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ABSTRACT

This papa provides the theory and an etlicient tabular algorithm
to test for various symmetries in the magnitude response of two-
dimensional (2-D) complex-coetlicient delta operator formulated
discrete-time systems. In general, centro symmetry is not
preserved in the complex case. The conditions under which this
is preserved is discussed in the paper. It is to be noted that as the
sampling period (A) goes to zero, the symmetry conditions merge
with that of 2-D continuous-time case.

1.INTRODUCTION

A well-known technique to reduce the complexity of the design
and implementation of 2-D filters is to make use of the various
symmetries that might be present in the flequency response of
these filters. SYrnmetg conditions for delta-operator formulated
real polynomials have already been defiied in [I]. Thk paper
will extend the definitions to a broader class of complex-
coefflcient delta- polynomials and provide the algorithm to test
for these symmetries. It is well known that delta-operator
formulation provides various advantages over traditional shi!t-
operator based systems such as better finite word length effects.
It also provides unification between discrete- and continuous-time
systems. [3] Thus, an efficient algorithm to test for symmetries
for 2-D delta- polynomials will greatly simplify the &sign
process of 2-D delta-operator formulated filters.

2. PRELIMINARIES

The relation between the trnnsfonn variables (ZIZZ) for q-
oprator based discrete time system and (yl,y2) corresponding to
&lta operator based discrete time system (DODT) is given by

yi =(4 - 1)/A , where i= 12 and A is the sampling period. An

inverse polynomial in delta domain is obtained by

substituting –yi/(l +Ayi) for Yi rid multiplying the

polynomial by factors of ( I+A~i)k to cancel the
denominator. A polynomial is called a self-inverse if its
inverse is equal to the original polynomial. A polynomial
can be self-inverse w.r. t. to yl or yz or both yl and y2.
If P(yl , 72) is a 2-D delta(6) -domain polynomial with
complex coefficients, its frequency response is given by

i

~j%A-1 ~J z -1“mA

A*A 1
where mI and roz are the radian

frequencies. Its magnitude squared function of the
frequency response is given by

J+ _ 1 J+ -1F(-)=+. A ).P*(’-’y-l,’-’;-’)
( )= NY,*Y*}P* = -72l+ Ayl’1+Ay2 ~,=#.%l

(1)

, i=l.2
A

where P* denotes the complex conjugate of P.
Now, we shall discuss the various types of symmetries in
the magnitude squared function of P(Y1, 72).

3. SYMMETRY CONDITIONS ON P(yl,yz)

Centro SYmmetrv:

P(yl, y2) possesses centro symmetry F(o.31,cA2)=F(-u 1,-02)
in its magnitude response if P(yi, yz) can be expressed as

P(YI* Y2)=F’l(YI*Y2)”P2(YI>y2)
where

(q(yl,y2) = q =
)

~ .(1 +A#ll .(1+ A72)’12 (2)
l+ Ayl’l+Ay2

and P2(y1,y2) = P2*(y1,y2), i.e. P2 is a real polynomial (3)

J1I and Jlz are the degrees of yl and y2 in Pl respectively.
Pz” denotes the complex conjugate of Pz.

Another way of stating this, centro symmetry is present if

P(YI, Y2)can be expressed as any one or a combination of
the following forms:

(a) ejgPR where P~ is a real-coefficient polynomial. (4)

(b,[pA(&*~)+y1y2pB(,,

(l+A#’ .(l+Ay2)J2

(l+ Ayl)’3 .(1 +Ay2)J4

where Jl, Jz and J3, Jd are the powers of yl, y2 for the
polynomials in (b) and (c) respectively. Note that PA, PB,

Pc and PD are self-inverse w.r.t. to both yl and yz.
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Ouadrantal S~mmetry: shall first introduce the 1-D algorithm and then extend it
to 2-D cases.

