, a2 = cc2 + G,,>/c, a3 = c,,/c, = a4 

% = (c4+GJ/cT ff6 = G,/Cr a, = Cl/C, 

a20-f2) v, 

%3 = CL,,/L,/Cr a9 =CL2,,L4/Cr alo = c;/c, 

AI’ 3 (14) all= CL4,,L5/Cr %2 = WC, 

a13 = G/C, %4 = a6 

&q?gvl-!g~- A a2(1 - z-2) v 
1 

c; = Cl + cc,, + c, + cc,, - c, 
3 4 3 4 4 c; = c, + cc,, + c, + cc,, 

cQ(l- z-2) cYgz-2 - 
A4 %- A3A4 v, (15) 

c;= c4 + cc,, + c5 + cc,, - c, 

Ci = Cci (i=1,2,4,5), and C, the normalization capacitor. 

a142 
-2 

“ll? 
-2 

'5=- A,& ‘i- A5A6 ‘,- 
a5(l - z-2) (17) 

A6 K’ (16) The SFG representation is shown in Fig. 6(c). 
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(b) 

Fig. 6. (a) The LCR bandpass prototype. (b) The BITAS equivalent of 
Fig. 6(a). (c) SFG of Fig. 6(b). (d) SC bandpass network. 

Step 3: 
The corresponding SC network can be obtained as shown 

in Fig. 6(d). 

The network equations (14)-(16) can be modified to 
obtain other possible SC structures that may be superior 
for certain design requirements. For example, the modified 
SC version with the sign-inverted input voltage, as il- 
lustrated in the low-pass case, is shown in Fig. 6(d) with 
the corresponding switching phases given in parentheses. 
Furthermore, a new family of bandpass SC configurations 
can be derived, starting out with the FDNR-transformed 

version of the LCR prototype filter in Step 1. More will be 
said about this possibility in connection with high-pass 
filter design in the next section. 

It should be pointed out that our design technique is not 
restricted only to integrators; it can be applied to any other 
building blocks such as, for instance, SC biquads. Interest- 
ingly enough, the resulting SC bandpass filters link cou- 
pled-biquad structures [ll] to the bandpass circuits 
obtained by leapfrog design [l]. In fact, by modifying the 
z-domain network equations, one can derive several SC 
bandpass equivalents, including coupled-biquad filters. To 
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v, -W) -V’ ‘4 , ‘iu 

jdn-qzqz- - 

‘4, N&l -NJ21 V; -N&l 

(4 

(b) 
Fig. 7. (a) The SFG representation of Fig. 6(b) usin the second-order 

network (X4)-(20). (b) SC bandpass filter using tt e coupled-biquad 
structures. 

do so, we rewrite the system of (14)-(16) as follows: 

08) 

09) 

(20) 

where 

N,(z) = cy,(l - z-4) 

iv,(z) = a*z-4 +(a3 -2a,)z-2+(Y2 

iv,(z) = (Y5z-4 +(a,-2cf5)z-2+(Y5 

q(z) = (Y7z-4 +(a,-2a7-2aJz-2+(a,+2q) 

03(z)=(Y10z-4+(cxg-2~10)z-2+(Y10 

D5(z)=a12z-4+(~11-2~13-2a12)z-2+(~12+2a13). 

(21) 

The (Y; values are the same as defined in (17). 
The corresponding SFG is shown in Fig. 7(a). The 

advantage of this procedure, which can be regarded as a 
discrete-time application of the method proposed by 
Yoshihiro et al. [19], is that the individual transfer func- 
tions of the SFG can be derived directly from the con- 
verted ladder filters in terms of the normalized inductor 
and capacitor values. Each pair of transfer functions have 
the same denominator, i.e., they can be realized by one and 
the same biquad circuit. It should be noted that the individ- 
ual transfer functions in (18)-(20) are of second-order, 
since the definition of the discrete-time variable z is given 

by 
z = exp(sr) = exp(sT/2). (22) 

In the implementation of the equivalent SC circuits, any 
one of the biquad circuits whose transfer functions corre- 
spond to the expressions in (21) can be applied. For 
example, using the second-order building blocks presented 
in [ll] we obtain the SC circuit shown in Fig. 7(b). 

VI. DESIGN OF HIGH-PASS FILTERS 

Before going into the actual design of high-pass filters, a 
stability problem, due to the application of the frequency- 
dependent admittance scaling of Table I, is briefly dis- 
cussed. 

