
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 2, MARCH 1991 337 

On Repeated-Root Cyclic Codes 
Guy Castagnoli, James. L. Massey, Fellow, IEEE, Philipp A. Schoeller, and Niklaus von Seemann 

Abstract -A parity-check matrix for a q -ary repeated-root cyclic code 
is derived using the Hasse derivative. Then the min imum distance of a 
q-ary repeated-root cyclic code C is expressecin terms of the min imum 
distance of a certain simple-root cyclic code C that is determined by C. 
With the help of this result, several binary repeated-root cyclic codes of 
lengths up to n = 62 are shown to contain the largest known number of 
codewords for their given length and min imum distance. It is further 
shown that to a q-ary repeated-root cyclic code C of length n = p%, 
where p is the characteristic of GF(q) and gcd(p,?i) = 1, there corre- . 
sponds a simple-root cyclic code C of rate and relative min imum 
distance at least as large as the corresponding values of C, however, of 
length ii, i.e., shorter by a factor of p’. The relative min imum distance 
dmin /n of q-ary repeated-root cyclic codes C of rate r 2 R is proven to 
tend to zero as the largest multiplicity of a root of the generator g(x) 
increases to infinity. It is further shown that repeated-root cyclic codes 
cannot be asymptotically better than simple-root cyclic codes. 

Mar Terms -Cyclic codes, generator polynomial, formal derivative, 
Hasse derivative. 

I. INTRODUCTION 

T HE theory of cyclic codes, i.e., of linear block codes 
whose set of codewords is closed under cyclic shifting, 

enjoys a prominent place in the theory of error-correcting 
codes. The great majority of known constructions for good 
linear block codes yield cyclic codes or codes closely related 
thereto, such as the Justesen codes [l]. As is well known, an 
(n,k) q-ary cyclic code, i.e., a cyclic code of blocklength 12 
whose codewords form a k-dimensional subspace of the 
vector space of n-tuples over the finite field GF(q), is 
completely described by its generator polynomial g(x), which 
is a q-ary manic polynomial of degree II - k that divides 

- 1, in the manner that the q-ary n-tuple 
Fl-l,a,-2,. . a, a,,] is a codeword if and only if g(x) divides 
a(x) = a,-Ix”-l + a,-2x”-2 + . . . + a,, [2, p. 2071. (We 
shall refer to such a polynomial a(x) corresponding to a 
codeword [a,-I,a,-,,. . ., a,] as a code polynomial.) The 
code rate is r = k/n. Conversely, any q-ary manic polyno- 
mial g(x) of degree less than it that divides x” -1 is the 
generator polynomial of an (n, k) q-ary cyclic code with 
it - k equal to the degree of g(x). To avoid the trivial case 
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where the minimum distance d,, of the cyclic code would 
be 2, when given a q-ary manic polynomial with g(0) # 0 
(i.e., when given a possible generator polynomial of a q-ary 
cyclic code), the length n of the cyclic code generated by 
g(x) is always understood to mean the smallest positive 
integer IZ such that g(x) divides x” - 1. Virtually all previous 
studies of cyclic codes assume at the outset that gcd (n, p) = 1 
where p is the characteristic of GF(q). This is equivalent to 
assuming that g(x) has no repeated irreducible factors, as 
follows from the fact that g(x) divides x” - 1 but not its 
formal derivative mndl unless and only unless the latter is 
0, which is equivalent to the condition that p divides n or, 
equivalently, that gcd(n, p> = p > 1. By a repeated-root cyclic 
code, we shall mean a cyclic code for which g(x) has at least 
one irreducible factor of multiplicity at least 2. The conven- 
tional cyclic codes where gcd (n, p) = 1 will, for contrast, be 
called simple-root cyclic codes. Our choice of terminology 
stems from the fact that,‘in the splitting field E = GF(q? of 
g(x), the root-set of g(x) (i.e., the multiset of solutions of 
g(x) = 0) will contain only simple roots if the code is a 
simple-root cyclic code, but will have at least one root of 
multiplicity at least 2 if the code is a repeated-root cyclic 
code. Some exceptions in the literature where repeated-root 
cyclic codes have been considered are the papers by Massey, 
Costello, and Justesen [3] and by Berman [4], which treat the 
case where the root-set has only one distinct root (of multi- 
plicity necessarily n - k), and the paper [.5] by Castagnoli, 
which considers asymptotic properties of the minimum dis- 
tance of the class of repeated-root cyclic codes whose block- 
lengths are products of powers of a fixed finite set of primes. 

