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Abstract— The problem of phase estimation in a “turbo re-
ceiver” is considered for two different channel models. Several
message passing algorithms for phase estimation are derived
from the factor graph of the channel models: (1) straight sum-
product, applied to a quantized phase model; (2) LMS-type
gradient methods; (3) a particle filter. All considered algorithms
are suitable for use in a “turbo receiver” with joint iterative
decoding and phase estimation.

I. I NTRODUCTION

We consider algorithms for phase estimation in a commu-
nications receiver, with special emphasis on “turbo receivers”
using joint iterative phase estimation and decoding. Coded
channel input symbols are transmitted in frames ofL symbols.
We consider channels of the form

Yk = XkejΘk + Nk, (1)

where Xk is the channel input symbol at timek ∈
{1, 2, . . . , L}, Yk is the corresponding received symbol,Θk is
the unknown phase, andNk is complex white Gaussian noise
with (known) variance2σ2

N , i.e., σ2
N per dimension. For the

sake of definiteness, we assume that the channel input symbols
Xk are M-PSK symbols and are protected by a low-density
parity check (LDPC) code.

We will consider two different models for the evolution of
the phaseΘk:

Constant Phase:Θk = Θ, an unknown constant.

Random Walk:

Θk = (Θk−1 + Wk) mod 2π, (2)

whereWk is white Gaussian noise with known varianceσ2
W .

The extension to more sophisticated phase noise mod-
els (e.g., [1]–[4]), with or without additional frequency offset
can also be handled, but is not treated in this paper.

Several turbo-synchronization algorithms that can deal with
constant phase rotations [5]–[10] have been proposed recently.
A turbo-synchronization algorithm for a stochastic phase
model was presented in [11]. However, no such algorithm
seems to have been proposed for the random-walk phase
model.

The algorithms we propose are approximations of the
symbol-wise MAP (maximum a posteriori) decoder:

X̂k,MAP = argmax
xk

∫ 2π

0

. . .

∫ 2π

0

p (xk,y,θ) dθ (3)

= argmax
xk

∫ 2π

0

. . .

∫ 2π

0

∑

x with xk fixed

p (x,y,θ) dθ, (4)

where X 4= (X1, X2, . . . , XL), Y 4= (Y1, Y2, . . . , YL) and
Θ 4= (Θ1, Θ2, . . . , ΘL). The functionp (x,y,θ) stands for the
joint probability function ofX, Y, andΘ; it is a probability
density function (pdf) inθ and y and a probability mass
function (pmf) inx. Note that Equations (3) and (4) involve
averaging over the phaseΘ. Message passing algorithms to
approximately compute (3) may be obtained by the following
procedure:

1) The probability functionp (x, y, θ) is represented by a
factor graph [12] [13].

2) Message types are chosen and message update rules are
computed.

3) A message update schedule is chosen.

In Step 2, finite-alphabet variables (such asXk) are handled
by the standard sum-product rule [12] [13]. For continuous-
valued variables (such asΘk) however, the sum-product rule
leads to intractable integrals, which can be approximated
in several ways; each such approximation corresponds to a
certain message type and results in a different algorithm. In
some cases, we will obtain an approximation of the entire
posterior distributionp (θ|y); in other cases, we will obtain
only an estimatêΘ.

This paper is structured as follows. In Section II, we explain
the factor graphs. The various message passing algorithms are
described in Section III. Simulation results are presented in
Section IV.

II. FACTOR GRAPHS OF THESYSTEM

We use Forney-style factor graphs (FFG), where nodes
(boxes) represent factors and edges represent variables. A
tutorial introduction to such graphs is given in [12].

The system described in Section I is easily translated into
the FFG of Figure 1, which represents the factorization of the
joint probability function of all variables. The upper part of the
graph is the indicator function of the LDPC code, with parity
check nodes in the top row that are “randomly” connected
to equality constraint nodes (“bit nodes”). The functionf is
the deterministic mappingf :
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Fig. 1. FFG of LDPC code and the channel model.

of the bitsB
(1)
k , . . . , B

(log2 M)
k to the symbolXk. The nodes

labelled “f ” (“bit mapper nodes”) correspond to the factors

δf

(
b
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k , . . . , b

(log2 M)
k , xk

)
(5)

,
{

1, if f
(
b
(1)
k , . . . , b

(log2 M)
k

)
= xk;

0, otherwise.
(6)

The bottom row of the graph represents the factorsp(yk|zk) 4=
(2πσ2

N )−1 e−||yk−zk||2/2σ2
N .