Consider the third-order elliptic high-pass filter shown in 
Fig. 8(a). Applying the admittance transformation of Table 
I to the analog prototype directly yields the bilinear-trans- 
formed and admittance scaled high-pass filter shown in 
Fig. S(b). This filter suffers from the instability phenome- 
non described in [4]. With reference to our example, this 
phenomenon can be explained as follows. Carrying out the 
frequency-dependent admittance scaling, the source and 
load resistors in Fig. 8(a) have been converted into the 
frequency-dependent terminations in Fig. S(b). Since the 
impedance of the series branches of a ladder filter 
determines the transmission zeros of the transfer function, 
the presence of the source termination C, in Fig. 8(b) leads 
to a supplementary transmission zero at half the sampling 
frequency. For the passband gain of’s high-pass transfer 
function, however, the following condition must be fulfilled: 

Iffh(41,=,s,2+0~ 

(Usually it is equal to unity or 0.5.) 

(23) 
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with a finite value. Thus the order of the transfer function 
remains unchanged and the resulting network is stable. 

Applying Kirchhoff’s current law to the internal and 
output nodes of the converted network, the following sys- 
tem of network equations is obtained: 

I __-_-_--- _______--- -I 

(b) 

y,= _ 4---2) -2 

1 
Al 

v, - 3 v, + y- v, 

1 1 

+ 205zL2(l - z-‘) 
A, A2 

w+v,> (25) 

2cX,z-2(1- z-2) 
A2A3 

(v+ v,> 

Fig. 8. (a) The third-order elliptic high-pass filter. (b) The directly 
converted discrete-time equivalent. 

(26) 
where 

This condition requires an additional pole at the v;= --If, 
frequency w,/2 so that the transfer function obtained can 
attain the required passband gain. Thus we obtain % = CG,/Cl a2 = (CD2 - cc,, )/Cl 

H,(z) = Sl&Jz) 
a3 = (cc,, + cc,, )/Cl 

(24) a4 = (CD2 + cc,, )/Cl a5 = CD,/C, 

Hh(z) high-pass transfer function to be realized 
H/(z) high-pass transfer function obtained. 
Note that the-order of the transfer function is increased 

by adding a pole-zero pair (for our example from third to 
fourth order). The resulting transfer function appears to be 
stable due to the pole-zero cancellation. But this transmis- 
sion pole-zero pair is, by nature, implemented indepen- 
dently of each other: the transmission zero by the 
frequency-dependent source termination C, on the forward 
path of the equivalent SC circuit, and the pole by the 
remaining part of the SC circuit which corresponds to the 
network framed by dotted lines in Fig. 8(b). However, this 
latter network has an eigenvalue on the unit circle. Thus 
the network is unstable and oscillates with half the sam- 
pling frequency. 

A solution to overcoming this problem is to start out 
from the FDNR-transformed version of an LCR high-pass 
filter. If the FDNR-transformation is carried out first, the 
additional pole-zero cancellation in the transfer function, 
resulting from the admittance transformation, is eliminated. 
In what follows, this procedure is described by the follow- 
ing design steps: 

Step 1: 
Consider the FDNR-transformed third-order elliptic 

high-pass prototype filter shown in Fig. 9(a). 
Step 2: 
The bilinear-transformed network is shown in Fig. 9(b). 

As a consequence of the FDNR-transformation, the 
frequency-dependent terminations are converted into dis- 
crete-time reactances obtained by backward-difference 
transformation. The transmission zero of the high-pass 
filter function at w = 0 is realized by the source termination 
C G1; other zeros are realized by the series branch imped- 
ances of the ladder equivalent. The passband gain at a,/2 
is determined by the ratio of two termination impedances 

a6 = cc,2 - CC,,) 1’3 

a7 = (CD2 + cc,, w3 % = %2 /c3 

a9 = (cc,, + cc,, w3 

Cl = cc1 + CD2 - cc,, - cc,, 
c3 = cG2 + cD2 - cG,, - cG,, 

A,=~-z-~+~c+ A,=~+z-~ 

A3 =l-- z-~ +2a9. (27) 
In this case, the coefficients (Q) are given as ratios of 
capacitor values of the bilinear-transformed equivalent 
filter, without considering any other reference capacitors. 
Thus the calculated capacitor ratios yield the gain con- 
stants of the integrator-summer building blocks directly. 
The corresponding SFG can be obtained as shown in Fig. 
9(c). 