The purpose of this paper is to present a rather complete 
thZory of repeated-root cyclic codes. In Section II, we show 
that the derivative introduced by Hasse [6] more than 50 
years ago, rather than the formal derivative, is the natural 
tool for studying repeated-root cyclic codes. In particular, it 
is shown with the aid of the Hasse-derivative how one can 
construct a parity-check matrix for a repeated-root cyclic 
code from its root-set. Section III contains the main result of 
this paper, showing that the minimum distance of a re- 
peated-root cyclic code is uniquely determined by the mini- 
mum distances of a corresponding set of simple-root cyclic 
codes. This result effectively reduces the theory of repeated- 
root cyclic codes to the theory of “conventional” simple-root 
cyclic codes. A list of some specific repeated-root cyclic 
codes, which were found with the aid of this result, is given. 
Section IV shows that to a repeated-root cyclic code C of 
length II = p%, where p is the characteristic of GF(q) a@ 
gcd(p, Z) = 1, there corresponds a simple-root cyclic code C 
with rate and relative minimum distance at least as large as 
the corresponding values of C; however, the length of c is 
only ?i, i.e., shorter by a factor equal to p’. The relative 
minimum distance dmin /n of q-ary repeated-root cyclic 
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codes C of rate r 2 R is proven to tend to zero when the 
largest multiplicity of a root of the generator g(x) tends to 
infinity. This result is used to show that the existence of an 
asymptotically-good sequence of cyclic codes would imply the 
existence of an asymptotically-good sequence of simple-root 
cyclic codes. This effectively reduces the question of whether 
asymptotically-good cyclic codes exist to the question of 
whether asymptotically-good simple-root cyclic codes exist. 
Section V contains some summarizing remarks. 

II. H&SE DERIVATIVES APPLIED TO 
REPEATED-ROOT CYCLIC CODES 

Let a(x) = &zixi be a polynomial (or a formal power 
series) with coefficients in a field F. Then the jth formal 
derivative of a(x) is the polynomial (or formal power series) 

=j!. c “. a,x’-j. 
(‘1 i ’ 

(1) 

The polynomial (or formal power series) forj=O,l;..,e-1 

,[jl(x) = C t .aixi-j 
0 i ’ 

(2) 

is called, in honor of its originator [6], the jth Hasse deriva- 
tive of a(x) (and is sometimes also called the jth hyper- 
derivative of u(x)). The fact that 

are orthogonal to every codeword of c or, equivalently, that 
these vectors are in the dual code of c. Since 
[a,-,,Q,-2,’ . ., ua] is a codeword of I? if and only if (4) 
holds for every element cy of the root-set of g(x) and every j 
s_atisfying 0 < j I e - 1, H is indeed a parity-check matrix of 
C. Deriving a parity-check matrix H for C from the parity- 
check matrix i? of c is a standard technique, see 12, p. 2141. 

P)(x) = m!Yz[ml(x) (3) 
explains why the Hasse derivative is much more useful than 
the formal derivative in fields with a prime characteristic p 
because then m! = 0 and hence also u@)(x) = 0 for all 
m  2 p. Note that it is always true that u(‘)(x) = al’](x). 

0 

III. MINIMUM DISTANCE OFREPEATED-ROOT 
CYCLIC CODES 

Let F[x] denote the set of polynomials in the indetermi- 
nate x with coefficients in a field F. A key property of Hasse 
derivatives is given in the following test, a proof of which 
may be found in 17, p. 3051. 

Let C be a q-ary repeated-root cyclic code of length 
IZ = p%, where p is the characteristic of GF(q) and 

gcd(p,E) =l. 

