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Therefore, the summed power over all the amplifiers on 
the feedback stage is 

l=k+l Z=k+l \ j=k+l 

+ 

From (A-3) and (A-6), the 
following : 

Pall = Pin + Pf 

8 KiyliTT) 1 El 1’. (A-6) 

total power is given by the 

= 5 2 KiKjyij + ng n$J RmlRmjylj 1 YT 1’ 
i=l j=l Z=k+l j=k+l 

n-l k 

+ 2 C C RntKiyil Re ( YT) 1 1 El 1’. (A-7) 
Z=k+l i=l 
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A Universal Low-Q Active-Filter Building Block Suitable 

For Hybrid-Integrated Circuit Implementation 

GEORGE S. MOSCHYTZ 

Abstract-A highly versatile second-order active-filter building 
block for low-Q applications (Q125) is described. The versatility is 
obtained by combining features inherent in the Sallen-Key circuit 
topology and those pertaining to hybrid-integrated circuits (HIC’s). 
A high degree of circuit stability is obtained by designing individual 
network functions to depend primarily on the characteristics of stable 
thin-film resistors and capacitors. 

Frequency- and Q-sensitivity are examined in detail. Methods of 
minimizing Q-variation with respect to the active and passive ele- 
ments are discussed. Lower bounds on the Q-variation obtainable 
with the hybrid-integrated filter building blocks are given. 

All possible second-order network functions, including the all- 
pass function, can be obtained with the building block. The resulting 
universality and standardization permit the complete design of active’ 
filters consisting of cascaded building blocks by computer. 

I. INTRODUCTION 

LARGE NUMBER of filtering functions used in 
communications systems can be realized with 
relatively low pole-Q’s. Typically, these may 
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range from less than 1 to 25. Pole-Q’s of this magnitude 
can be built in active XC form with good stability using 
only one operational amplifier. Since the cost of supply- 
ing power to active filters is appreciable and the heat 
generated by the dissipated power not insignificant, 
there is much to be gained by using single-amplifier ac- 
tive filters wherever the pole-Q’s are low enough to per- 
mit this. 

A single-amplifier filtering method for low-Q filter 
. . applications is described here. Whereas the method is 

based on the Sallen-Key circuit scheme [l 1, it expands 
on this scheme in two ways. 

Firstly, it considers Sallen-Key circuits from the 
point of view of hybrid-integrated circuit (HIC) imple- 
mentation. Seen from this vantage point, the apparent 
disadvantage of this positive feedback filtering scheme, 
namely its high Q-sensitivity to gain and component 
variations, can be eliminated. Indeed, from this point of 
view it seems superior to many negative feedback single- 
amplifier filtering methods, all of which, like Sallen- 
Key’s, are restricted to low-Q applications if reasonable 
Q-stability is to be guaranteed. One of the reasons for 
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this superiority is the low gain required by the Sallen- 
Key circuits, which are of the controlled-voltage source 
type. When used in the unity or close-to-unity gain 
mode, such circuits can operate satisfactorily up to 
higher frequencies than many single-amplifier schemes 
requiring high or “infinite” gain. Another feature that 
makes the Sallen-Key method particularly suitable for 
HIC implementation is the fact that it requires a much 
smaller spread of component values than most other 
single-amplifier methods. This is important because 
thin-film resistors and capacitors can be expected to 
track closely only if they do not differ greatly in value 
(i.e., line width and surface area); it is precisely the ex- 
cellent tracking capability of HIC resistors and ca- 
pacitors that makes these components so attractive to 
the circuit designer and provides highly stable circuits. 

Secondly, in accordance with the demands of inte- 
grated circuit (IC) processing, a building-block approach 
to filter design has been developed using the Sallen-Key 
circuit topology as a starting point. The resulting single- 
amplifier low-Q filter building block demonstrates ex- 
traordinary versatility, since it is capable of providing 
every possible second-order minimum and nonminimum 
phase network function, using the same basic circuit 
topology for each. The building block is directly com- 
patible with HIC technology and, as numerous practi- 
cal examples have demonstrated, the electrical per- 
formance corresponds very accurately to theoretical 
predictions. 

ElNO 
! PASSIVE RC 

t Is) 
O EOUT 

-EOUT 

I 

lb1 

Fig. 1. Sallen-Key circuit. (a) Basic topology. 
(b) Circuit for general-purpose SABB. 