P(YI, Y2) possesses quadrantal symmetry F(rDI,022)=
F(-o)l,rAI) in its magnitude response if P(yi, yz) can be
expressed as

P(yl, y2)=Pl(Y). Y2)”P2(YI@

q(Y1.Y2)-pl
(J

-Y1
where —J’* (1+%)’” (7)

1+A7,

“( *)”(’+Ay2)Jn
P2(y, ,y,) = f~ y,, (8)

JII is the degree of yl in P! and J22 is the degree of yz in
P2. Once again, Pz- denotes the complex conjugate of Pz.
Figure 1.1 depicts the quadrantal symmetry in o)I, 02z
plane for the polynomial P(yI ,yz) satisfying Conditions 7
and/or 8. If P(y1,y2) also satisfies any one of the
conditions in equations (4) - (6), then Figure 1.2 depicts
the quadrantal symmetry.

I)iaeonal Svmmetry
P(yl, y2) possesses diagonal symmetry F(o21,022)=F(022,02I)

in its magnitude response if it can be expressed as

P(yl, 72)= PI(YI, Y2)”l’2(Yl*Y2)

where q(y,,y,) - q(y*,y,) (9)

and

P2(y, ,y2) = P2*( - Y,

)
— ~ .(l+Ay2)J2’ .(l+Ayl)J= (10)
l+ Ay2’l+Ay,

where J21 is the degree of yl in P2(yl, y2) and J22 is the
degree of yZ in Pz(yI, y2). If in addition to conditions 9
and/or 10, the polynomial satisfies any one of the 3
conditions in eqns (4) - (6), then the complex P(yl,y2) will
have a diagonal symmetry similar to that of a real 2-D
polynomial.

Rotational Symmetry
P(YI,yI) possesses rotational symmetry if F(co1,022)=
F(-02MI I). The conditions for rotational symmetry can be
obtained along the same lines as the above symmetries.

Looking at Conditions (2) - (10), we can see that PI in
Condition (7) is self-inverse w.r.t. yI, and Pz in Condition
(8) is self-inverse w.r.t yz. PI in Condition (2) is a self-
inverse w.r. t. to both yI and yz. A self-inverse polynomial
in both variables is called a para-conjugate polynomial if
it involves conjugating the coeftlcients besides doing the
self-inverse operations on both variables. We shall denote
the para-conjugate polynomial by P., while P“ means
simply conjugating the coeftlcients, no self-inverse
operation is involved. Testing for symmetry conditions is
equivalent to testing for the presence of self-inverse
polynomials w.r.t. either one or the other variable, or both
variables. The algorithm described below was originally
used to find the para-conjugate (self-inverse with
conjugated coefficients) delta-domain polynomials. We

4. ALGORITHM TO FIND THE PARA-CONJUGATE OF
1-D DELTA DISCRETE POLYNOMIAL

Given P(y) = ~aiyi where the coefficient ~ can be real or
i=o

complex. The Para+onjugate F’.(y)= P*(y~ ~ .(l+Ay)”
w.. —
‘ - l+Ay

(the coetlicients of P(y) also need to be conjugated). The tabular
algorithm to fmd P.(y) is given in Figure 2.

Step 1: Write the variable y in ascending power starting with y“
in column O and ending with y“ in column n (n is the
order of the polynomial). Then write the corresponding
coetllcient below it, on the 2nd row - @ in column O

Md % in column n. Draw a dotted line across.

step 2: On the next row, write down the conjugate of the

coefficient with alternating signs, i.e. (-l)i ai”, where i

is the column number, column O is the Iet?most and
column n the rightmost cohunn.

Step 3: Form the remaining rows by multiplying the value in

/column i of each row by ‘n- ‘)A~ where k is the row

number below the dotted line. Write this result in
column i + 1 on the next row. This means that each
subsequent row formed will have 1 column lew, thus
the rows formed will look like an inverted triangle.
Continue doing this until a row with ordy 1 column is
Ietl.

Step 4: Add up the values in each column, below the dotted
line. Write the result down on the last row.

The complex numbers on the lastrow are the coetllcients of the
Pam-conjugate polynomial Pa(y) in ascending powers of y.