The “phase model” in Figure 1 is detailed in Figures 2
and 3. In these figures,Sk is defined asSk

4= ejΘk and Zk

is defined asZk
4= XkSk. The top row of nodes (“multiply

nodes”) in Figures 2 and 3 represents the factorsδ(zk−xksk).
The functiong is the deterministic mappingg : Θk 7→ Sk

of the phaseΘk to Sk; the nodes labelled “g” in Figures
2 and 3 represent the factorsδ(sk − ejθk). The equality
constraint nodes inside the dotted box in Figure 2 impose
the constraintΘk = Θ, ∀k; the box can be viewed as a
compound equality constraint node. In Figure 3, the nodes
labelledp(θk|θk−1) (“phase noise nodes”) represent the factors
p(θk|θk−1)

4= (2πσ2
W )−1/2

∑
n∈Z e−((θk−θk−1)+n2π)2/2σ2

W .
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Fig. 2. FFG of the constant-phase model.

III. M ESSAGE-PASSING ALGORITHMS

A. Sum-Product Message Update Rules

We now apply the sum-product algorithm [12] to the FFG
in Figure 1, where the FFG of the phase model is detailed in
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Fig. 3. FFG of the random-walk phase model.

Figures 2 and 3. The message passing schedule is as follows.
First, the bottom row in Figure 1 is updated, i.e., messages are
sent from the received symbolsYk towards the phase model.
Then, we alternate between

1) A sequence of horizontal (left to right and left to right)
sweeps through the graph of the phase model (Figures
2 or 3).

2) Several iterations of the LDPC decoder.

Additionally, one can iterate between the LDPC decoder and
the bit mapper nodesf .

The computation of the messages out of the bit mapper
nodes and inside the graph of the LDPC code is stan-
dard [12] [13] [14]; we therefore only consider the compu-
tation of the messages inside, and out of, the graph of the two
phase models.

Straightforward application of the sum-product algo-
rithm [12] [13] to the graph of the two phase models results
in the following update rules:

• Equality Constraint Node (see Figure 4(a);ζ, χ and
ξ ∈ [0, 2π))

µ = →ξ(ξ) = γµζ→ = (ξ)µχ→ = (ξ) (7)

• Multiply Node (see Figure 4(b);ξ takes values on the
unit circle, χ is an M-PSK symbol andζ ∈ C)

µ ×→ξ(ξ) = γ
∑

χ

µχ→ × (χ)µζ→ × (χξ) (8)

µ ×→χ(χ) = γ

∮

unit circle

µξ→ × (ξ)µζ→ × (χξ)dξ (9)

• Phase Noise Node(see Figure 4(c);χ andξ ∈ [0, 2π))

µp→ξ(ξ) = γ

∫ 2π

0

µχ→p(χ)p (ξ|χ)dχ (10)

• Phase Mapper Node(see Figure 4(d);χ ∈ [0, 2π) and
ξ takes values on the unit circle)

µg→χ(χ) = µξ→g(ejχ) (11)

µg→ξ(ξ) = µχ→g(arg ξ), (12)

wherearg ξ stands for the argument ofξ.

In Equations (7)–(10),γ is a normalization factor. In Figures 2
and 3, the multiply nodes are connected to the phase mapper
nodes bySk edges; as a consequence, by combining (9)
and (12), one can rewrite the update rule for the messages
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Fig. 4. Nodes in the graph of the phase models.

µ ×→Xk
(xk) out of the multiply nodes along theXk edges as

µ ×→Xk
(xk) = γ

∫ 2π

0

µΘk→g(θk)µZk→ × (xkejθk) dθk,

(13)
which is more practical to implement than (9). Similarly, one
can rewrite the update rule for the messagesµg→Θk

(θk) out
of the phase mapper nodes along theΘk edges as

µg→Θk
(θk) = γ

∑
xk

µXk→ × (xk)µZk→ × (xkejθk). (14)

Note that according to the sum-product rule, the messages
µΘk→g (θk) in Figure 2 are computed as

µΘk→g (θk) =
∏

i 6=k

µg→Θi (θk) , (15)

i.e., the product of all messages arriving at the equality
constraint node, except the one that arrives along the edgeΘk.
However, it is more convenient to approximate the messages
µΘk→g (θk) by the product ofall messages arriving at the
equality constraint node:

µΘk→g (θk) ≈
L∏

i=1

µg→Θi (θk) (16)

= µ = →Θ (θk) . (17)

This leads in practice to the same result, sinceL, the number
of messages in the product (15) and (16), is typically large
(between 100 and 10.000).

We apply several methods to approximate the integrals
in Equations (10) and (13): numerical integration, gradient
methods and particle filtering. Each approximation leads to
a different message passing algorithm for phase estimation.

