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Abstract— The problem of phase estimation in a “turbo re-
ceiver” is considered for two different channel models. Several

2m 2m
message passing algorithms for phase estimation are derived X, \\o = argmax/ / p(xk,y,0)do (3)
from the factor graph of the channel models: (1) straight sum- ’ Zh 0 0
product, applied to a quantized phase model; (2) LMS-type 21 27
gradient methods; (3) a particle filter. All considered algorithms = argmax/ / Z p(x,y,0)do, (4)
are suitable for use in a “turbo receiver” with joint iterative zr  Jo 0

X . . x with xy, fixed
decoding and phase estimation.

whereX = (X, X,,...,X.), Y = (Y1,Ys,...,Y;) and

0= (©1,02,...,0r). The functionp (x,y, 8) stands for the
|. INTRODUCTION joint probability function ofX, Y, and®; it is a probability

density function (pdf) in@ and y and a probability mass
We consider algorithms for phase estimation in a commLu-nCtlon (pmi) inx. Note that Equations (3) and (4) involve

L . . . . . ayeraging over the phag®. Message passing algorithms to
nications receiver, with special emphasis on “turbo recelversy ging P ge p g a9

using joint iterative phase estimation and decoding. Codggproxmately compute (3) may be obtained by the following

channel input symbols are transmitted in framed aymbols. procedure: - . ]
We consider channels of the form 1) The probability functionp (z, y, 0) is represented by a
_ factor graph [12] [13].
Vi, = Xiel®% + Ny, (1) 2) Message types are chosen and message update rules are
computed.

where X, is the channel input symbol at timé& € .
{1,2,..., L}, Y} is the corresponding received symb@l, is 8) A message update schedule Is chosen.

the unknown phase, anti;, is complex white Gaussian noiseln Step 2, finite-alphabet variables (such %) are handled
with (known) variance2o?,, i.e., o3 per dimension. For the by the standard sum-product rule [12] [13]. For continuous-
sake of definiteness, we assume that the channel input symp@kied variables (such &3;) however, the sum-product rule

X, are M-PSK symbols and are protected by a low-densit§ads to intractable integrals, which can be approximated
parity check (LDPC) code. in several ways; each such approximation corresponds to a

We will consider two different models for the evolution Ofcertain message tyPe and_ results in a Qifferent algorithm._ In
the phasedy: some cases, we will obtain an approximation of the entire
posterior distributiorp (0| y); in other cases, we will obtain
Constant Phase:0;, = ©, an unknown constant. only an estimated.
Random Walk: This paper is structured as follows. In Section I, we explain
the factor graphs. The various message passing algorithms are
O = (01 + Wi) mod 27, (2) described in Section lll. Simulation results are presented in

. . . . . . Section V.
where W}, is white Gaussian noise with known varianeg,.

The extension to more sophisticated phase noise mod- Il. FACTOR GRAPHS OF THESYSTEM

els (e.g., [1]-[4]), with or without additional frequency offset We use Forney-style factor graphs (FFG), where nodes
can also be handled, but is not treated in this paper. (boxes) represent factors and edges represent variables. A

Several turbo-synchronization algorithms that can deal witdtorial introduction to such graphs is given in [12].
constant phase rotations [5]-[10] have been proposed recentlyl he system described in Section | is easily translated into
A turbo-synchronizaﬂon a|gorithm for a stochastic phasf@e FFG of Figure 1, which represents the factorization of the
model was presented in [11]. However, no such algorith}ﬁint probability function of all variables. The upper part of the

seems to have been proposed for the random-walk ph&aph is the indicator function of the LDPC code, with parity
model. check nodes in the top row that are “randomly” connected

The algorithms we propose are approximations of @ €duality constraint nodes (“bi(tl)nodes")ilThtf/[)functiﬁris
N . o
symbol-wise MAP (maximum a posteriori) decoder: the deterministic mapping' : (Bk - P ) = X,



Fig. 3. FFG of the random-walk phase model.

Figures 2 and 3. The message passing schedule is as follows.
First, the bottom row in Figure 1 is updated, i.e., messages are

sent from the received symbolg towards the phase model.
Then, we alternate between

Zy Zy Zr1 Zr
pyif=1) p(y2]22) P(YL-1]z1-1) p(yLlzr) . . .
e ’ e o 1) A sequence of horizontal (left to right and left to right)
Y Y, Yo YL

sweeps through the graph of the phase model (Figures
2 or 3).