5. ALGORITHM FOR 2-D POLYNOMIAL

MN N

~t p(Yl .Y2) = ~ z9ijYJY2j = x ‘j(Y1 )Y2j (11)
id)j=(l j=o

The Pam-conjugate polynomial is given

by Po(Y1.Y2)= P*(Y1.Y2)lr,_ -~, “(l + AIY#” “(l + A2Y2)N.
l+A,yi

where i= 1,2 (the coetlicients of P(yl ,y2) also need to be
conjugated). To use the tabular algorithm to obtain the para-
conjugate for this 2-D polynomial, we have the following steps

Step 1: Separate the coetlicients into the block format shown at
the top of Fig 3. If a certain codllcient say qti=tl
(k=O,...M, f=O,...N), insert a zero. This is to ensure each
y2 block has M coefficients (columns).

Step 2: Look at each y2 block separately and fmd its para-

conjugate with respect to yI using the method
described for a 1-D polynomial. i.e. fmd the para-
conjugate with respect to yl for the y20block, the y2’
block,, all the way to the yz~ block. We are determining

.-.
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the para-conjugateof RJ(yl){eqn(1l)}. Refix to Fig 3.
At this point we have detenni.ned the parxmnjugate

with respect to the yl variable, Sumu being the
coetlicients of this pam-mnjugate.

Step 3: Treat the values under each yz block as a single unit

and fmd the para-conjugatewith respect to Y2, using
the method for 1-D polynomial.(Note that, this time,
we need not conjugate the coetlicients before using the
1-D method. We need only alternate the signs of the
coefficients. We only need to conjugate the coefficients
once using this algorithm and we had already done that
in Step 2 above.). Refer to Fig 3.

Step 4: Add up the columns to give the coetllcients of the para-
conjugate for the 2-D polynomial. Thus,

MN

‘*@l *Y2)= X X9ij*YliY2~

The above tabular algorithm can be used to test for the
various symmetry conditions. For example, Condition 2 is
satisfied if the above algorithm yields the same final
polynomial as the original. Note that for this case, no
conjugating of coefficients is required at the beginning of
the tabular algorithm. Condition 7 can be tested by
performing the above algorithm , again without
conjugating the coefficient, until step 2 (since we are only
determining if the polynomial is self-inverse w.r.t. yl).
Condition 8 can be tested by performing the above steps,
except the part to perform the inverse operation on yl
(since we are only checking if the polynomial is self-
inverse w.r. t. 72). To test for Condition 10, the variables
need to be switched before using the algorithm. All steps
of the algorithm are required. The coefficients need to be
conjugated at the beginning also.

6. CONCLUSION

Various symmetries in tie magnitude response of 2-D complex
coefficient delta polynomials are &fmed in this paper. The
algorithmic test procedure discussed above helps to identifi the
present of these symmetries.
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Note: as A+O, the frequeney response domain of 2-D (DODT) system coincides with that of 2-D CT
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Y? %’ ““”” VIM

qOO q10 .. .. qMO
——— ———— —

[
Sumw Sum,. ...SumMo

.— - —-— -.

Sumw Sum,. ...!hmho

~A

Step 4=+ qw. qlo= . . . . qMo-

%’

y? y,’ ““”” y,M

qol q,, . . . . qMl
———— ———— —

qOl” ‘q,,” . . . . (-l)MqMl”

●

●

Sumo, Sum,, ...SLUW.
,- —- —-— -—

-Sumo, -Sum,, ...-SumM.

>,------------,

Jzl El ““o”
~,

L------- ----- I

q,,. q,,- . . . . qMl-

. . . .
Y2N

Y: %’ ““”” ‘y,M

qoN qlN ... qMN
!———— ———— —-

qON. ‘qIN- . . . (- l)”qMN-

Xh&j$j

●

●

!hb4 hmlN ...!hn’hm

—-— -—- —-.

s12m,N!h2111,N... Surmm

●

●

●

qON. qlN- . . . . qMN.

Figure 3.- 2-D algorithm to find the Daraconiugate of a delta Dolvnomial

Copyright 1997 IEEE 2376