B. Numerical Integration

In this approach, we replace the integrals in Equa-
tions (10) and (13) by finite sums. Using the rect-
angular integration rule, the integral in the right hand
side of Equation (13) for example is replaced by the
sum

∑n−1
m=0 µΘk→g(2πm/n)µZk→ × (xkej2πm/n). Accord-

ingly, the messages are represented by piecewise constant
functions. This approach is equivalent to straightforwardly

applying the sum-product algorithm to a quantized phase
model. Other integration schemes could also be used, such
as the trapezoidal rule, which corresponds to representing the
messages as piecewise linear functions.

C. Gradient Methods

It is common to represent a messageµ(x) by the value
X̂

4= argmaxx[µ(x)]. The messageµ(x) is then approximated
by the Dirac deltaδ(x − x̂). In many cases, the expres-
sion X̂

4= argmaxx[µ(x)] cannot be evaluated analytically.
However, the valueX̂ can often be determined numerically
by means of search methods such as for example gradient
methods. The latter methods are only applicable if the required
derivatives can be evaluated; least mean square (LMS) gradient
methods are based on first-order derivatives; techniques such
as (scaled) conjugate gradient (SCG) require the (exact or
approximative) computation of second-order derivatives.

We have developed LMS-style gradient-based algorithms
for phase estimation. The gradient method for the constant-
phase model searches the argmax of the functionµ = →Θ(θ)
by performing the following steps:

1) Choose an initial phase estimate, which may be obtained
from a non-data aided algorithm as for example the M-
law [15].

2) The compound equality constraint node broadcasts the
current phase estimatêΘold to all multiply nodes
d log µg→Θk

(θ)

dθ

∣∣∣
θ=θ̂old

.

3) At the compound equality constraint node, a new phase
estimate is computed according to the rule

θ̂new = θ̂old + λ
d log µ = →Θ(θ)

dθ

∣∣∣∣
θ=θ̂old

(18)

= θ̂old + λ

L∑

k=1

d log µg→Θk
(θ)

dθ

∣∣∣∣
θ=θ̂old

. (19)

4) Iterate the steps 2 to 4 as often as desired.

The step size parameterλ in Equations (18) and (19) may be
decreased as the number of iterations grows.

For the random-walk phase model, one alternates between
forward and backward sweeps in the graph of the phase
model. The forward and backward sweep result in the phase
estimatesΘ̂FW

k and Θ̂BW
k respectively. In the forward sweep,

the following steps are performed sequentially:

1) Choose an initial phase estimatêΘFW
1 ; in the first

forward sweep,Θ̂FW
1 can be initialized by an estimate

obtained from a non-data aided algorithm; if a backward
sweep has been performed previously, thenΘ̂FW

1 =
Θ̂BW

1 .
2) For k = 2, . . . , L

a) The equality constraint nodek receives the esti-
mate Θ̂FW

k−1 from the phase noise node at its left
side and subsequently computes the estimatesΘ̂FW

k



according to the rule:

θ̂FW
k = θ̂FW

k−1 + λ
d log µg→Θk

(θ)
dθ

∣∣∣∣
θ=θ̂F W

k−1

. (20)

b) The equality constraint nodek sends the estimate
Θ̂FW

k to the phase noise node at its right side, which
sends this estimate (unchanged) to the equality
constraint nodek + 1.

In the backward sweep, the estimatesΘ̂BW
k are updated from

right to left in a similar fashion. The estimatêΘBW
L is initial-

ized asΘ̂BW
L = Θ̂FW

L , whereΘ̂FW
L has been computed in the

previous forward sweep. After a sufficient number—typically
between 10 and 100—of forward an backward sweeps, the
final estimateŝΘk are computed as the average of the estimates
Θ̂FW

k and Θ̂BW
k computed in the last forward and backward

sweep respectively.

D. Particle Filtering

A probability distribution can be represented by a list of
samples (also referred to as “particles”) from the distribution.
This data type is the foundation of the particle filter [16].
In this approach, integrals (such as in the right hand side of
Equations (10) and (13)) are replaced by weighted averages
over the list of samples. We have developed particle filtering
techniques that in contrast to existing methods, do not repre-
sent the whole distribution as a list of samples. Instead, the
particle methods we propose are intended to locate the argmax
of unimodal distributions. In the following, we explain how
we applied these methods for estimating the phase in the two
phase models presented in Section I.

In the graph of the constant-phase model (see Figure 2), the
messageµ = →Θ (θ) out of the compound equality constraint
node along theΘ edge is represented as a list of samplesθ̂i,
i = 1, 2, . . . , M . The latter are obtained as follows:

1) Initialize the list of samples. This initial list may be gen-
erated by takingM/L samples from each distribution
µg→Θk

(θk).
2) The compound equality constraint node broadcasts the

list of samplesθ̂old
i to all multiply nodes.