Step 3: 
One possible implementation of the SC equivalent is 

shown in Fig. 9(d). Note that four amplifiers are required 
in order to realize all internal transmittances (including 
A2) in a fully strays-insensitive form. Without modifica- 
tion, the transmittance A2 cannot be implemented by the 
first-order building block in Fig. 1. To realize it by a 
completely parasitic-insensitive circuit, an inverter must be 
introduced into the feedback path as depicted in Fig. 9(d). 

It should be noted that the design procedure outlined 
above has yielded stable SC high-pass equivalents in all 
cases considered so far. 

VII. PROPERTIES OF BILINEAR-TRANSFORMED 
ADMITTANCE-SCALED (BITAS) FILTERS 

In the preceding sections, a new design technique based 
on the bilinear z-transform and subsequent frequency- 
dependent admittance scaling (see Table I) has been pre- 
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(b) 

(4 
Fig. 9. (a) The FDNR-transformed high-pass prototype filter. (b) The 

BITAS equivalent of Fig. (9a). (c) SFG of Fig. (9b). (d) The resulting 
SC high-pass realization. 

sented. With this method, SC ladder filters are realizable 
using well-known parasitic-free differential integrator loops 
and coupled-biquad structures. In what follows, the main 
properties of such filters are summarized. 

One interesting feature of BITAS filters is that, like the 
LCR prototype filters, they are symmetrical, i.e., their 
input and output terminals can be interchanged. These 
interchanged feed-in terminals are shown with dotted lines 
for the low-pass, bandpass, high-pass case in Figs., 3(d), 
6(d), 9(d), respectively. As will be shown in the next 
section, a comparison, with respect to the capacitor areas, 

of the original, and the input-output interchanged version 
after optimization with respect to dynamic-range, indicates 
that the choice of the feed-in terminal is very important 
with regard to the total required capacitor area. 

Another feature of BITAS filters is that the conversion 
of an elliptic to an all-pole ladder filter of the same order 
(low-pass, bandpass, or high-pass) can be carried out sim- 
ply by changing the gain constants of the integrator-summer 
blocks of a given SC filter structure. 

To illustrate other properties of BITAS filters, consider 
the analog low-pass prototype filter shown in Fig. 10(a) 
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+k$+~2 
Cl C3 c, -2 cn 

n:odd 
Fip 406 

t:X 
(4 

Lx 

Fig. 10. (a) The analog low-pass prototype filter. (b) The discrete-time 
equivalent of Fig. 10(a) using (28). 

and its BITAS equivalent in Fig. 10(b). Note that the 
admittance scaling factor has in this case been chosen as 

s, = z-‘/(1 + z-2) (28) 

and is dimensionless. 
This modified scaling factor is used in order to illustrate 

the similarity between leapfrog synthesis and our design 
procedure. The branch reactances of the network in Fig. 
10(b) become the same reactances as those obtained by 
LDI transformation, namely, 

l/Q + l/li*x 1; = 1,/2, i: even (29) 

cis --) c,Fx ci* = 2(c, + c,,), cli = 7*/li, i: even 

cjs + cj*x 

where 

c,? = 2cj, j: odd 

1 1-z-2 
“=r,-- Z-l 

T,=2r=l/fs, f, is sampling frequency. 

The termination admittances are given by 

gk --, c,$Y~ c:=27g,, k=i,2 

where 

Y=l l+=-* 
T, z-1 . 

(30) 

(31) 

(32) 

In the case of all-pole filters (ci = 0, i: even), inductors in 
the analog prototype filter are converted into equivalent 
discrete-time parallel resonance circuits. These realize the 
transmission zeros of the low-pass transfer function at half 
the sampling frequency (w = w,/2). Substituting s = j,, 

‘we obtain 

l/j&, +l/jsin(wT,/2)li* (33) 
jwcj + jsin(wT,/2)ci* (34) 

g, + cos(wTs/2)c;. (35) 
Recall that the relationship between the continuous- and 
discrete-time frequency is 

jw + jf tan(wT,/2). (36) 
s 

(b) 
Fig. 11. (a) The analog high-pass prototype filter. (b) The discrete-time 

equivalent of Fig. 11(a) using (37). 

