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ABSTRACT

A new type of nonlinear analog transistor networks has recently
been proposed for “turbo” decoding of error correcting codes. How-
ever, the influence of various nonidealities on the performance of
such analog decoders is not yet well understood. The paper ad-
dresses the performance degradation due to transistor mismatch.
Some analytical results are derived that allow to compare the ac-
curacy of analog decoders with that of digital decoders. Moreover,
these results enable to incorporate transistor mismatch into fast
high-level simulations.

1. INTRODUCTION

Error correcting codes are a central part of most modern communi-
cation systems. The best known such codes — best in the sense of
performing closest to the theoretical Shannon limit — are turbo
codes [1], low-density parity check codes [2, 3], and variations
thereof. Such codes are decoded by “probability propagation”—
a version of the generic sum-product algorithm [4]—or variations
thereof. Concise recent reviews of such codes and their decoding
are [5] and [6], respectively.

In contrast to many other signal processing tasks in a com-
munications receiver, the decoding of error correcting codes has
always been implemented digitally. However, it was recently ob-
served that the probability propagation algorithm can be naturally
mapped onto elementary transistor circuits [7–9]. With these cir-
cuits, analog-VLSI decoders for turbo codes, low-density parity
check codes, and similar codes can be built. The advantage of such
analog decoders over digital decoders are higher operating speed
(for some fixed power consumption) or lower power consumption
(for some fixed operation speed) or both; it is expected that these
gains can amount to two orders of magnitude [9–11].

Very similar analog decoders were investigated by Hagenauer
et al. [12–14]. Alternative approaches to analog decoding include
the analog Viterbi decoders of [15–18]; for further references see
[9].

Clearly, the performance of such analog decoders will be af-
fected by all sorts of nonidealities. Most such effects are not eas-
ily quantified. In principle, all such effects could be studied by
SPICE-level Monte-Carlo simulations, but such simulations are
far too time consuming to be of much use. Better methods are
definitely needed.

The present paper focusses on the effects of transistor mis-
match, which appears to be the primary influence limiting the pre-
cision of the computation in such decoders [11]. We will see that,
for individual circuit modules, transistor mismatch affects the rep-
resented probabilities in an analytically tractable way. This result
is used in a high-level simulation tool, which enables us to study
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Figure 1: Generic sum-product module.

the global effects of transistor mismatch by simulations that are
only slightly slower than the numerical simulations of an ideal de-
coder.

The paper is organized as follows. In Sections 2 and 3, we
briefly review the elementary circuit module of the analog decod-
ing networks. The effects of mismatch are analyzed, first in Sec-
tion 4 for an individual transistor, then in Section 5 for a whole cir-
cuit module. Some simulation results are presented in Section 6,
and some concluding remarks are offered in Section 7.

2. REVIEW OF BASIC SUM-PRODUCT CIRCUIT

Decoding by probability propagation can be decomposed into build-
ing blocks of the type shown in Fig. 1 [9]. Such a building block
takes as input two probability distributions,pX defined on some
setX = {x1, . . . ,xm} and pY defined on some setY = {y1, . . . , yn},
and computes as output the probability distributionpZ defined on
Z = {z1, . . . ,zk} by

pZ(z) = γ
∑

x∈X

∑

y∈Y

pX(x)pY(y) f (x, y,z), (1)

where f is a{0,1}-valued function and whereγ is an appropriate
scale factor that does not depend onz. By varyingm, n, k, and the
function f , a large class of sum-product modules is obtained.

As shown in [7, 9], any such sum-product module can be re-
alized by the transistor circuit shown in Fig. 2. The probability
distributionspX , pY, and pZ are represented by current vectors,
e.g., [Ix,1, . . . , Ix,m] , Is[ p(x1), . . . , pX(xm)], with an arbitrary sum
current Is. The transistors will be modeled as exponentially be-
having voltage controlled current sources defined by

IC = I0(T)eVBE/nUT , (2)

whereT is the absolute temperature andUT is the thermal voltage
kT/q. The factorn is the “emission coefficient,” an indicator of
imperfect emission of electrons, which is usually close to one.
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Figure 2: Products circuit.

Given this transistor model, the circuit of Fig. 2 computes the
output currentsIi , j according to

Ii , j = Iz(Ix,i /Ix)(I y, j /I y) (3)

with Ix ,
∑m

i=1 Ix,i , I y ,
∑n

j=1 I y, j , andIz,
∑m

i=1

∑n
j=1 Ii , j = Ix.