Consider the factorization 
Repeated Factor Test: If m(x) is irreducible in F[xl with 

m(‘)(x) # 0 and if e is any positive integer, then [m(x)] 
divides u(x) if and only if m(x) divides u(x) and its first 
e - 1 Hasse derivatives. 

If F  is either a finite field (as will always be the case 
hereafter) or a field of characteristic 0, then every m(x) that 
is irreducible in F[x] automatically has m(‘)(x) # 0. How- 
ever, if F  is an infinite field with prime characteristic p, it is 
possible that m(x) is irreducible in F[x] but that m(‘)(x) = 0. 
In this case, the condition m(‘)(x) z 0 in the test is essential. 

With the aid of the Hasse derivative, it is a simple matter 
to construct a parity-check matrix for a repeated-root cyclic 
code when given the root-set of its generator polynomial 
g(x). We remark that the attempt to carry out such a 
construction for q-ary codes with the use of the formal 
derivative, as given for instance in [2, p. 2161, fails when 
some root of g(x) has multiplicity p or greater, where p is 
the characteristic of GF(q). 

Purity-Check Matrix Construction: Let g_(x) generate a 
q-ary (n, k) cyclic code C. Then the matrix H having as rows 
the n-tuples 
where (Y is in t 

~(~J’)~~-l,(“T’)~“-2,...,(~)a,(:)], 
e root-set of g(x) with multiplicity e and 

0 2 j < e, is a parity-check matrix for the qS-ary (n, k) cyclic 

of the generator polynomial g(x) of C into distinct manic 
irreducible polynomials mi(x> of multiplicity ei. The multi- 
plicity 6 of p in the blocklength n is then equal to the 
maximum of the terms [log, eil for i = 1; * *, 1. The mini- 
mum distance dmin of C will be investigated using the 
following class of simple-root cyclic cod_es c, of length ?i, 
where 0 5 t I p” - 1. The generator of C,, g,(x), is defined 
as the product of those irreducible factors m,(x) of g(x) 
that occur with multiplicity ei > t in g(x). If th& product 
turns out to be x” - 1, then the correspond&g C, contains 
only the all-zero codeword and we,set d,i,(Ct) = m. If all ei 
satisfy ei < t, then, by way of convention, g,(x) = 1 and 
d,,(Z;,) = 1. We shall also need the fact [2], [3] that the 
Hamming weight (i.e., the number of nonzero coefficients) of 
the polynomial (x - 1)’ is given by 

where 
Q((X - 1)‘) = pt, 

Pt=n(fi+1>7 
i 

(7) 

(8) 

code c generated by g(x) over the splitting field E = GF(qS) 
of g(x). A parity-check matrix H for C can be derived from 
F essentially by replacing the entries of fi by their q-ary 
column vector representations. 

Proof: The qS-ary polynomial u(x) =-u,,-i~~-~ + 
une2x”-2 + * * * + a, is a code polynomial of C if and only if 
the fact that LY is an element of multiplicity e in the root-set 
of g(x) implies 

&I( a) = 0, forj=O,l;+*,e-1. (4) 
The left side of (4) can be written in matrix form as 

[~,-,,4-2,~ * *4,1 

where the superscript T denotes transpose. Thus (4) is 
equivalent to the statement that the n-tuples 
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and where the ti’s are the coefficients of the radix-p expan- 
sion of t. 

Lemma 1: The minimum distance d,,(C) of the re- 
peated-root cyclic code C defined above satisfies 

4,,,(C) 5 f’t4,&t), forall tE{O,l;..,p’--I}. 