Thus the BITAS low-pass networks can be regarded as 
LDI-transformed leapfrog filters, terminated by frequency- 
dependent admittances, which are inherently determined 
by (36). As is well known from leapfrog design, a high 
clock-to-cutoff frequency ratio is required in order for the 
sampling effects on the frequency response, due to the 
extra half delay in the termination loops, to be negligible. 
Various methods have been published in order to eliminate 
this terminating error. One of these [12] is to terminate SC 
ladder equivalents with frequency-dependent impedances 
corresponding to (36). 

Another [13] is to redesign the all-pole low-pass filters 
comprising such terminations. In this case, the transmis- 
sion zeros at half the sampling frequency due to the 
bilinear z-transform are removed. In doing so, the network 
poles must be relocated such that the resulting frequency 
response satisfies the design specifications. This amounts to 
a prewarping of the network function and entails a modifi- 
cation of the entire design process. Similar observations 
apply to the high-pass case. Consider, for example, the 
analog high-pass prototype depicted in Fig. 11(a) and its 
BITAS equivalent in Fig. 11(b). Note that this time the 
dimensionless admittance scaling factor is chosen to be 

s* = z-l/(1 - z-2). 

By splitting up the resulting reactances as follows: 
(37) 

c. (1- z-2)’ 1 ci (1+z-2) 4c. 
7 z-‘(l+ z-‘) = 7 

-I Z-l 

Z-l I- (1+ z-‘) C3Q 

we obtain the branch reactances: 

cis -+ 1/z:y 1: = - r2/2ci, i: even (39) 

l/liS + c,*y ci* = 2(ci + cl,), c,, = r2/Zi, i: even 

(40) 
l/Ii, + cj*y CT = 2c,,, j: odd (41) 

. . . . * ‘, 
and terminators 

gk + c,*x c;=27gk, k=1,2. (42) 
The branch reactances of the BITAS high-pass ladder 
equivalents have the form of the terminations in the low- 
pass case, and the terminations the from of the branch 
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TABLE II 
COMPLEMENTARY ADMITTANCE TRANSFORMATION 

\ 

element admittance admittance scaled definitions 
s-domain z-domain admittance 

1 1-2-2 1 

S+Tz Y + Y/S' 
Sf=------ 

T(l - 2-5 

S*=scaling frequency 

R G=l/R G CG(1 -2-5 CG = TG 

-2 2 -2 
C SC c 1-z-* -- 

T ltz -2 c J+=c(l+z-*)-4&- 
1 tz- 1 t 2-* 

-2 
L l/s L T ltz 

Y-1-2-2 
cL(lt*-*) CL =,2/L 

3 -2 2 -2 
M l/s2 M T2 (1 tz-2)2 I~=c"(l-2-*)t4c"~ 

M (1 -2-*)* M 1 - 2-* 1 - z-* 
C" = T3/M 

reactances, respectively. In other words, x (LDI variable) 
and y (termination variable) are exchanged. Notice that the 
value of I* in (39) is negative. 

Another result of this observation is that the scaling 
frequency 

s* =l/r(l- z-2) (43) 
yields the same discrete-time equivalent filter as would be 
obtained by applying the original admittance transforma- 
tion (see (3) and Table I) to the corresponding FDNR- 
transformed high-pass prototype filter. A complementary 
admittance scaling factor can, therefore, be defined, as 
shown in Table II. To summarize: the scaling factor in (43) 
represents an alternative method of obtaining a BITAS 
filter from a prototype LCR filter. The two methods of 
reactance scaling are complementary. In the first case (i.e., 
the admittance transformation according to Table I) the 
source termination of the resulting network causes the 
transmission zero to be at half the sampling frequency 
(w = w,/2). In the second case (i.e., the admittance trans- 
formation. according to Table II) the corresponding trans- 
mission zero is at w = 0. 

Finally, assuming r = 1, i.e., ws = 7r, a comparison of 
Tables I and II suggest a simple method of converting a 
low-pass into a high-pass filter, which is similar to the 
continuous-time case. As can be seen, the admittances in 
Table II can readily be derived form those in Table I by 
letting 

z-2 -2. +-Z (44) 
Consequently, we obtain the following relationship be- 
tween the high-pass and low-pass transfer functions: 

H,(z) = H,(z)~d-L-z-2. (45) 

Note that except for some distortion of the frequency scale, 
this transformation provides a high-pass frequency re- 
sponse which appears as if the low-pass response had been 
shifted in frequency by 7~. A similar set of simple transfor- 
mations can be derived for the conversion of a low-pass 
filter into a bandpass or bandstop filter. 

