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ABSTRACT

This paper provides the theory and an efficient tabular algorithm
to test for various symmetries in the magnitude response of two-
dimensional (2-D) complex-coefficient delta operator formulated
discrete-time systems. In general, centro symmetry is not
preserved in the complex case. The conditions under which this
is preserved is discussed in the paper. It is to be noted that as the
sampling period (A) goes to zero, the symmetry conditions merge
with that of 2-D continuous-time case.

1.INTRODUCTION

A well-known technique to reduce the complexity of the design
and implementation of 2-D filters is to make use of the various
symmetries that might be present in the frequency response of
these filters. Symmetry conditions for delta-operator formulated
real polynomials have already been defined in [1]. This paper
will extend the definitions to a broader class of complex-
coefficient delta- polynomials and provide the algorithm to test
for these symunetries. It is well known that delta-operator
formulation provides various advantages over traditional shift-
operator based systems such as better finite word length effects.
1t also provides unification between discrete- and continuous-time
systems. [3] Thus, an efficient algorithm to test for symmetries
for 2-D delta- polynomials will greatly simplify the design
process of 2-D delta-operator formulated filters.

2. PRELIMINARIES

The relation between the transform varables (z1,z;) for g-
operator based discrete time system and (y,,y:) corresponding to
delta operator based discrete time system (DODT) is given by
Yi =(z,- - l)/A , where i=1,2 and A is the sampling period. An
inverse polynomial in delta domain is obtained by
substituting —7,-/(I+A7,-) for yi and multiplying the

polynomial by factors of (1+Ay)* to cancel the
denominator. A polynomial is called a self-inverse if its
inverse is equal to the original polynomial. A polynomial
can be self-inverse w.r.t. to v, or y2 or both y; and y,.

If P(v1 , v2) is a 2-D delta(8)-domain polynomial with
complex coefficients, its frequency response is given by
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frequencies. Its magnitude squared function of the
frequency response is given by

where ®, and w, are the radian
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where P* denotes the complex conjugate of P.
Now, we shall discuss the various types of symmetries in
the magnitude squared function of P(y;, y2).

3. SYMMETRY CONDITIONS ON P(y;,72)

Centro Symmetry:

P(1, y2) possesses centro symmetry F(o,,02)=F(-01,-02)
in its magnitude response if P(y;, y2) can be expressed as

P(y1, Y2)=Pi(¥1, Y2)-Pa(11, 12)
where

' 4 Ty J J
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and By(71.72) = B'(#1.72) . i.e. P is a real polynomial (3)

J1) and J;; are the degrees of y, and y; in P respectively.
P, denotes the complex conjugate of P;.

Another way of stating this, centro symmetry is present if

P(y1, y2) can be expressed as any one or a combination of
the following forms:

(a) ej'gPR where Py is a real-coefficient polynomial. (4)
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(6)

where Iy, J2 and J;, J4 are the powers of y;, y2 for the
polynomials in (b) and (c) respectively. Note that P,, Pg,
P¢ and Pp are self-inverse w.r.t. to both ¥, and .

2373



Quadrantal Symmetry:

P(Y1, 7Y2) possesses quadrantal symmetry F(o1,02)=
F(-0(,07) in its magnitude response if P(yi, y2) can be
expressed as

P(y1, Y2)=Pi(¥1, v2)-P2(y1. 72)

- J
where P,(yl,rz)-ﬁ 4 Y2 '(“‘Aﬁ) " O
71
Pz(rl ,72) = Pz‘(y,, 0 :Z;z) . (l + A}’z)‘ln (8)

Ji1 is the degree of ¥, in P, and Jz; is the degree of y; in
P;. Once again, P;” denotes the complex conjugate of P;.
Figure 1.1 depicts the quadrantal symmetry in o), ©;
plane for the polynomial P(y:1,y2) satisfying Conditions 7
and/or 8. If P(yi,y2) also satisfies any one of the
conditions in equations (4) - (6), then Figure 1.2 depicts
the quadrantal symmetry.

Diagonal Symmetry
P(Yi, Y2) possesses diagonal symmetry F(o;,02)=F(w2,01)
in its magnitude response if it can be expressed as

P(y1, Y2)=Pi(¥1, v2)-P2(11, ¥2)

where Pl(rl,h) = Pl(rzoh) 9)
and
Prore)= Pz‘( l ;Z’h T;Z—‘h) (14872 (14 )= (10)

where J;; is the degree of y; in Py(y:, v2) and J3; is the
degree of y2 in Pa(yi, ¥2). If in addition to conditions 9
and/or 10, the polynomial satisfies any one of the 3
conditions in eqns (4) - (6), then the complex P(y,,y2) will
have a diagonal symmetry similar to that of a real 2-D
polynomial.

Rotational Symmetry

P(Y1.y2) possesses rotational symmetry if F(w,02)=
F(-w2,04). The conditions for rotational symmetry can be
obtained along the same lines as the above symmetries.