3) The multiply nodes reply with the valuesµg→Θk
(θ̂old

i ).
4) At the equality constraint node, the weightswi are

computed as

w̃i =
L∏

k=1

µg→Θk
(θ̂old

i ) (21)

wi = γw̃i, (i = 1, 2, . . . , M) (22)

whereγ−1 =
∑M

i=1 w̃i.
5) The list of samples is updated according to the rule

θ̂new
i = arg

[
(1− ε)ejθ̂old

i + εejθ̄
]

(i = 1, 2, . . . ,M),
(23)

whereθ̄ is the (weighted) average of the list of samples

θ̄ = arg
M∑

i=1

wie
jθ̂old

i . (24)

6) Iterate the steps 2 to 5 as often as one wishes.
The parameterε should be sufficiently small (e.g.,ε = 0.1).
After performing the above steps, the samples in each list
are located in close vicinity of the argmax of the distribution
µ = →Θ (θ).

In the graph of the random-walk phase model (see Figure 3),
the messagesµΘk→g(θk) are represented by lists of samples
θ̂k,i, k = 1, 2, . . . , L and i = 1, 2, . . . , M . The latter are
obtained as follows:

1) Initialize the lists of samples. These initial lists may
be all identical; they may be generated by takingM/L
samples from each distributionµg→Θk

(θk).
2) Set the weightswFW

1,i andwBW
L,i equal to 1.

3) The weightsw̃FW
k,i are computed by the following forward

recursion:

w̃FW
k,i = wFW

k−1,i · µg→Θk−1(θ̂k−1,i) (25)

wFW
k,i = γw̃FW

k,i , (26)

whereγ−1 =
∑M

i=1 w̃FW
k,i .

4) The weightsw̃BW
k,i are computed by the backward recur-

sion:

w̃BW
k,i = wBW

k+1,i · µg→Θk+1(θ̂k+1,i) (27)

wBW
k,i = γw̃BW

k,i , (28)

whereγ−1 =
∑M

i=1 w̃BW
k,i .

5) The weightsw̃k,i are computed:

w̃k,i = wFW
k,i · wBW

k,i (29)

wk,i = γw̃k,i, (30)

whereγ−1 =
∑M

i=1 w̃k,i.
6) The lists of samples are updated according to the rule

θ̂new
k,i = arg

[
(1− ε)ejθ̂old

k,i + εejθ̄k

]
(i = 1, 2, . . . ,M),

(31)
whereθ̄k is the (weighted) average of the list of samples

θ̄k = arg
M∑

i=1

wk,ie
jθ̂old

k,i . (32)

7) Iterate the steps 2 to 6 as often as desired.
After a sufficient number of iterations, the samplesθ̂k,i in list
k are located in close vicinity of the argmax of the distribution
µΘk→g(θk).

IV. RESULTS AND DISCUSSION

We performed simulations of the proposed algorithms for
joint decoding and phase estimation. We used a fixed rate
1/2 LDPC code of length 100 that was randomly generated
and was not optimized for the channel at hand. The factor
graph of the code does not contain cycles of length four. The
degree of all bit nodes equals 3; the degrees of the check
nodes are distributed as follows: 1, 14, 69 and 16 check
nodes have degree 4, 5, 6 and 7 respectively. The symbol
constellation was Gray-encoded 4-PSK. We iterated three
times between the LDPC decoder and the phase estimator,



each time with hundred iterations inside the LDPC decoder.
We did not iterate between the LDPC decoder and the mapper.
The phase ambiguity was resolved by testing theM possible
hypotheses. In the particle filtering algorithms, the messages
were represented as lists of 100 samples; in the numerical
integration algorithms, the phase was uniformly quantized over
n = 100 levels. In the gradient methods, we optimized the
(constant) step size parameterλ. In Figures 5 and 6, the phase
synchronizers are compared in terms of mean squared (phase)
estimation error (MSEE) and the decoded frame error rate
(FER) as a function of the SNR respectively; the figures show
that the particle filter algorithms have the best performance,
followed by the algorithms based on numerical integration and
then by the gradient methods—the more accurate the phase
messages are represented, the better the performance.
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Fig. 5. Mean squared estimation error.
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Fig. 6. Frame error rate.

The gradient methods have the lowest complexity, since the
messages are represented by only a few parameters. The algo-

rithms based on numerical integration are much more complex.
As is well known, numerical integration becomes infeasible in
high-dimensional systems. The particle methods are complex
as well, but they scale better with the dimensionality of the
system.

V. CONCLUSION

We have presented several message passing algorithms,
applicable to several channel models, for joint decoding and
phase estimation. In contrast to prior and parallel work on such
schemes by other authors, we have emphasized the systematic
exploration of such algorithms starting from a factor graph of
the channel model.
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