VIII. EXPLICIT DESIGN EXAMPLES 

The design technique outlined in the preceding sections 
will be illustrated by several detailed examples. First, how- 
ever, a brief digression. Normally, design specifications 
must be prewarped in order to take the nonlinear frequency 
relationship between the analog- and discrete-frequency 
domain into account (see (36)). This prewarping can be 
introduced directly into the denormalized elements which 
are given by 

ci=--& ci and Lj= 3,. 
c r WC J 

where w, is the specified angular cutoff frequency and R, a 
reference resistor (usually equal to the termination resis- 
tors). 

Taking the frequency prewarping (36) into account and 
with C, = r/R, as an arbitrary reference capacitor, the 
required capacitor ratios can then be derived as 

CG C 
L= 
cr l 

-.5= ‘i 

cr tan (0,~) 

J = 4tanbv) G %, tan(q) 
c, li c, - lj . (47) 

Thus the gain constants ( ak) of the internal integrators are 
obtained in terms of the normalized element values of the 
analog prototype filter and the cutoff/sampling frequency 
ratio. This is an alternative approach to the conventional 
one of designing the analog prototype filter using an 
approximation and synthesis program after prewarping the 
critical frequencies according to (36). In this case, of course, 
the correction term tan (w,r) is equal to unity. 

Consider, now, the normalized element values of the 
elliptic low-pass filter CC 052548 given in Table III. As 
pointed out in Section IV, numerous SC realizations can be 
derived for an analog low-pass prototype filter. The capaci- 
tor values in Table III are given for the version shown in 
Fig. 3(d) with the switching phases in parentheses. They 
are obtained by substituting (47) in (7) for the cutoff 



HOKENEK AND MOSCHYTZ: DESIGN OF SC LADDER FILTERS 885 

TABLE III 

LCR LOWPAS.S-PROTOTYPE VALUES 

gs=l. "2 -1.11477 e4=0.80597 gL =l. 

c2 -0.21771 c4 = 0.64069 

cl =1.28329 c3=1.77253 c5 =0.99832 

CAPACITOR VALUES 

initial 
values 
SBLPl 

dynamic-range 
optimized 

SOOLPl 

input-output 
interchanged 

SBLPZ 

dynamic-range 
optimized 

SOOLPP 

Cl 2.1299 Cl 1.2259 Cl ------ Cl ------ 
c2 2.1299 C2 2.116 c2 2.1299 c2 1.1623 
c3 3.8760 c3 3.8507 C3 3.876 c3 2.1176 
C4 1.2442 c4 1.0738 c4 1.2442 c4 1. 
c5 1. c5 2.7859 c5 1. C5 3.5363 
C6 1.065 C6 3.4154 C6 1.065 C6 2.56 
c7 2. c7 1. c7 ------ c7 ------ 
C8 1.065 C8 3.438 C8 '1.065 C8 4.6858 
c9 8.869 c9 8.9276 C9 16.2338 
Cl0 1.2442 Cl0 1.0809 

ET0 K2 
Cl0 1.8304 

Cl1 1.7209 Cl1 1.7374 Cl1 1:7209 Cl1 1.575 
Cl2 1. Cl2 3.4814 Cl2 1. Cl2 3.5155 
Cl3 1.065 Cl3 3.6965 Cl3 1.065 Cl3 7.4877 
Cl4 1. Cl4 2.9955 Cl4 1. Cl4 3.5155 
Cl5 4.157 Cl5 2.0785 Cl5 4.157 Cl5 3.4774 
Cl6 1.7209 Cl6 1. Cl6 1.7209 Cl6 1.44 
Cl7 2. Cl7 1. Cl7 2. Cl7 1.673 
Cl8 2.426 Cl8 1.4056 Cl8 2.426 Cl8 4.0587 
Cl9 2.278 Cl9 1.9789 Cl9 2.278 Cl9 2.0849 
c20 1. c20 1. c20 1. c20 1. 
c21 1. c21 1. c21 1. c21 1. 
c22 2.1299 C22 1.2340 c22 ------ c22 ------ 
C23 _-____ C23 ______ C23 2. C23 1. 
C24 ______ C24 ______ C24 2. C24 1. 
C25 ______ C25 ______ C25 2.1299 C25 2.13 

