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The Morphological Approach to Network and Circuit 
Design 

G. S. MOSCHYTZ 

I. INTRODUCTION 

The purpose of this paper is to introduce the “morphological 
approach to discovery, invention and research” [I], 121 into the 
domain of network theory and circuit design. Some of the basic 
concepts of the morphological approach are introduced, using 
previously published results pertaining to the, transistorized de- 
sign of gyrators as an illustrative example. It is shown how all of 
the previously published transistorized gyrator designs, and 
many new ones in addition, can be obtained by this method. 
This is a typical characteristic of the morphological approach to 
any problem. In a companion paper [3], the morphological 
method is used to provide solutions to the problem of designing 
very low-frequency (i.e., below 10 Hz) networks that are realiz- 
able in hybrid integrated form, i.e., with RC components limited 
in value by the state-of-the-art hybrid integrated circuit technol- 
00. 

II. THE MORPHOLOGICAL Box 

The morphological approach to discovery, invention, and re- 
search was introduced by F. Zwicky [4], a highly successful 
scientist in the fields of astronomy, physics, and jet propulsion 
systems. Zwicky applied the morphological method to each of 
the above-mentioned fields thereby making valuable contribu- 
tions to the theory and understanding of supernovae and invent- 
ing some of the earliest jet engines, including the jet-assisted 
takeoff (JATO) units used to launch heavyladen aircraft from 
short runaways. Later he applied the morphological approach 
towards the solution of all manner of technical and nontechnical 
problems, from the development of propulsive power plants and 
propellants to a systematic method of multilanguage teaching. In 
the following we shall demonstrate that this method can also be 
very well applied to the field of network and circuit design, using 
the design of transistorized gyrators as an illustrative example. 

One useful tool in the morphological approach to problem 
solving is the morphological box. To use it we go through the 
following steps. 

Step 1: Accurate formulation of the problem (e.g., design, 
construction, objectives) including all constraints. 

Step 2: Characterization of the m elements (e.g., components, 
ingredients, parameters) Ei(i = 1, 2. . . m), required for a solution 
of the problem. For any element Ei there may be n, alternative 
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elements such that we have n, element alternatives EQ with j- 1, 
2,. . . n,. 

Step 3: Derivation of the multidimensional matrix, or morpho- 
logical box, containing all of the solutions to the problem. Each 
solution corresponds to a different combination of element 
alternatives. The dimension of the matrix, or morphological box, 
corresponds to the number m of elements characterized in step 
2. 

Step 4: Evaluation of each of the solutions contained in the 
morphological box with respect to its realizability and to the 
objectives of the problem formulated in step 1. 

Step 5: Selection and realization of those solutions that meet 
the realizability constraints and problem objectives. If only one 
solution is required all others are progressively eliminated until 
the “optimum solution” for the given problem has been found. 

Note that whereas conventional problem solving involves find- 
ing one solution to a problem (see Fig. l(a)), the morphological 
approach is to find all possible solutions at the same time and, 
depending on the realizability criteria and the requirements of 
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the problem, carrying out one or more of the acceptable solu- 
tions to their completion ‘(see Fig. l(b)). Conventional problem 
solving is a sequential process with a feedback loop while the 
morphological approach considers all solutions to a problem in 
parallel. 

III. THEMORPHOLOGICALAPPROACHTO 
TRANSISTORIZED GYRATOR DESIGN 

A gyrator can be interpreted as the parallel connection of two 
ideal voltage-controlled current sources (KS) whose trans- 
conductances gi (i= 1, 2) have opposite polarity (Fig. 2). The 
corresponding y matrix is 

[yl= _og* “d . [ 1 (1) 

To illustrate the morphological approach to the transistorized 
design of gyrators [S], [6] we carry out the five steps outlined 
above. 

Step I: The problem is to design a transistorized two-port 
whose y-matrix is given by (1). We may wish to add the addi- 
tional constraint of minimizing the number of transistors. 

Step 2: We require two VCS’s with opposite polarity. These 
are the two elements E, and E, required for the solution to our 
problem. The VCS’s are to be transistorized, hence it is useful to 
start out with the equivalent nullor circuit [7] of a VCS, while 
taking care that each nullator-norator pair has a common termi- 
nal. 

Note that more than one equivalent nullor circuit exists for a 
VCS. Assuming that a VCS with noninverting transconductance 
g,, which we shall henceforth designate element E,, can be 
represented by nl different nullor circuits, then we have n, 
element alternatives EV(j = 1,. . . n,) for our VCS E,. Likewise 
with n2 different nullor circuits for our VCS with inverting 
transconductance g2 (element E,), we have n2 element altema- 
tives E2j(j= 1; + * n2) for our VCS E2. Incidentally, the deriva- 
tion of these equivalent nullor circuits Ey and Ezi is in itself a 
problem that can be approached morphologically. 

In Table I we present two alternatives for each of our ele- 
ments E, and E,. Using the rules for nullator-norator manipula- 
tion [5] and proceeding morphologically, others can undoubtedly 
be found. The number of alternatives will be limited by the 
constraint imposed in step 1 of minimizing the number of 
transistors (i.e., nullors). If we limit ourselves to the minimum 
total number of nullors in E, and E2 (which for a gyrator is 
three), the number of element alternatives is correspondingly 
small. 

Step 3: Since we have only two elements E, and E,, the 
morphological box will consist of a two-dimensional matrix (see 
Fig. 3). With ni and n2 element alternatives, respectively, the 
number of solutions (i.e., transistorized gyrators) will be p = n,. 