(9) 
Proof: In the sequel, we will write a(x) b(x) to 

denote the remainder of a(x) upon di?ding by b(x). Let 
E,(x) be a nonzero code polynomial of C,, then the polyno- 
mial 

(10) 

x” - 1 =(x” - l)p6-and t <p”, it follows from (10) that all 
those irreducible,factors of xA - 1 that occur in g(x) with a 
multiplicity not exceeding t are contained in C,(x) with 
multiplicity at least t. Moreover, those irreducible factors of 
x” - 1 that occur in g(x) with a multiplicity greater than t 
are also factors of E,(x) and hence are contained in Z,(x) * . 

is a nonzero code nolvnomial in C as we now show. Because 

where 
jE(l;**,S) and rE{l;**,p-1). (13c) 

We shall now prove that the minimum distance of the 
repeated-root cyclic code C is equal to the smallest of the 
expressions Pt. d,,(C,) on the right of (9) by proving that 
there exists a minimum weight nonzero code polynomial in C 
of the form (10) for some i.~ T. 

Lemma 2: Let C be a q-ary repeated-root cyclic code. of 
blocklength n = p”E with p the characteristic of GF(q), 
6 2 1 and gcd(p,E) = 1. Let c(x) be an arbitrary nonzero 
code polynomial in C and write c(x) as 

c(x) =(x”-l)*u(x), 

TIi 2 t}, the polynomial 

(14) 
where xii - 1 is not a divisor of U(X). Then, if t = minii E 

E,(x) = ((x” -l)‘.E(x)p6)mod 
where 

E(x)=v(x)modx”-1 

(x”-11, (15) 

> (16) 
with a multiplicity of at least p’.’ Therefore, Z,(x) is divisi- 
ble by g(x) and hence is a code polynomial of C. Moreover, 
not every root of xE - 1 can be a root of Z,(x) since this 
latter polynomial has degree less than E. Thus, there must be 
a root of xii - 1 whose multiplicity in (xii - l)fEi(x)pP is 
exactly t and hence this latter polynomial cannot be divisible 
by x” - 1 = (x” - 1)P”. Thus, C,(x) is indeed a nonzero code 
polynomial of C. It follows that g(x) divides C,(x). The 
Hamming weight of Z,(x) satisfies 

WHGlW =wH(w -1)‘E,(x)p8mod(x”-1)) 

I W*((x~-l)tL’I(X)P*) 

we note first that 

=4yY(~tW), (11) 
as follows from the fact that the operation modulo x” - 1 
cannot increase Hamming weight and from (7).2 Now choos- 
ing i?,(x) so that w&U,(x)) = dtii,(ctj, we see that (9) fol- 
lows from (10, which proves the lemma. 0 

If t < t’, then-g,,(x) divides gl(x>, i.e., cr c Et, and hence 
d,,(ct)2 d,,(C,,). If in addition PI r P,,, then the upper 
bound (9) with t cannot be better than that with t’. The only 
interesting values of t in (9), therefore, are those values 
t < ps for which 

pt -c Pf, forall t’E{t+l, t+2;..,p*-1). (12) 
According to [3, Theorem 6.11, it follows that, for each 
ui(X) + O7 

The set T of values of t < p* satisfying (12) consists of t = O- 
yielding P,, = 1 and the values 

t=(p-l)ps-l+ . . . +(p-l)pS-(j-l)+ypW (13~) 

yielding 

Pt =p’-‘a(r +l), (13b) 

‘Because of the reduction module x” - 1 in UO), the multiplicity is 
actually equal to p’. 

*Since I < p”, degii,(x) < ii, and since gcd(A,p*)= 1, the second 
inequality in (11) is actually an equality. 

is also a nonzero code polynomial of C and satisfies 

WH(W)) 5 WHMX)). (17) 
Proof: Because g(x) divides c(x), the polynomial U(X) 

in (14) contains all factors mj(x) of g(x) which occur in 
g(x) with a multiplicity ej greater than t and hence is 
divisible by g,(x). Then, since by hypothesis xX - ldoes not 
divide U(X), E(x) is a nonzero code polynomial of C, and of 
cr 2 ct. Therefore, by the same argument as used in the 
proof of Lemma 1, Zr(x) is a nonzero code polynomial of C. 
We now prove (17). Writing v(x) in the form 