SBLP: Stray-Insensitive Bilinear Transformed coweass Filter 

SODLP: Ztray-Insensitive Optimum Oynamic-Range owpass Filter 

frequency f, = 3.4 kHz and sampling frequency f, = 32 
kHz. The SC equivalents, i.e., the original- (SBLPl) and 
the interchanged input-output (SBLP2) versions, have been 
scaled for an optimum dynamic-range resulting in filters 
SODLPl and SODLP2, respectively. A comparison of the 
resulting filters (SODLPl and SODLP2) with respect to 
the required capacitor area shows a considerable difference 
(approximately 30 percent), although both circuits were 
designed for minimum total capacitance and, of course, for 
the same design specifications. Note that the minimum 
scaled capacitor values in both cases are equal to one, i.e., 
the capacitor area obtained is directly proportional to the 
sum of the scaled capacitor values. As a result, the choice 
of the feed-in terminals in the filters optimized for dy- 
namic-range is very important with regard to the optimum 
capacitor area. Note that the nonoptimized SC equivalents 
SBLPl and SBLP2 have equal capacitance area. 

For the design of a geometrically symmetric bandpass 
filter, the normalized element values derived from the 
low-pass prototype CC 032026 (passband ripple 0.177 dB 
and stopband loss 30.41 dB) are shown in Table IV. The 
capacitor values are also given for the version depicted in 
Fig. 6(d) with the switching phases in parentheses. They 
are obtained for a passband between 1.4-3.4 kHz and a 
sampling frequency f, = 32 kHz. 

Finally, our design procedure is illustrated for a third- 
order elliptic high-pass SC filter. The element values of the 
RCD prototype filter are derived from the same low-pass 
filter used in the bandpass case. With the same design 
procedure as above, and with (27), the capacitor values of 
the initial- (SBHPl) and dynamic-range optimized 
(SODHPl) SC networks are obtained as given in Table V. 
The measured amplitude responses of the low-pass (see 
Fig. 3(d)), bandpass- (Fig. 6(d)), and high-pass- (Fig. 9(d)) 
SC filters using discrete components (opamps LF 356, 
switches MC 14016, and capacitors with 0.5-percent accu- 
racy) are shown in Figs. 12, 13, and 14, respectively. In all 
three cases the passband sensitivity with respect to a l-per- 
cent change remained below 0.12 dB. This is the kind of 
insensitivity to be expected from the classical ladder struc- 
ture, also when it has been converted into an SC filter 
according to the BITAS procedure. 

IX. CONCLUSIONS 

A fundamental approach for the accurate design of 
precision monolithic SC networks has been described. The 
design is carried out by converting a conventional continu- 
ous-time filter into a discrete-time filter utilizing the bilin- 
ear z-transform. Since the design procedure is based on the 
network equations and the corresponding SFG in the 
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TABLE IV 

LCR BANDPASS PROTOTYPE VALUES 

initial 
values 

S8BPl 

Cl 2. 
c2 2. 
c3 5.552 
c4 2.213 
c5 1. ' 
C6 1. 

EL 2. 7.461 
c9 8.999 
Cl0 6.588 
Cl1 
Cl2 lk824 
Cl3 2. 
Cl4 7.582 
Cl5 6.588 
Cl6 1. 
Cl7 1.095 
Cl8 1.095 
Cl9 1.214 
c20 7.999 
c21 6.367 
c22 6.367 
C23 1. 
C24 1. 

gL=l. 

e, =0.8768 t2 =0.7215 e4 =5.7711 e5 =0.8768 

Cl 51.1404 c2 q 0.1733 c4 =1.3861 c5-=1.1404 

CAPACITOR VALUES 

dynamic-range 
optimized 

SOOBPl 

Cl 1. 
c2 1.468 
c3 4.075 
c4 1.6246 
c5 3.1365 
C6 3.1365 
C7. 1. 
ii 18.015 9.2944 

Cl0 31.173 
Cl1 2.944 
Cl2 5.412 
Cl3 1. 
Cl4 3.787 
Cl5 15.482 
Cl6 2.3525 
Cl7 
Cl8 1' '096 
Cl9 1:2155 
c20 11.7425 
c21 3.9614 
c22 6.373 
C23 1. 
C24 1. 