One of the advantages of these low-Q building blocks 
is that any section can be readily extended to high-Q 
operation by simply adding a frequency-emphasizing 
network (FEN) in cascade with it [2]. The added power 
dissipation of the two-amplifier FEN building block is 
thereby used only when warranted to augment Q. The 
result is a very flexible and economical filter building- 
block system that has been used with excellent results 
in various exploratory data transmission terminals. 

independent of one another. Features like this that ac- 
tually make the twin-T especially suitable for tuning 
when in HIC form are worth mentioning here, since they 
conflictsomewhat with the experiences recalled by any- 
one who has had the frustrating assignment of tuning, 
and maintaining, a null with a discrete twin-T network. 

Another advantage of these building blocks results 
from the fact that transmission zeros for elliptic-filter 
functions are generated by passive RC networks, namely 
by a twin-T, rather than by a differential-input opera- 
tional amplifier. Thus the transmission zeros depend on 
passive RC components only and the resulting filter sec- 
tions belong to the class of networks whose transmission 
sensitivity to the most variable element-namely gain 
-depends only on the pole locations [3]. The important 
consequence is that pole-zero pairing of n&-order net- 
work functions into second-order functions can be car- 
ried out exclusively with a view to optimizing signal 
level and minimizing distortion [41, without regard for 
sensitivity minimization. This freedom is not shared by 
networks in which zeros are generated by the common- 
mode rejection of differential-input operational ampli- 
fiers. 

By realizing the transmission zeros of the filter build- 
ing block with a twin-T (independent of amplifier char- 
acteristics), the zeros and poles can be tuned virtually 

This last point brings up some observations which, 
although seemingly obvious, are often overlooked when- 
ever various active filter schemes are compared with one 
another. Whereas the twin-T network has proven to be 
an excellent building block in HIC oscillator [s], [6] 
and filter design [7], it cannot be recommended with 
the same enthusiasm for discrete linear networks. The 
main reason for this is that tunable discrete components, 
with the same stability as those of HIC’s, are either un- 
available or too costly. This demonstrates once again 
how closely related a given approach to circuit design is, 
and should be, to the technology used for its optimum 
implementation. Proven circuit designs of an estab- 
lished technology should not be forced onto new emerg- 
ing technologies, but should be appropriately modified 
and adapted to them to fully benefit from the charac- 
teristics they afford. Thus, in comparing active filter 
methods, it is not possible.to derive much valid meaning 
from a comparison of methods per se, without consider- 
ing these methods within the context of the technologi- 
cal implementation for which they are intended. There is 
no question that the filter building blocks described 
here will perform satisfactorily only when realized in the 
HIC technology for which they were intended, and that 
any one of numerous other methods may have been 
selected for discrete component implementation. In the 
light of the observations above, however, this is exactly 
as it should be. 
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TABLE I 
SECOND-ORDER S&K NETWORKS 

HIGH PASS BAND PASS TYPE A 

y = /r,+(c2+ca+c2c4J 

K* = r&l+c*) + c 2 + C4 

“3 = c2 

Special ca*e: 

r4 = 5, c2 = 1, c4 = -g 

K=i$ 

up =&k. 

x1 = /m 

r*=*+r+c 

x = *+r‘tc =* 2+c 
Jr(l+c) ; Kmin 1 r=*+c Jl+c 

(us 
K 

2 +"s 
4P 

s + u; 

Kc- Special case: 

$mq r3 = 2, r4 = g, 04 = : 

up=dy& “=& 

f1 = /c4r4(l+r3J 

"* = (1+r3)(1+c4)+r4 ;P 
=@& 

K3 = r3 
1=J3E 

x2=6+r+3c 

K3 = 4 

I( = 6+r+3c i Kmin I _ 
/3rc r-6+3c = *e 

Fig. 2. Fig. 2. RC feedback network t(s). RC feedback network t(s). 

II. THE SALLEN-KEY CIRCUIT TOPOLOGY 

The basic Sallen-Key circuit configuration is shown 
in Fig. l(a). The four-terminal network t(s) is passive 
RC. An operational amplifier in the noninverting mode 
is used as a voltage amplifier with closed-loop gain p; 
t(s) is characterized by the following voltage transfer 
parameters: 

[g], [o]. This f ea ure t is necessary for HIC design 
where the common topology of Fig. l(a) permits batch 
processing and handling, irrespective of the actual func- 
tion required. Thus a single general-purpose filter build- 
ing block containing all the components and conducting 
paths shown in Fig. l(b) can. be fabricated in large 
quantities. The component and conductor disconnec- 
tions necessary to generate a particular network func- 
tion can be subsequently carried out by some process 
that is compatible with HIC technology (e.g., scribing, 
etching, cutting, etc.). 