Fig. 1. FFG of LDPC code and the channel model. 2) Several iterations of the LDPC decoder.

Additionally, one can iterate between the LDPC decoder and

of the bits B, ..., B{*®2™) to the symbolX}. The nodes the bit mapper n.odeﬁ. .
labelled “f” (“bit mapper nodes”) correspond to the factors ~1he computation of the messages out of the bit mapper
nodes and inside the graph of the LDPC code is stan-

of (b,il), .. .,b,ﬁlog? M)7xk) (5) dard [12] [13] [14]; we therefore only consider the compu-
) 1) (logy M) tation of the messages inside, and out of, the graph of the two
N { Lot f (bk roeeaby ) ~ Tk (g) phase models.
0, otherwise. Straightforward application of the sum-product algo-
rithm [12] [13] to the graph of the two phase models results

The bottom row of the graph represents the factég |z;) = in the following update rules:

(2m03,)~ ! e~ llye—zxll?/20%
The “phase model” in Figure 1 is detailed in Figures 2 « Equality Constraint Node (see Figure 4(a){,x and
and 3. In these figuresS;, is defined asS;, = ¢/©+ and Z,, ¢ €0,2m))
is defined asZ; = X,.S;. The top row of nodes (“multiply
nodes”) in Figures 2 and 3 represents the faci0ts — xy sk ).
The functiong is the deterministic mapping : ©; — Sk
of the phase®; to S; the nodes labelledg” in Figures
2 and 3 represent the factors, — e/%¢). The equality
constraint nodes inside the dotted box in Figure 2 impose
the constraint®, = ©, Vk; the box can be viewed as a
compound equality constraint node. In Figure 3, the nodes
labelledp(6x|0x—1) (“phase noise nodes”) represent the factors

p(0k]0k_1) = (2m02,)~1/2 e o~ ((Ox—0,_1)+n2m)? /207,

pE—e(€) = e En—3(©) (7
o Multiply Node (see Figure 4(b)¢ takes values on the
unit circle, x is an M-PSK symbol and € C)

pE—e€) = 1Y 3@ B3 (XE) ®)

:U'H)((X) = 7 Mga(f)ﬂca(xﬁ)df (9)

unit circle

« Phase Noise Noddésee Figure 4(c)x and¢ € [0, 27))

27
pp—e(§) = 7 /0 fix—p ()P (§]x)dX (10)

» Phase Mapper Node(see Figure 4(d)x € [0,27) and
¢ takes values on the unit circle)

Hg—x(X) Né%g(ejx) (11)
pg—e(§) = py—glargf), (12)

wherearg ¢ stands for the argument gf

Fig. 2. FFG of the constant-phase model.

I1l. M ESSAGEPASSING ALGORITHMS : : o .
In Equations (7)—(10})y is a normalization factor. In Figures 2
A. Sum-Product Message Update Rules and 3, the multiply nodes are connected to the phase mapper
We now apply the sum-product algorithm [12] to the FF®odes byS; edges; as a consequence, by combining (9)
in Figure 1, where the FFG of the phase model is detailed amd (12), one can rewrite the update rule for the messages



applying the sum-product algorithm to a quantized phase
model. Other integration schemes could also be used, such
H X § as the trapezoidal rule, which corresponds to representing the

¢ ¢ messages as piecewise linear functions.
— - —
(a) Equality (b) Multiply C. Gradient Methods
X £ Y ¢ It is common to represent a messagér) by the value
(gu‘ ) - — 9 = X = argmax[u(z)]. The messagg(z) is then approximated
PSIX - - by the Dirac deltad(z — #). In many cases, the expres-
(c) Phase Noise (d) Phase Mapper sion X = argmax,[u(z)] cannot be evaluated analytically.
Fig. 4. Nodes in the graph of the phase models. However, the valueX can often be determined numerically

by means of search methods such as for example gradient
methods. The latter methods are only applicable if the required
derivatives can be evaluated; least mean square (LMS) gradient
methods are based on first-order derivatives; techniques such
2 " as (scaled) conjugate gradient (SCG) require the (exact or
HE—x, (k) = 7/ 1oy, —g(Or) 1z, — [ (zpe’™") db, approximative) computation of second-order derivatives.
0 (13) We have developed LMS-style gradient-based algorithms
which is more practical to implement than (9). Similarly, onéor phase estimation. The gradient method for the constant-
can rewrite the update rule for the messaggs.e, (fx) out phase model searches the argmax of the fungtien e (6)

K- x, (%) out of the multiply nodes along th&, edges as

of the phase mapper nodes along &g edges as by performing the following steps:
pg—o, (Or) = 72 Mxkﬁ(xk)uzké(mkeje’“)- (14) 1) Choose an initial phase estimate, which may be obtained
' T from a non-data aided algorithm as for example the M-
law [15].