R-l 

u(x) = c XiUi(XR), (18) 
i=O 

i 

ii-l 
=w H (xn-l)‘* c XiUi(XR) 

i=O I 

i 

ii-1 
=WH i~oXi’((X”-l)‘Ui(X”)) 

n-1 
= i~owH((n”-l)tui(xE~) 

i-Z-1 
= i~o~H((x-l)tui(x)). (19) 

wH((x-l)‘q(x))z min (wH((x-1)‘)) 
p8>irt 

= min Pi=Pi, 
p”>izt 

(20) 

where we have used (7) and the fact that the multiplicity of 
Xii - 1 in ui(xR) is less than ps - t. Therefore, if N, is the 
number of nonzero uJx)‘s in (18), then (19) and (20) yield 

wH(c(x)) 2 N,.‘pj. (21) 
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With the same reasoning as in (ll), we can upper bound the 
Hamming weight of Z,(x) by 

wff(cj(x)) ~wH((x-l)i)‘wH(~(x))=Pj’wH(~(x)). 
(22) 

TABLE I 
SOME BINARY REPEATED-ROOT CYCLIC CODES WITH A  MAXIMUM 

NUMBER OF CODEWORDS AMONG +LL BINARY BLOCKCODES 
WITH THE SAME LENGTH AND MINIMUM DISTANCE 

Since f(x”)mod(x” - 1) = f(l) for any polynomial f(x), we 
have 

ui(x”)mod(x”-1) =ui(l). 

Therefore, using (18), we have 

(23) 

U(x) = u(x)mod(x”-1) = ( ~~~xi~i(xE))mod(x-“l) c 

ii-1 8-l 

= c xi(ui(x”)mod(x”-I)) = c xiui(l) (24) 
i=O i=O 

and thus 
wH( U( x)) = Nn (25) 

where NE is the number of i’s for which vi(l) # 0. Inequality 
(22) can now be written as 

WH(Ci(X)) I PieN,. (26) 

n &in n-k’ 
6 4 ‘4 

12 8 10 
14 4 5 
14 8 11 
18 12 16 
24 16 22 
28 4 6 
28 16 25 
30 4 6 
30 16 26 

Roots 

o(2), l(l) 
o(4), l(3) 
O(2), l(l) 
O(2), l(2), 30) 
O(2), l(2), 30) 
O(8), l(7) 
o(3), l(l) 

30 20 28 o(2), l(2), 3(2), S(l), 7(2) 
36 24 34 o(4). l(4). 3(3) 
42 28 40 $I$ ;;f;; 3(2), 5(2), 7(l), 9(2) 
60 4 7 
62 4 7 o(2): l(1) 

The codes are specified by the root of the generator polynomial g(x) 
in the manner that 3(2) indicates that a3 has multiplicity 2 in g(x) 
where LY is a fixed element of order A in the appropriate extension of 
GF(2) and A is the largest odd factor of n. Only one root in each 
conjugate class is specified. 

Now, N, 2 N,, since ui(l># 0 q ui(x># 0. From (21) and IV. ASYMPTOTIC BADNESS OF REPEATED-ROOT 
(261, we thus obtain CYCLIC CODES 

wH(c(x))>N;Pi>ND.Pi>wH(Ci(x)), (27) 
which implies (17). 0 

Theorem 1: Let C be a q-ary repeated-root cyclic code of 
blocklength n = p% with p the characteristic of GF(q), 
6 2 1 and gcd(p, E) = 1. Then 

The following theorem will be the key to our demonstra- 
tion of the “asymptotic badness’ of repeated-root cyclic 
codes. 

Theorem 2: Let C be a q-ary repeated-root cyclic code of 
blocklength n = p% with p the characteristic of GF(q), 
6 2 1 and g$d(p,E)= 1. Then there exists a simple-root 
cyclic code C of length E with both rate and relative mini- 
mum distance at least as large as the corresponding values 
for C. 

d,,(C) = Pi. d,in( ci) (28) 

for some t E T, where T is the set defined following (12). 