TABLE1 
EQUIVALENT NULLOR CIRCUITS FOR VOLTAGE-CONTROLLED CURRENT 

SOURCES (VCS) 
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Fig. 3. 

n2. Each solution SP consists of a VCS EIj(j = 1, 2. - * nJ con- 
nected in parallel with a VCS E2j(j= 1,2,. . . n2). 

Step 4: We must now examine each solution SP of the 
morphological box and examine i) if it is physically realizable 
and ii) if, when realized in practice, it still provides the y-matrix 
of an ideal gyrator. 

It is in this selection and realization process that the experience 
and ingenuity of the engineer (inventor) will count most. A solution 
that may be summarily dismissed as impractical if one adheres to 
conventional procedures and is biased by standard techniques may 
prove to be perfect& practical if one accepts the unconventional, 
and takes an unbiased approach to the problem. 
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Fig. 4. 

Fig. 5. 

Let us, for example, consider the solution S,, of the morpho- 
logical box. The equivalent nullor circuit of the resulting gyrator 
is shown in Fig. 4. The corresponding y-matrix is 

l/R, 1 0 ’ (2) 

In order to transistorize this circuit, nullator-norator pairs 
(Ni,Fr) must be combined such that they have a common node. 
This can again be approached morphologically. We require three 
transistors (elements) for each realization (solution). As we did 
in Table I, we must first characterize the elements at our 
disposal (step 2). This is best done in the matrix shown in Fig. 5. 
This matrix can be interpreted as a two-dimensional morpho- 
logical box where we have two elements (namely, a nullator and 
a norator) and a realizable solution is a nullor with a common 
node. Those nullator-norator pairs that have no common node 
are not realizable as transistors and are crossed out in Fig. 5. 
Furthermore only those groups of three nullors can be used per 
gyrator that have neither a nullator nor a norator in common. 
Thus rather than derive the three-dimensional morphological 
box for the realization of our gyrator S,,, we can now pick those 
groups of three nullors in the matrix of Fig. 5 that have neither a 
row nbr a column in common. 

It is easy to see that there are only two solutions to this 
problem; the diagonal group (NiTi, Nzgz, Nsfls) which results 
in the transistor circuit of Fig. 6(a) and the group 
(N,ga, NzFs, NJ,,) resulting in the transistor circuit of Fig. 6(b). 
More solutions can be obtained if we add nullator-norator pairs 
to the circuit of Fig. 4 such that it remains unchanged. This is 
the case for the additional nullor N4, N4 shown in Fig. 4, since a 
nullator and norator in series corresponds to an open circuit [5]. 
Clearly such an additional nullor must be placed judiciously to 
provide as many useful transistor formations as possible. 
Furthermore each additional nullor violates our constraint of 
minimizing the number of transistors. With N4 and N4 the 
matrix in Fig. 5 becomes a 4X4 matrix and each realizable 

(b) 

Fig. 6. 

solution, comprising four nullors having adjoining nodes, must 
be found. 

We see from the above that each solution of our original 
morphological box (Fig. 3) may in turn provide a new group of 
solutions, each of which may be found morphologically. Many 
of the resulting solutions have been reported on individually [5], 
[6], [8], [9]; they were found in the conventional manner outlined 
in Fig. l(a). With the morphological approach, UN of the re- 
ported circuits can be found as well as many others. Having 
found them in the rudimentary form of Fig. 6, it remains to 
establish the proper biasing, p-n-p-n-p-n transistor combinations 
and other practical circuit details, necessary to obtain satisfac- 
tory performance when realized in discrete- or integrated-circuit 
form. As has been shown [lo]-[12], this is by no means a trivial 
problem and again requires ingenuity and know-how on the part 
of the circuit designer. It is not our intention at this time, 
however, to pursue this discussion with a view to finding new 
transistorized gyrator circuits. We wish merely to introduce the 
morphological approach to problem solving into the field of 
network and circuit design, using the example of transistorized 
gyrator design as a vehicle to do so. In a separate paper [3], it is 
shown how this method can be used advantageously to design 
very low-frequency active filters suitable for hybrid integrated 
circuit implementation. 
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A Simple Method to Determine the Characteristic 
Functionf(X) = Ihl- A 1 by Discrete Fourier 

Series and Fast Fourier Transform 

Abstmct-A formula to determine the characteristic function of N x N 
matrix by discrete Fourier series is given. 

This letter presents a new algorithm in order to determine the 
tiidely used characteristic function of any N x N real or com- 
plex-valued matrix in various fields of engineering and applied 
mathematics. This algorithm also enables us to further investi- 
gate into some fundamental properties of the coefficients of the 
characteristic function. 
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A is a N X N matrix, the scalar polynomial 

f(h)=det(XI-A)=XN+~~_,hN-‘+... +cu,X+cll,, (1) 

is the characteristic function corresponding to A. 
Let W= exp(Za/N)j be the Nth root of unity. Then from (l), 

we obtain 

f(W-“‘)=det(W-“Z-A)= W-mN+aN-lWWm(N-l) 

+.** +a,W-m+a@ m=0,1,2;..,N-1 (2) 

since m and N are integers, therefore W -mN = ( WN)--m = exp ( - 
2ma)j= 1 and from (2) 

det(W-mZ-A)-l=+,-,W-m(N-‘)+~~~ +aIWPm+ao. (3) 

Let 

b,,,=det(W-“Z-A)-1 

from (3) and (4), we have the form 

(4) 

N-l 
b,,,= kzoakW-mk, form=0,1,2;+*,N-1. 

=a 

Therefore 

a,&b,,, 

forms a discrete Fourier series pair. The inversion formula gives 
that 

(Yk= - 1: ~+,,W--‘> k=0,1,2;..,N-1. 

For large N and N=pq, (Yk can be determined from p discrete 
Fourier series of order q (fast Fourier transform). 
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