Note that according to the sum-product rule, the messages

6 (6x) in Figure 2 are computed as 2) The compound equality constraint node broadcasts the
k—3g

current phase estimat®©°? to all multiply nodes

dlogpg—e, (0
:u@k—»q ek H,u(]—>@ ek (15) WTOR()
i#k

i.e., the product of all messages arriving at the equality
constraint node, except the one that arrives along the egge

f=pold”
3) At the compound equality constraint node, a new phase
estimate is computed according to the rule

However, it is more convenient to approximate the messages grew —  gold |y dlog pE—e(0) (18)
to,—g (0r) by the product ofall messages arriving at the do 9—0yq
equality constraint node: dlo 0
— §od 4 )‘Z glu(]*)@k .(19)
0=0o14

HOe,—g (ek) ~ Huga@i (ek) (16)
= 4) lterate the steps 2 to 4 as often as desired.

= nE—e (0)- A7 The step size parametarin Equations (18) and (19) may be
This leads in practice to the same result, sifigehe number decreased as the number of iterations grows.
of messages in the product (15) and (16), is typically large For the random-walk phase model, one alternates between
(between 100 and 10.000). forward and backward sweeps in the graph of the phase
We apply several methods to approximate the integraisodel. The forward and backward sweep result in the phase
in Equations (10) and (13): numerical integration, gradieestimatesOf" and ©8W respectively. In the forward sweep,
methods and particle filtering. Each approximation leads toe following steps are performed sequentially:

a different message passing algorithm for phase estimation. 1) Choose an initial phase estima@™: in the first

B. Numerical Integration forward sweep©fW can be initialized by an estimate
obtained from a non-data aided algorithm; if a backward

In this approach, we replace the integrals in Equa- ) -
PP P g d sweep has been performed previously, thefiV =

tions (10) and (13) by finite sums. Using the rect- OBEW
angular integration rule, the integral in the right hand Lo

side of Equation (13) for example is replaced by the 2) Fork=2,...,L

sum Zii;lo M@kﬁg(zﬂm/n)uzkﬁ(J;k,ej?ﬂm/n)_ Accord- a) The eAquaIity constraint nodg receives the esti-
ingly, the messages are represented by piecewise constant mate O, from the phase noise node at its left
functions. This approach is equivalent to straightforwardly side and subsequently computes the estim@ﬁé‘é



according to the rule: 6) Iterate the steps 2 to 5 as often as one wishes.
The parametet should be sufficiently small (e.gs, = 0.1).
. (20) After performing the above steps, the samples in each list
are located in close vicinity of the argmax of the distribution
b) The equality constraint node sends the estimate p=1—e (6).
©FY to the phase noise node at its right side, which In the graph of the random-walk phase model (see Figure 3),

sends this estimate (unchanged) to the equaliye messagege,—,(0x) are represented by lists of samples
constraint node: + 1. Opi, k = 1,2,...,L andi = 1,2,...,M. The latter are

In the backward sweep, the estimat@&" are updated from obtained as follows:

right to left in a similar fashion. The estima&@B" is initial- 1) Initialize the lists of samples. These initial lists may
ized asO8W = 6°W, where ©7" has been computed in the be all identical; they may be generated by takihg L
previous forward sweep. After a sufficient number—typically ~ samples from each distributign, e, (6).

between 10 and 100—of forward an backward sweeps, the2) Set the weightssT) andw?') equal to 1.

final estimate®),, are computed as the average of the estimates3) The weightsiy are computed by the following forward
O™ and %W computed in the last forward and backward ~ recursion:

dlog 196, (0)