A summary of all possible amplitude functions de- 
rived from the general circuit shown in Fig. 1 (b), simply 
by deleting the appropriate components, is shown in 
Tables I-III. As in Fig. 1 (b), all resistors R; and ca- 
pacitors Ci are referred to a given resistor R and ca- 
pacitor C by a corresponding factor ri and ci, respec- 
tively. The functions listed are special cases of the most 

El f331 
t31 = - (1) 

general second-order function : 

&Ez=O = d31 
‘4 

E3 
s2 + - s + wz2 

fi32 
t32=- =-. . 

Ez E,=O d 
(2) T(s) = K ‘= (4) 

32 

s2 + “p s + wp2 

Since&r =d32 =d, the overall transfer function is given by QP 

E P&31 
T(s) = out = ~ = 

n3l.P 

Ein 1 - pt32 d - Pn32 ' 
(3) 

Adding a path between A-A’ and B-B’ to the loaded 
twin-T shown in Fig. 2 and using this as the four- 
terminal RC network t(s), one obtains the circuit shown 
in Fig. l(b). This configuration provides every possible 
second-order amplitude response merely by disconnect- 
ing appropriate components or interconnection paths 

For the topology in Fig. 1, the undamped natural fre- 
quencies w, and wP, as well as the zero-Q qZ, are functions 
of R’s and C’s only. Only the pole-Q pP depends on 0, 
namely, by a function of the form 

Qp = d(Kz - K3P) (5) 

where the K< are functions of R’s and C’s. Design equa- 
tions for the coefficients corresponding to each particu- 
lar network function are given in Tables I-III. Q-sensi- 
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TABLE II 
SECOND-ORDER S&K NETWORKS 

COMPLM ZEROS BAND PASS TYPE B RESONATOR 

K 
s+(oz 

s2+=,+ 2 
qP % 

KS $=+tc Special case: 

m 8 K 
Es2+~*+ 2 

% % 

I 
Special 0888: 

x1 = /r4c2(1+r3j a,="+$ 

K2 = c2(l+r3+Pb)+rh x1 -6T 

r3 = r3c2 
K2 = c(2$) + f 

x3 = c 

~=c(h+r)+r;. , (1+0)3/2 _ 
2/i? min 

4 2 /F 
‘=%z 

TABLE III 
SECOND-ORDER S&K NETWORKS-FREQUENCY REJECTION 

NETWORKS (I.E., IMAGINARYZEROS) 
-- 

f Standard FRN, Parallel load Standard FRN. Series load I Modified FRN. Parallel Load 

K 
a2 + rn; 

a2+ss+ 2 

9P =P 

F 
" 

i. 

Special case: 
r=c 
K-l% 
Lup=y& 
x1=l+r 

x2=4+2r 

x3 = 2 

E" 
K=iTF Special case: K=,S,r=c 

u)z 
1 r=c 

=RiT 
K=& 

("z = f 

I = J-E 
Yz l+C mp = (oz = & 

"p = 3 

x1 = /~l+rJ(l+cj 
y=l 

Xl =1+X. %=4+r 
x2=4+r+c K* = 4 + 2x7 

x =Q 
5=4 

3 x3 = 4 

sqp lr+2r 
B ‘:=l+r 

I 

4+2r 
x=l+r x=4+7 

5. "2 qp=~:i3=&L.1;S qP = 2 
3 3 3 

qP 0 rqp-1; x-2 12;p;fp=.& "($ -:, 

tivities to variations in the voltage gain /3 are also given. setting /3 equal to zero. Designating the pole-Q of t(s) 
These will be discussed in more detail in Section III. by qR, we obtain 

It is of interest to note here that the pole-Q of the 
passive RC network t(s), used in the basic circuit dia- 
grams shown in Fig. l(a) and (b), results from (5) by 

qR = qp I@=(, = “’ < 0.5. (6) 
KZ 
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Fig. 3. All-pass network using SABB. (a) Basic topology. 

(b) Parallel-loaded twin-T. (c) Series-loaded twin-T. 