Proof: If in Lemma 2 we choose c(x) to be a minimum 
weight nonzero code polynomial of C, then Ci of (15) will 
also have minimum Hamming weight. Inequality (27) then 
reads as 

wH(c(x))=Pi.Nu=Pi.ND=wH(Ct(x)). (29) 
With the aid of (29) and (251, we can express the minimum 
distance of C as 

d,,&C) = wH(U(x)).Pi. (30) 
Now, E(x) must be a minimum weight nonzero code polyno- 
mial of ci, for else there would exist a nonzero code polyno- 
mial of C of the form (10) with t = i and Hamming weight 
bounded by (10, which would_be less than the right side of 
(30). Thus, w,,(E(x)) = d,,(Ci) and inserting this in (30) 
gives (28). 

With the aid of Theorem 1, several repeated-root binary 
cyclic codes were found that contain the maximum number 
of codewords among all known binary codes of the same 
length and minimum distance as was established by compari- 
son of their parameters to those in [9, Appendix A]. These 
codes are listed in Table I. The codes with distance d = 4 in 
this table for n = 6, 14, 30, and 62 are instances of the 
infinite optimum family of repeated-root cyclic codes, found 
by van Lint [lo], whose codewords are the even weight 
codewords in a shortened Hamming code. 

Troof: Let g(x) be the generator polynomial of C and 
let C be the length Ti simple-root cyclic code generated by 
the product d(x) of those irreducible factors of g(x) that 
occur in g(x) with multiplicity p’. If g(x) should possess no 
such factors, then we take g(x) = 1. Since p”*deg 8 I deg g, 
the rate i of e is at least as large as the rate r of C. Observe 
that c is the code cpp6-1 in the notation of Section III. 
Lemma 1 now gives us the following upper bound on d,,(C) 
in terms of d,,(C): 

d,,(C) < Pp6-1*d,i,(e)* (31) 

Since Pps-, = p”, dividing both sides of inequality (31) by 
n = p*Ti gives 

i.e., the relative minimum distance of the simple-root cyclic 
code c^ is no smaller than the relative minimum distance of 
the repeated-root cyclic code C, which proves the theorem. 

0 
To avoid misinterpretation of Theorem 2, one should be 

careful to note that the blocklength of c^ is only E while the 
blocklength of C is p”E, i.e., larger by a factor of p’. Hence 
the conclusion that repeated-root cyclic codes are not better 
than simple-root cyclic codes ,cannot be drawn from Theo- 
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rem 2. However, in the limit as 6 in n = p% tends to 
infinity, we can use Lemma 1 to prove that repeated-root 
cyclic codes of rate r 2 R are asymptotically bad. 

Lemma 3: Let p be the characteristic of GF(q). Then, 
for any R (0 < R < l), there exists a constant y(R) such that, 
for any q-ary repeated-root cyclic code C of rate r > R > 0 
and blocklength n = p”E, 

d,, I pY(‘%i. (33) 
Proo$ Let g(x) be the generator of a q-ary repeated- 

root cyclic code C of rate r > R and blocklength n = p’%. 
Then deg g < (1 - R)n; therefore at least one irreducible 
factor of xii - 1 must occur in g(x) with multiplicity less 
than (l- R)ps. Now, if t 1 [(l- R)p’], then jr(x), the 
product of those irreducible factors of g(x) that occur in 
g(x) with multiplicity greater than f, is not x” - 1 and thus 
generates a nonzero simple-root cyclic code c, such that 
Lemma 1 applies and yields 

d,,(C) I Pr.d,i,(~t) I P;n. (34) 
Inequality (33) now follows from (34) upon defining 

(35) 

The expression on the right of (35) can be seen to be finite as 
follows. If 

l-R= 2 ~~.p-~ (36) 
i=l 

is the expansion of 1- R into powers of p, then 

[(l- R)pS] = C si.pS-i. (37) 
i=l 

Therefore, as follows from the definition (8) of Pt, if si = s2 
= . . . =sjO=p-1 and sjO+i = u < p - 1, where j, < 6, then 

max 
( 

min 
621 p’>tr\(l-R)pSJ 

P, 
1 

(pju.(u+l). if si=O, all j> j,+l 

if there is an sj # 0 with j > j, + 1. 
(3:) 

From equality (33) of Lemma 3, we see directly that the 
relative minimum distance dmti(C)/n of q-ary repeated-root 
cyclic codes of rate r > R is arbitrarily small when 6 in 
it = p’n is sufficiently large, i.e., we have the following 
theorem. 