O =0+ A =0 -
0=0;""

sweep respectively. u?,EW _ szW1 g6 (ék 1) (25)
N —152 —9k-1 —1,
D. Particle Filtering wi = oY, (26)
A probability distribution can be represented by a list of ’ ) ’
b Y p Y wherey 1 = 327 W

samples (also referred to as “particles”) from the distribution. ] R i
This data type is the foundation of the particle filter [16]. 4) The weightsw;’;’ are computed by the backward recur-
In this approach, integrals (such as in the right hand side of  SION:

Equations (10) and (13)) are replaced by weighted averages GBW = BW O 27
over the list of samples. We have developed particle filtering é\;v lig\ll\f Ho—nps (Ors1.) @7
Wi = YW, (28)

techniques that in contrast to existing methods, do not repre-

sent the whole distribution as a list of samples. Instead, the wherey~! = M BW.

particle methods we propose are intended to locate the argmaxy The weightsi, ?:alre kéz)mputed'
5T .

of unimodal distributions. In the following, we explain how

we applied these methods for estimating the phase in the two Wy = wEVX : wEVLV (29)
phase models presented in Section I. Wi = YW, (30)

In the graph of the constant-phase model (see Figure 2), the
message:[z)_.e (#) out of the compound equality constraint
node along the edge is represented as a list of samglgs

wherey ! ="M @y,
6) The lists of samples are updated according to the rule

1=1, 27. s M. Th'e latter are obtain'ec'i as fqllows: éz?;,v: arg [(1 B E)ej@ggi n Eeje_k:| (i=1,2,...,M),

1) Initialize the list of samples. This initial list may be gen- (31)
erated (zy) takingM// L samples from each distribution whered,, is the (weighted) average of the list of samples
Mg*?@k k):

2) The compound equality constraint node broadcasts the _ M ;00
list of samples/?"? to all multiply nodes. O = argzwk’ie (32)

i=1

3) The multiply nodes reply with the valugs, e, (699). _
4) At the equality constraint node, the weights are  7) lterate the steps 2 to 6 as often as desired.

computed as After a sufficient number of iterations, the sampligs in list
L k are located in close vicinity of the argmax of the distribution
@ =[] ng-0.07) (21) Hor—o(0k).
k=1 IV. RESULTS AND DISCUSSION

Wi = Wi (=12...M) (22) e performed simulations of the proposed algorithms for
wherey~! = Zf\il ;. joint decoding and phase estimation. We used a fixed rate
5) The list of samples is updated according to the rule 1/2 LDPC code of length 100 that was randomly generated
. o - and was not optimized for the channel at hand. The factor
07" = arg {(1 —e)ed? ¢ ee]e} (i=1,2,...,M), graph of the code does not contain cycles of length four. The
(23) degree of all bit nodes equals 3; the degrees of the check

whered is the (weighted) average of the list of samplesodes are distributed as follows: 1, 14, 69 and 16 check
M nodes have degree 4, 5, 6 and 7 respectively. The symbol
§ = arngiejé?'d, (24) constellation was Gray-encoded 4-PSK. We iterated three

Pt times between the LDPC decoder and the phase estimator,



each time with hundred iterations inside the LDPC decodeithms based on numerical integration are much more complex.
We did not iterate between the LDPC decoder and the mapp®s. is well known, numerical integration becomes infeasible in
The phase ambiguity was resolved by testing tfiepossible high-dimensional systems. The particle methods are complex
hypotheses. In the patrticle filtering algorithms, the messages well, but they scale better with the dimensionality of the
were represented as lists of 100 samples; in the numerisgbtem.
integration algorithms, the phase was uniformly quantized over

n = 100 levels. In the gradient methods, we optimized the _ )
(constant) step size parameferin Figures 5 and 6, the phase Ve have presented several message passing algorithms,
synchronizers are compared in terms of mean squared (phﬁg)hcablg to §everal channel mo.dels, for joint decoding and
estimation error (MSEE) and the decoded frame error rdegase estimation. In contrast to prior and pargllel work on such'
(FER) as a function of the SNR respectively; the figures shoyghemes by other authors, we have emphasized the systematic
that the particle filter algorithms have the best performanc@Ploration of such algorithms starting from a factor graph of
followed by the algorithms based on numerical integration af@e channel model.

then by the gradient methods—the more accurate the phase ACKNOWLEDGMENT

messages are represented, the better the performance.
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