The inequality in (6) sets a constraint on the ~1 and ~~ 

values given in Tables I-III. 
Fortunately, a very simple modification of the basic 

configuration shown in Fig. l(a) provides a second- 
order all-pass network whose poles are realized in ex- 
actly the same way as those of the amplitude sections 
described in the preceding section. The all-pass con- 
figuration is shown in Fig. 3(a). Note that the only dif- 
ference with respect to the configuration in Fig. l(a) is 
that the ground connection of the P-feedback network 
has been connected to the input. Using a null network 
(e.g., twin-T or bridged-T) for t(s), an all-pass network 
can be obtained [lo]. Using an RC-loaded (series or 
parallel) twin-T, the circuits shown in Fig. 3(b) and (c) 
are obtained. Note that these configurations are con- 
tained in the general circuit of Fig. 1 (b), as are bridged- 
T’s, for use as t(s). The latter is less complex and may be 
tuned more easily in many cases. 

III. SENSITIVITY CONSIDERATIONS 
Much has been written on the pros and cons of Sallen- 

Key Q-stability [ll]-[13], and various alternatives 
claiming lower Q-sensitivity have been advanced. 

In discussing the sensitivity of active networks here, 
the following assumptions will be made. 

1) The main incentive for going to active filters is to 
utilize the economies of batch processing offered by IC 
technology. Therefore, IC implementation will be as- 
sumed exclusively. 

2) To cope with the problem of active network sensi- 
tivity, the demands on passive component stability are 
high. Passive silicon integrated circuit (SIC) com- 
ponents cannot meet these demands. Thin-film com- 
ponents meet them well. Hybrid IC implementation will 
therefore be assumed here, consisting of tantalum thin- 
film RC combinations [TIC’s] and active SIC’s. 

3) TIC resistors track very closely on a substrate 
(better than +5 ppm/OC) as do TIC capacitors 
(+ 10 ppm/OC). Temperature coefficients of resistance 
(TCR) and temperature coefficients of capacitance 
(TCC) can be matched closely. With the excellent aging 
stability of TIC resistors and capacitors, a worst-case 
frequency tolerance of 0.36-0.5 percent can be assumed 
over a S-lo-year life and over a 40-60°C ambient tem- 
perature range, respectively. 

Taking these assumptions into account, it can be 
shown [14] that the frequency and Q-variation of a 
hybrid-integrated network whose poles are determined 
by an equation of the form 

s2+~.s+u2=0 
Q 

are given by 

(9) 

Considering frequency stability first, we find by in- 
spection of Tables I-III that the pole frequency wp 
(designated w here for brevity) is independent of /3. 
Thus for Sallen-Key-type networks, (8) simplifies to 

!+($+!5). (10) 

The frequency stability is therefore primarily dependent 
on the st.ability and temperature coefficient matching 
capabilities of the passive components. This, in turn, 
depends directly on the state of the component art 
which, as mentioned above, is presently of the order of 
0.36-0.5 percent depending on ambient conditions and 
service life. This compares favorably with the frequency 
stability obtainable with standard discrete LC equiva- 
lents. 

Addressing ourselves to the question of Q-variations 
[IS] we have, from (o), 

_ = VBQ = &Q.% 
AQ 
Q P 

(11) 
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where VZF is defined as the variation of the function F 
resulting from changes in X. From (5) and (6) we have’ 

(12) 

where K =K~/KI = l/ps. From (6) it follows directly that 

K > 2. (13) 

No. Nb 
Fig. 4. Second-order ladder network; closely spaced pole 

pair achieved by impedance scaling. 

This inequality has also been derived in the literature 
[12]. Clearly, to minimize the sensitivity SPQ for any 
given network function T(s), K must be minimized by 
an appropriate choice of resistors and capacitors. For 
the second-order circuits in Tables I-III, K is a function 
of three variables or ratios ri and ci. A special case is 
given for some of the circuits in Tables I-III, where a 
value for one of the three component ratios has been 
assumed and K optimized with respect to one of the 
others. K is minimized with respect to the third by letting 
it either become very large or tend to zero. For the spe- 
cial cases shown in Tables I-III, r and c can readily be 
chosen such that K typically lies between 2 and 2.5, i.e., 
very close to the minimum value. Incidentally, sensi- 
tivity minimization is only one of the considerations 
that determines the choice of the component ratios. It 
may well be that for other considerations, such as mini- 
mum substrate area of. thin-film components or maxi- 
mum circuit versatility, it is worth accepting a certain 
deterioration in sensitivity. 