;BBP: Stray-Insensitive Bilinear Transformed Bandpass Filter - - 
;ODBP: Stray-Insensitive cptimum Dynamic-Range Bandpass Filter - 

TABLE V 

RCD HIGHPASS-PROTOTYPE VALUES 

c =l. 
gi 13 =gi 

= 0.921 
9, gQ 2 

= 6.821 
d2 

-0.991 C =l. 
g.t 

initial dynamic-range 
values optimized 
SBHPl SOOHPl 

Cl 1.5955 
c2 1. 

4.015 
1.467 

CAPACITOR VALUES 

Cl 2.3406 
c2 1. 
c3 4.015 
c4 2. 
c5 2. 
C6 1. 
c7 1. 
C8 1. 
c9 2. 
Cl0 3.3447 
Cl1 3.3447 
Cl2 1. 
Cl3 4.015 
Cl4 3.4042 
Cl5 3.4042 
Cl6 3.2852 
Cl7 3.2852 

c5 
C6 
c7 
C8 
c9 
Cl0 
Cl1 
Cl2 
Cl3 
Cl4 
Cl5 
Cl6 
Cl7 

1. 
2.0605 
1. 
1. 
4.121 
9.3956 

13.7833 
1. 
4.015 
2.3205 
4.994 
4.8194 
2.2394 

SBHP: Stray-Insensitive Bilinear Transformed Highpass Filter 

SODHP: Stray-Insensitive Optimum I&amic-Range tJigheass Filter Fig. 12. Measured frequency responses of the elliptic low-pass filter. 
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C DB 3 RMPLITUDE 

STRRY-IN5EN. BIL. TR. BRNDPR55 
Fig. 13. Measured frequency response of the SC bandpass filter in Fig. 

6(d). 

AMPLITUDE 

-60 * c; : - kHz 
0.1 0.2 0.5 1 2 5 8 

Fig. 14. Measured frequency response of the SC high-pass implementa- 
tion in Fig. 9(d). 

z-domain, the equations can be modified to generate a 
number of SC filter versions, all derived from one and the 
same analog filter prototype. The different versions ob- 
tained make it possible to choose an optimum solution 
with respect to tradeoffs between the sampling frequency, 
the element-spread, the chip area, the dynamic-range and 
other technological problems of integration. The resulting 
SC circuits are fully stray-insensitive, allowing the designer 
to use small capacitors, and hence a small chip area. 

VI 

121 

[31 

141 

151 

WI 

[71 

VI 

191 

WI 

WI 

WI 

[I31 

[I41 

[I51 

WI 

v71 

WI 
[I91 

WI 
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Exact Design of Strays-Insensitive 
Switched-Capacitor Ladder Filters 

RAJENDRA B. DATAR AND ADEL S. SEDRA, SENIOR MEMBER, IEEE 

Abstrucf -This paper presents a systematic solution to the problem of 
designing a stray-insensitive switched-capacitor filter based on the exact 
simulation of the operation of an LC ladder prototype. A complete proce- 
dure is given for the design of low-pass and bandpass filters with and 
without transmission zeros. 

I. INTRODUCTION 

T HE problem of designing a strays-insensitive 
switched-capacitor (SC) filter based on the exact simu- 

lation of the operation of an LC ladder prototype has 
recently been of considerable interest [l]-[9]. In this paper 
we present yet another solution to this problem. The pro- 
posed method has the advantages of being simple, sys- 
tematic and applicable to filters having finite transmission 
zeros as well as to,all-pole filters. Furthermore, the method 
should prove useful in connecting previous contributions to 
this topic, specifically, [5], [15], [3], [7], [8]. In fact in some 
cases the resulting circuits are identical to those obtainable 
by these other techniques. 

Our SC networks will be realized using the standard 
strays-insensitive building blocks [lo]-[14] shown in Fig. 1. 

@I 
Fig. 1. Strays-insensitive SC building blocks. (a) inverting. (b) nonin- 

verting. 

Their transfer functions are as follows: 
Inverting circuit (Fig, l(a)): 

v,(z) CI z1/2 -=-- 
W) c, zv2 - z-w 
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c! Noninverting circuit (Fig. 1 (b)): 
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V,(z) G -=- 

K(z) c, zv2 - z-v2 

(1) 

(2) 
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