The circuit thus simultaneously computes all productsp(xi )p(yj )
of (1). In order to complete the computation of (1), for each
z ∈ Z, those product termspX(x)pY(y) for which f (x, y,z) is
nonzero have to be added. This is easily accomplished by con-
necting the corresponding wires, relying on Kirchhoff’s current
law. By adding current mirrors at the inputs and outputs, the mod-
ules become freely cascadable [7,9].

3. INPUT VOLTAGES AND THE LOG-LIKELIHOOD
REPRESENTATION

In Section 4, we will express the effects of transistor mismatch
in terms of voltages. It should therefore be pointed out that, in
the circuit of Fig. 2, voltages represent logarithms of probabili-
ties [9], also called log-likelihoods. The diode-connected transi-
tors within the dashed box in Fig. 2 convert the input current vec-
tor (I y,1, . . . , I y,n) = (I y pY(y1), . . . , I y pY(yn)) into a voltage vector
(Vy,1, . . . ,Vy,n) with voltages

Vy, j = nUT log(pY(yj ))+nUT log(I y/I0)+ Vref. (4)

By omitting the diode-connected transistors within the dashed box,
the circuit could be converted into one with voltage inputs instead
of current inputs. The voltage input vector (Vy,1, . . . ,Vy,n) would
then be given by

Vy, j = nUT log(pY(yj ))+ Voffs, (5)

whereVoffs can be chosen freely. This approach was chosen by
Moerz et al. [13, 14] whose analog decoding networks are also
based on the circuit shown in Fig. 2, but without the transistors in
the dashed box. It should be noted, however, that the relation (5)
between voltages and probabilities depends on the absolute tem-
perature.

Digital decoders often work with logarithms of probabilities
rather than with the actual probabilities. The quantization in such
log-domain digital decoders corresponds to a quantization of the
input voltage (5) in an analog decoder. Conversely, a limited accu-
racy in the voltage (5) can be translated into an equivalent resolu-
tion (in bits) of a log-domain digital decoder.

4. SINGLE-TRANSISTOR MISMATCH

The main effect of transistor mismatch is that the currentI0 in (2)
is changed toI0(1+ ε). The output currentIC is thus changed to

IC(1+ ε) = I0 e
VBE
nUT (1+ ε)

= I0 e
VBE+nUT ln(1+ε)

nUT . (6)

The relative current error is thus equivalent to an absolute error in
VBE of

δVBE = nUT ln(1+ ε) (7)

≤ nUTε. (8)

For any given base-emitter voltage swing1VBE, the quantity
log2(1VBE/δVBE) will be referred to as the equivalent digital res-
olution. As was explained in Section 3, it may may be interpreted
as the resolution (in bits) of a log-domain digital decoder. Such
digital decoders often operate with a resolution of 4 to 7 bits.

Some numerical values (forT=300K andn=1) are given in
Table 1. Note that a voltage swing of1VBE = 300mV corresponds
to a current with a dynamic range of 5 decades (60mV per decade).

resolution at
ε δVBE DR = 4dec DR = 5dec

1VBE = 240mV 1VBE = 300mV
1% 0.258mV 9.9bits 10.2bits
5% 1.26mV 7.6bits 7.9bits
10% 2.47mV 6.6bits 6.9bits
25% 5.78mV 5.4bits 5.7bits
50% 10.50mV 4.5bits 4.8bits

Table 1: Single-transistor mismatch and equivalent digital resolu-
tion.

5. MISMATCH IN THE BASIC TRANSISTOR MATRIX

We assume in the following that each transistor in the circuit of
Fig. 2 is affected by transistor mismatch that changesI0 into I0(1+
ε). The corresponding error termsε will be denotedεj , j = 1,. . . ,n,
for the diode-connected transistors within the dashed box andεi , j ,
i = 1,. . . ,m, j = 1,. . . ,n, for the transistor in rowj and column
i of the transistor matrix. The key idea of the following analysis
is that the mismatch errors can be expressed by a modifiedinput
probability distributionpY as illustrated by Fig. 3.