Minimizing SbQ by minimizing K becomes much sim- 
pler when we recognize that K is the inverse pole-Q, 
namely qR, of the passive RC network t(s) in Figs. l(a) 
and 3(a). Thus minimizing K reverts to the problem of 
maximizing PR. Since we are considering only second- 
order networks, PR is related to the distance between 
the two poles of t(s) on the negative-real axis. The 
maximum value of ¶R (i.e., 0.5) is attained when the two 
poles coincide,on a double pole. This condition can be 
approximated reasonably well by physically realizable 
networks; whereas a K = l/qR value of 2 cannot be at- 
tained, a value of 2.2 does not strain the physical realiz- 
ability of a network at all. 

It can be shown that in order to maximize ¶R, the two 
sections of the RC network providing its two poles 
should be isolated from each other as much as possible. 
Rather than use a buffer amplifier between them, it is 
much more economical to achieve a certain amount of 
isolation by impedance mismatching. This can be ob- 
tained by starting out with two identical pole sections 
and impedance scaling one of them with respect to the 
other. Consider, for example, the ladder network shown 
in Fig. 4 and assume that a network N, defines a pole pi. 
The two poles realized by N, in cascade with Nb will 
approach a double pole as p>>l. At the same time, of 
course, K will approach its minimum of 2. 

I The Q under consideration here is the pole-Q designated pP in (5) 
and in the design equations of Tables I-I II. 

To obtain VpQ we must now estimate the value of 
Ap//3, which is the relative change of the closed-loop 
gain p of the noninverting operational amplifiers shown 
in Figs. 1 and 3. This has been dealt with in detail in 
[16], where it is shown that for the case that highly 
stable resistors (e.g., thin film) are used for the feedback 
network of the amplifier, the closed-loop gain /3 is most 
critical to variations in open-loop gain A. We must 
therefore derive the following variation: 

In [14] it is shown that 

1 1 P sAB=---.-g-.=- 
1 + LG LG A 

(14) 

(15) 

where LG is the loop gain of the amplifier. Thus from 
(11) and (1.5), 

(16) 

where 
r = /3..!$Q (17) 

is called the gain-sensitivity product. It is a useful mea- 
sure for the Q-stability of hybrid-integrated active filter 
networks using operational amplifiers. 

Since the term AA/AZ in (16) depends on the opera- 
tional amplifier, the circuit designer has virtually no 
control over its value. This leaves the term r, which 
must be minimized in order to minimize AQ/Q. For the 
general Sallen-Key network, we can express r in terms 
of the desired pole-Q; with the terms in (S), (6), and (12) 
it follows that 

K2 (Q - qRj2 
r = ,8saQ = (@K) [Q - qR] = ; ~4- * (18) 

R 

The most direct way of minimizing I? is to minimize the 
(OK) product. For any given circuit, this can be done 
directly by computer. The circuit elements representing 
degrees of freedom are selected at random and the con- 
figuration with the minimum PK product found by a 
Monte Carlo routine. The resulting circuit will have 
minimum Q-variation with respect to changes in the 
active element (i.e., the amplifier p). It is interesting to 
note that the configuration for which the /3~ product is 
a minimum differs only negligibly from the configuration 
for which the Q-variation is minimum, with respect to 
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1, 
Fig. 5. Fig. 1 (a) redrawn as feedback network with RC 

bandpass filter in feedback path. 

Fig. 6. Frequency response of feedback network far.. 

Fig. 7. Feedback configuration at pole frequency up. 

the active and the thin-film passive components. Thus 
minimizing the PK product optimizes the HIC also if 
the small variations of the passive thin-film com- 
ponents are taken into account. 