Theorem 3: Any sequence of q-ary repeated-root cyclic 
codes Ci of rates ri 2 r > 0 and blocklengths ni = pslFzi such 
that 

satisfies 

lim inf Si = 00, (39) i+m 

l im dmin(Ci) o 
= . 

i-+m fli 
(40) 

From Theorem 3 one can conclude directly only that 
repeated-root cyclic codes whose multiplicities grow without 
bound must be asymptotically bad. Combining this result 
with Theorem 2, however, shows that repeated-root cyclic 
codes cannot be asymptotically better than simple-root cyclic 
codes. 

Theorem 4: If there exists a sequence of q-ary cyclic codes 
Ci of rates ri 2 r > 0 and blocklengths ni such that 

lim ni =w (41) i+m 
and 

l im inf dmin(Ci) =A>O, 
i-m Izi 

then th?re also exists a sequence of q-ary simple-root cyclic 
codes Ci of rates Fi 2 r > 0 and blocklengths Ai such that 

limfii=co 
i-+00 (43) 

and 

l im inf dmh(ei> , A, o 
i-em fii - . (44) 

Proof: One simply needs t: replace a repeated-root 
code Ci in the original sequence by its simple-root counter- 
part Ci as constructed in the proof of Theorem 2. Since the 
relative minimum distance is not thereby decreased, (44) 
must hold and it remains only to show that (43) holds. But 
the failure of (43) to hold would imply the existence of an ri 
such that IZ~ I p’lri for infinitely many indices i. Thus, (41) 
would imply that the corresponding subsequence of the 
original sequence of cyclic codes fulfills the hypothesis of 
Theorem 3, and thus that (40) holds for this subsequence in 
contradiction to (42). Hence (43) must hold, which proves the 
theorem. 0 

V. SUMMARY AND REMARKS 

In this paper we have given a parity-check matrix for 
repeated-root cyclic codes based on the Hasse derivative. We 
pointed out that the use of the conventional formal deriva- 
tive fails whenever the generator polynomial contains roots 
with multiplicities at least as large as the characteristic p of 
the ground field GF(q). We then derived an expression for 
the minimum distance d,, of q-at-y repeated-root cyclic 
codes in terms of the minimum distance of related simple- 
root, cyclic codes. This result was used to find several binary 
repeated-root cyclic codes that have a maximal number of 
codewords among all binary block codes of the same length 
and minimum distance. We also showed that if p is the 
characteristic of GF(q), then to a q-ary repeated-root cyclic 
code C of length n = p”E with gcd(p,E)= 1 and rate r, 
relative minimum distance d,, /n = d, there corresponds a 
simple-root cyclic code c of length E whose rate and relative 
minimum distance are at least as large as r and d, respec- 
tively. We also showed that, if p is the characteristic of 
GF(q), then any sequence of q-ary repeated-root cyclic 
codes of lengths ni = pslEi, rates ri 2 r > 0 and in which the 
maximum multiplicity of a root of the generator polynomial 
g,(x) of Ci increases to infinity with i, has an asymptotically 
vanishing relative minimum distance. Finally, we showed 
that, if an asymptotically-good sequence of cyclic codes ex- 
ists, then there also exists a sequence of simple-root cyclic 
codes whose “asymptotic goodness” is at least as good. 

Van Lint [lo] has recently given a more combinatorial 
approach to repeated-root cyclic codes that in many ways 
complements the algebraic approach of this paper. The 
reader is referred to his paper both for the additional insight 
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that it offers and also for many interesting constructions of weights and code constructions,” IEEE Trans. Inform. Theory, 
such codes that it contains. vol. IT-19, no. 1, pp. 101-110, Jan. 1973. 

[4] S. D. Berman, “On the theory of group codes,” Cybern., vol. 3, 
no. 1, pp. 25-31, 1967. 
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