Looking at Conditions (2) - (10), we can see that P; in
Condition (7) is self-inverse w.r.t. y,, and P; in Condition
(8) is self-inverse w.r.t y2. P, in Condition (2) is a self-
inverse w.r.t. to both y; and y2. A self-inverse polynomial
in both variables is called a para-conjugate polynomial if
it involves conjugating the coefficients besides doing the
self-inverse operations on both variables. We shall denote
the para-conjugate polynomial by P., while P* means
simply conjugating the coefficients, no self-inverse
operation is involved. Testing for symmetry conditions is
equivalent to testing for the presence of self-inverse
polynomials w.r.t. either one or the other variable, or both
variables. The algorithm described below was originally
used to find the para-conjugate (self-inverse with
conjugated coefficients) delta-domain polynomials. We
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shall first introduce the 1-D algorithm and then extend it
to 2-D cases.

4. ALGORITHM TO FIND THE PARA-CONJUGATE OF
1-D DELTA DISCRETE POLYNOMIAL

L
Given P(y)= Y a;y' where the coefficient a; can be real or
i=0

complex. The paraconjugate R(y) = P'(yi , (1+ay)
W A

1+4y

(the coefficients of P(y) also need to be conjugated). The tabular
algorithm to find R.(y) is given in Figure 2.

Step 1:  Write the variable y in ascending power starting with y°
in column 0 and ending with ¥" in column n (1 is the
order of the polynomial). Then write the corresponding
coefficient below it, on the 2nd row — a; in column 0
and a, in column n. Draw a dotted line across.

Step2: On the next row, write down the conjugate of the
coefficient with alternating signs, i.e. (—l)' a,-' , where §
is the column number, column O is the leftmost and
column » the rightmost column.

Form the remaining rows by multiplying the value in

column i of each row by (%~ i)% where k is the row

number below the dotted line. Write this result in
column i+1 on the next row. This means that each
subsequent row formed will have 1 column less; thus
the rows formed will look like an inverted triangle.
Continue doing this until a row with only 1 column is
left.

Add up the values in each column, below the dotted
line. Write the result down on the last row.

Step 3:

Step 4:

The complex numbers on the last row are the coefficients of the
para-conjugate polynomial P (y) in ascending powers of y .

5. ALGORITHM FOR 2-D POLYNOMIAL

M N .. N )
LetP(r1.72) = X X giri'va) = LR(n)rd’ (11
i=0j=0 - j=0
The para-conjugate polynomial is given
by P(ri.r2) = Pnarl, o_on (1 + )™ -(1+ 850"
1+4Ay,

where i=1,2 (the coefficients of P(y|,y) also need to be
conjugated). To use the tabular algorithm to obtain the para-
conjugate for this 2-D polynomial, we have the following steps:

Step I:  Separate the coefficients into the block format shown at
the top of Fig 3. If a certain coefficient say qu=0
(k=0,...M; I=0,...N), insert a zero. This is to ensure each
v2 block has M coeflicients (columns).

Step2: Look at each y, block separately and find its para-

conjugate with respect to ¥y, using the method
described for a 1-D polynomial. i.e. find the para-
conjugate with respect to y, for the 12° block, the y;'
block, all the way to the y;" block. We are determining
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the para-conjugate of R(y)) {eqn (11)}. Refer to Fig 3.
At this point we have determined the para-conjugate
with respect to the y, variable, Sumy being the
coefficients of this para-conjugate.

Treat the values under each y; block as a single unit
and find the para-conjugate with respect to y; , using
the method for 1-D polynomial. (Note that, this time,
we need not conjugate the coefficients before using the
1-D method. We need only alternate the signs of the
coefTicients. We only need to conjugate the coefficients
once using this algorithm and we had already done that
in Step 2 above.). Refer to Fig 3.

Add up the columns to give the coefficients of the para-
conjugate for the 2-D polynomial. Thus,

MN o
R(n.r2) = 2 Xagn'ry’
i=0j=0

Step 3:

Step 4:

The above tabular algorithm can be used to test for the
various symmetry conditions. For example, Condition 2 is
satisfied if the above algorithin yields the same final
polynomial as the original. Note that for this case, no
conjugating of coefficients is required at the beginning of
the tabular algorithm. Condition 7 can be tested by
performing the above algorithm , again without
conjugating the coefficient, until step 2 (since we are only
determining if the polynomial is self-inverse w.r.t. y;).
Condition 8 can be tested by performing the above steps,
except the part to perform the inverse operation on ¥,
(since we are only checking if the polynomial is self-
inverse w.r.t. y2). To test for Condition 10, the variables
need to be switched before using the algorithm. All steps
of the algorithm are required. The coefficients need to be
conjugated at the beginning also.

F((\)| ,0)2)=a 4

F(0,,02)=b

6. CONCLUSION

Various symmetries in the magnitude response of 2-D complex
coefficient delta polynomials are defined in this paper. The
algorithmic test procedure discussed above helps to identify the
present of these symmetries.
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Figure 1.1 — 2-D magnitude response
F(o,,0,) for filter satisfving quadrantal

symmetry

Figure 1.2 — 2-D magnitude response
F(0;,0,) for filter satisfying both quadrantal
symmetry and centro symmetry

Note: as A—0, the frequency response domain of 2-D (DODT) system coincides with that of 2-D CT

system
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Figure 3. — 2-D algorithm to find the paraconjugate of a delta polynomial
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