To obtain a lower bound on r it is useful to look more 
closely at the ratio KZ/KS. For this purpose we return to 
the defining transfer function (3) and find that the pas- 
sive RC transfer function &(s) must have the form 

t;2 = K32. 
%J 

(19) 
s2 + “p s + co*2 

qR 

This is the transfer function of a passive RC second- 
order bandpass network. We can now redraw the gen- 
eral block diagram of Fig. l(a) in the equally general 
but more informative block diagram shown in Fig. 5. 
From (19) it follows that the peak value iS2, which occurs 
at wP (see Fig. 6), is given by 

i32 = t&&) = Kaz-qR. (20) 

Returning to the feedback loop in Ffg. 5 and considering 
it at the frequency wP we obtain the configuration 
shown in Fig. 7. For oscillation to occur (i.e., Q--+w) 
it follows by inspection that @ must take on the value 

&xc = (&2)-l = (&2qR)-1. (21) 

However, from (5) it follows that the /3 required for in- 
finite Q is given by 

@cm, = Q/O. (22) 

Combining (21) and (22), 

and 

For 

Kz/Ks = (132)-l = (+QR)-’ 

(18) becomes 

(23) 

1 (Q-‘&d2 r = /j&Q = - . 
1 (Q - ‘d2 . (24a) 

t32 QqR = E t&R2 

Q>>qR this simplifies to 

r L 
1 Q y-- =- 

0 

1 Q -. (24b) 
t32 qR K32 qR2 

The problem of minimizing the gain-sensitivity product 
I? is now reduced to that of maximizing i32 or PR and K32. 
Considering 232 first, it can be shown that the maximum 
transmission of a passive second-order RC network is 
approximately unity;2 therefore, 

0 < i32 = 1 t32(@) lmax < 1. 

Thus from (6) and (24), 

(25) 

= 2(Q - 1). (26) 
Q>>l 

A more accurate lower bound on r can be obtained by 
considering the individual coefficients K32 and qs. We 
know the limits of qs to be between 0 and 0.5. 

Furthermore, since ta2(s) is the transfer function of a 
3-terminal RC network, K32 is limited by 

0 < K32 < 2 + l/qR (27) 

in order that 0 <ta2(s) < 1 for 0 <s < ~0 [18]. With (24) 
we then have 

r = (Q - @d2 > (Q - @d2 = (Q - @I2 

K&?qR2 - 

( ) 
2 +’ QqR2 

@?d2qR + 1) ’ 
qR 

(28) 

This expression decreases with increasing PR. Thus 
for maximum PR, namely 0.5, (28) implies that r 
2 [Q-O.S]zQ-l or, for large Q, r >Q- 1. This conclusion 
is true for those cases in which t32(s) is a general RC 
network. However, for those cases in which t&s) is an 
$C ladder network, K33 and PR are not independent of 
each other, as the following simple argument shows. 
Consider the two frequency responses corresponding to 
two different second-order bandpass functions &A and 
t32B shown in Fig. 8. The corner frequencies wPl and wP, 
of our first case &A are far apart, corresponding to a low 

r The maximum of a general second-order RC network may 
actually exceed unity slightly [17], its upper bound being d/4/3. For 
a ladder network the upper bound is unity. 
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b 
W WPI = UP2 92 

Fig. 8. Frequency response of &.ijw) for two 4~ values: tazA 
corresponds to PR<O.S ; tazr, corresponds to @ = 0.5. 

value of qR; but permitting t32A to reach its maximum 
value, 2326 is equal to unity. By contrast, the corner fre- 
quencies of our second case t32B coincide (i.e., wPl =wP,), 
corresponding to the maximum value of 0.5 for PR and, 
at the same time, to an attenuation of 0.5 (i.e., -6 dB)3 
for .Z32~. Thus we note that PR and &2 as well as K32 can- 
not have maximum values simultaneously. Adding a 
prime to the maximum &2 and K32 values compatible 
with maximum qR, we have 

!32' = 232 (qR=0.3 5 0.5. 

Consequently, with (20), 

(29) 

K 32’max = K32 msx lq~=O.3 = 2’f3z’msx = 1. (30) 

From (24), the minimum gain-sensitivity product I? 
then results as 

rl K32-, = Q/qR2 + Q-’ - 2/qR = K"Q + Q-l - 2K (31) 

where K = l/g~. For Q>>l we have 

rl Ksz=l = K”Q - 2K (32) 

Fig. 9. Low-pass network with impedance-scaled feedback network. 

for minimum gain-sensitivity product. In doing so it is 
preferable to calculate the PK-product rather than I?, 
since the former is independent of Q. From (18) we have 

pK = -!I- r =A. 
Q - @ Q2>nR Q 

(35) 

Hence with (24), 

1 x -. (36) 

Assuming that Q>>qR, the rightmost expression in (36) 
readily permits us to calculate and minimize PK. For 
this purpose some typical forms of the feedback network 
t32 are shown in Tables IV and V together with the corre- 
sponding K32 and qR values. 