First, it is easy to see that mismatch of the diode-connected
transistors within the dashed box is equivalent to a modified input
distribution

p̂(yj ) = (1+ εj ) p(yj )∑n
`=1(1+ ε`) p(y`)

(9)

Second, by (6), the mismatch of the transistor in rowj and column
i is equivalent to an absolute error ofnUT ln(1+ εi , j ) in its base
voltageVy, j . Again by (6), this is in turn equivalent to a factor
1+ εi , j in the input currentI y, j . For some fixed columni , the
total mismatch error can thus be expressed by modifying the input
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Figure 3: Backpropagation principle of the mismatch errors.

distribution pY to p̃Y defined by

p̃(yj ) = (1+ εi , j ) p̂(yj )∑n
k=1(1+ εi ,k) p̂(yk)

(10)

= (1+ εi , j )(1+ εj ) p(yj )∑n
k=1(1+ εi ,k)(1+ εk) p(yk)

. (11)

Combining this with (3), the actual normalized transistor matrix
output currentI ′

i , j /Iz is given by

I ′
i , j /Iz = pX(xi ) p̃Y(yj ). (12)

This formulation is suitable for high-level simulation software.
However, we will also be interested in the logarithmic error

ln
I ′
i , j

I i , j
= ln

(1+ εi , j )(1+ εj )∑n
k=1(1+ εi ,k)(1+ εk) p(yk)

(13)

where Ii , j = Iz pX(xi )pY(yj ) is the nominal output current. As in
the previous section, this quantity can be used for comparisons
with digital implementations.

6. SIMULATION RESULTS

In the simulations described in the following, the parametersε of
all transistors were considered as independent Gaussian random
variables [19], truncated to the range ]− 1,+1]. The simulation
results are divided into two parts. First, we consider the distribu-
tion of (13). Second, simulation results for a binary low-density
parity-check code are presented.

The logarithmic error (13) obviously depends on the input dis-
tribution pY. However, it is easily seen that the worst case distri-
bution is one withpY(yj ) = 1 for some j . Only such worst case
inputs are considered in the sequel. The distribution of (13) does
then not depend on the sizen of the input alphabetY = {y1, . . . , yn}.
Fig. 4 shows the standard deviation of the logarithmic error (13) as
a function of the standard deviation of the transistor parametersε,
as obtained by numerical simulations.

We have also studied the effects of transistor mismatch for
a binary (44,22,8) low-density parity-check code. Both the code
and its decoder are defined by the factor graph shown in Fig. 5.
(Factor graphs are defined in [4].) The code was not chosen for its
performance, but for its suitability for studying various effects in
both iterative digital and analog decoders.

Simulation results using (12) are shown in Fig. 6. All these
simulations are for discrete-time sum-product decoders, but in-
clude transistor mismatch in the form (12). The simulation results
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Figure 4: Standard deviation of the logarithmic error (13).
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Figure 5: Factor-graph of the simulated code.
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Figure 6: Simulation results for the (44,22,8) code with standard
deviation ofε set to 10%.
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Figure 7: Simulation results for the (44,22,8) code with the stan-
dard deviation ofε set to 5% (on the left) and 15% (on the right).

for continuous-time versions are very similar. With an assumed
standard deviation of 10% for the mismatch parametersε — a real-
istic value for relatively small transistors — 600 different decoding
networks were generated. For each of these decoding networks,
complete bit error rate (BER) curves were obtained by simulation.
A second set of simulations for an assumed standard deviation of
5% and 15% for the mismatch parametersε are shown in Fig. 7.

The top and the bottom solid lines in Fig. 6 and Fig. 7 show
the worst and the best, respectively, of the simulated decoding net-
works. The dotted lines show the percentiles 5 and 95 of these
decoding networks. Also shown by a solid line is the reference
decoder without transistor mismatch, which is a standard discrete-
time sum-product decoder. Surprisingly, the best decoding net-
works with random transistor mismatch outperform the reference
decoder. This is unexpected, but not logically impossible: on
graphs with interacting cycles, there are no optimality claims for
the standard sum-product decoder.

7. CONCLUDING REMARKS

The accuracy of analog decoding circuits appears to be limited
primarily by transistor mismatch. The analytical results of this
paper allow to study such effects by fast high-level simulations.

The simulation software is also capable of handling further
nonidealities such as propagation delays and MOS transistor char-
acteristics, but we have not yet began to explore these issues sys-
tematically.
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