Take, for example, the type-B bandpass circuit 
shown in Fig. 9. From (36) we obtain 

(/G)BPR = 1 +g 
( > 

( 
1+:+;,2 R 

1 2 ) 
- 

a 
^J 

R2 Cl 
i;l- \ (37) 

2 
-- 

RI C2 

where, referring to Table V R1=R,Rt,/(Ra+Rt,). Im- 
pedance scaling the second, half of the ladder section 
with respect to the first by the factor p, we have RI = R, 
C1 = C, Rz =pR, CZ = C/p, and (37) becomes 

and with (6) the lower limit on I? results as (/3)KBPB = (1 +;)(2 +;y. (38) 

r = /3&Q 2 4(Q - 1). (33) 
A’spread of 10: 1 is quite reasonable with film resistors 

With (18), we have for the PK product (which is the ratio so that with Rb/Ra = 0.1 and p = 10 we obtain PK 14.85. 
fl/aR) Naturally, the wider the resistor spread given by RtJR, 

PK 2 4(Q - l>/(Q - qR) = 4(Q - O/Q. (34) 
and p, the closer to the lower bound given by (34) we 
can come. 

For Q>>l the lower bound on this product is 4. The With (36) we can also compare the inherent capabil- 

lower bounds in (33) and (34) provide useful references ities of two circuits providing the same function. Con- 

with respect to which the gain-sensitivity product of any sider, for example, the type-A and type-B bandpass 

practical circuit can be measured. circuits shown in Tables IV and V. For the type-A cir- 

With the expressions derived earlier, we have a simple cuit we obtain 

and accurate method with which to design our circuits 
1+$+2 

2 

s Assume that the bandpass network consists of a first-order low- 
and high-pass section, each with a pole at oPz The minimum attenua- 
tion of each section at wP is -3 dB; the mimmum attenuation of the 
two in cascade is therefore -6 dB. 

& . (39) 

J 
-- 
R2 Cl 
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= 
c 
I 

E 
u 
I 
T 

- 

t3 

- 

K3 
- 

% 
- 

TABLE IV 
TYPICAL FORMSOFTHE FEEDBACK RC BANDPASS NETWORKS&) 

LOW Pass 

‘W2 

JR1C1R2C2 
RlCl t C2(RltR2) 

High Pass 

I- & 
RlCl 

JR1C1R2C2 

RlCl + C2(RltR2) 'R = 
'RlClR2C2 

RlCl t R2(CltC2r 

TABLE V 
TYPICALFORMS OFTHEFEEDBACK RC BANDPASS NETWORK t&s) 

Bandpass Type A 

P R1 - RaRb/(Ra+Rb) 

! Bandpass Type B 

C 
I 
R 
C 
IJ 

I = = 

R1 = RaRb/(Ra+Rb) 
I 

FRN (All Pass). Parall Load 1 FRN (All Pass) Series Load 

Comparing this with (38) the similarity in form is read- this effect, showing that for a given Q and Q-sensitivity, 
ily apparent. However, the additional multiplicand the Q-variation with temperature, say, is very much 
RI/R2 in (37) readily permits the minimum value of less for the type-B than for the type-A circuit, have 
(OK) given by (34) to be approached arbitrarily closely, been previously published in [14]. 
by impedance scaling [see (38)]. This possibility does In general, a maximum pole-Q variation (AQ/Q)max 
not exist for the type-A circuit. Experimental results to can be tolerated and a maximum open-loop gain varia- 
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,, tion (AA/A),,, is specified by the amplifier manu- 
facturer. With (12) and (16) the maximum acceptable 
Q of the Sallen-Key network is therefore limited to 

For example, if [AQ/QlmaX = 5 percent, .[AA/A I,,,,, = 50 
percent, the available loop gain is 1000, and K = 2.5, then 
the maximum acceptable Q is 40. Since the available 
loop gain is frequency dependent, i.e., it decreases with 
frequency, the maximum acceptable Q will decrease 
with frequency as well. It is clear from (33) that it is 
worth designing the network such that the coefficient 
K remains reasonably close to its minimum value of 2 
when the loop gain is small, such as when the frequency 
of operation is high. 

L----L---l 
FEN 

la1 

r------7 

IV. HIGH-Q NETWORKS USING THE 
SALLEN-KEY BUILDING BLOCK 

The single-amplifier building block (SABB) described 
so far only covers relatively low-Q applications in the 
order of 20 to 2.5. For higher Q values, FEN’s must be 
used as discussed in detail in [2]. 

L--------_1 
FEN 

lb) 

Experience has shown, however, that in many com- 
munications systems, only very few second-order sec- 
tions with pole-Q’s higher than 20 are required. In such 
cases, it is clearly not worth going to the expense of 
fabricating a hybrid-integrated building block incor- 
porating the dual-amplifier FEN circuits. Instead, the 
SABB incorporating the Sallen-Key circuitry of Fig. 
l(b) can be used as the active twin-T in the feedback 
loop of a FEN, capable of providing high-Q poles as 
shown in Fig. 10(a). The additional forward amplifier 
(p) and the two resistors RF and RQ may be external and 
discrete. It is important to remember that the active 
twin-T in the feedback loop of a FEN determines its 
frequency characteristics, and in particular its frequency 
stability. Since the active twin-T in the configuration 
of Fig. 10(a) is integrated, i.e., its stability is determined 
by the thin-film passive components, no sacrifice in fre- 
quency stability results. For the active input network 
to the FEN, an additional hybrid integrated SABB is 
used, as shown in Fig. 10(b). This approach is particu- 
larly economical, since it permits the use of both high- 
and low-Q filter networks in quantity, while requiring 
the hybrid integrated production of only SABB’s. 

Fig. 10. (a) FEN using SABB in feedback loop. (b) General high-Q 
second-order filter using SABB as input and feedback network. 

INPUT 
POLES/ZEROS 

BB-COMPONENT 
RANGES 

GENERATE FIND 
OPTIMUM OPTIMUM 

2MOORDER - CASCADING 
FUNCTIONS SEQUENCE 

PASS IXSS 

c”, STOP 

Fig. 11. Flow chart for computer-aided filter design. 

grams have been compiled into one universal design 
program. The general flow chart [19] of this program 
is shown in Fig. 11. The program accepts the desired 
transfer function in terms of its polynomials or toots and 
pairs the resulting poles and zeros to minimize distor- 
tion, according to the Lueder-Halfin algorithm (see 
[4]). The pole-zero pairing determines the type of indi- 
vidual second-order functions, as well as their pole-Q. 

use. Recently, these and the additional necessary pro- This in turn establishes whether the SABB or the 

V. COMPUTER-AIDED FILTER DESIGN 

The high degree of standardization and the univer- 
sality of the building blocks described here strongly 
suggest the potential for almost total filter design by 
computer. This potential was recognized early in the 
development of the building block. As a result various 
computer programs, covering certain aspects of filter de- 
sign with the building blocks, have been cdntinuously in 
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double-amplifier building block (DABB), the latter 
incorporating a FEN, must be used. As output data, 
the program provides the value of each component re- 
quired for the particular building-block function in 
question, as well as the gain and phase response cor- 
responding to this function. The program also pre- 
scribes the optimum sequence in which to cascade the 
final filter and provides the gain and phase response 
consecutively at the output of each section in this cas- 
cade; the output of the last stage being the desired filter 
response. 

VI. SUMMARY 

A highly versatile low-Q active RC filter building 
block is described. The building block is directly com- 
patible with HIC technology in which thin-film resis- 
tors and capacitors are combined with a silicon mono- 
lithic operational amplifier chip. The circuit approach 
is also directly compatible with the FEN approach to 
high-Q filter design; in fact, a simple method is shown 
of designing high-Q frequency-stable FEN building 
blocks using the hybrid-integrated SABB and an exter- 
nal operational amplifier. In this way, a maximum num- 
ber of SABB’s and a minimum amount of development 
are guaranteed in production. 

Design equations and design tables are given for any 
desired second-order function-any of which is realiz- 
able with the filter building block described, including 
nonminimum phase networks. Frequency and Q-sensi- 
tivity are examined in detail. Methods of minimizing 
Q-variation with respect to the active and passive 
elements are discussed, and lower bounds on the Q- 
variation obtainable with the hybrid-integrated filter 
building blocks are given. 

[4] E. Lueder, “A decomposition of a transfer function minimizing 
distortion and inband losses,” Bell Syst. Tech. J., vol. 49, no. 3, 
pp. 455-469, Mar. 1970. 
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