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Abstract. Several code-aided algorithms for phase estimation have re-
cently been proposed. While some of them are ad-hoc, others are derived
in a systematic way. The latter can be divided into two different classes:
phase estimators derived from the expectation-maximization (EM) prin-
ciple and estimators that are approximations of the sum-product message
passing algorithm. In this paper, the main differences and similarities be-
tween these two classes of phase estimation algorithms are outlined and
their performance and complexity is compared. Furthermore, an alterna-
tive criterion for phase ambiguity resolution is presented and compared
to an EM based approach proposed earlier.

1 Introduction

This paper deals with iterative code-aided algorithms for phase estimation and
phase ambiguity resolution in a communications receiver. Coded channel input
symbols are transmitted in frames of L symbols. We consider a channel model
of the form

Yk = XkejΘ + Nk, (1)

where Xk is the coded channel input symbol at time k ∈ {1, . . . , L}, Yk is the
corresponding received symbol, Θ is the unknown (constant) phase, and Nk is
white complex Gaussian noise with (known) variance 2σ2

N , i.e., σ2
N per dimen-

sion. For the sake of definiteness, we assume that the channel input symbols Xk

are M-PSK symbols and are protected by a low-density parity check (LDPC)
code. It is convenient to break Θ into two contributions:

Θ = Φ + Q
2π

M
(2)

with 0 ≤ Φ < 2π/M and Q ∈ {0, . . . , M − 1}. Accordingly, the problem of
estimating Θ can be decomposed in two subproblems: the problem of estimating
Φ, referred to as “phase estimation”, and the problem of determining Q, which
is called “phase ambiguity resolution”.
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Several turbo-synchronization algorithms have recently appeared that deal
with constant phase rotations [1]–[5]. In [1], phase estimators are derived from
the expectation-maximization (EM) principle. In [2], [3] and [4], phase estimation
algorithms are presented that are approximations of the sum-product message
passing algorithm applied to factor graphs of the channel model. An EM based
algorithm for phase ambiguity resolution is proposed in [5].

In this paper, we compare the sum-product based phase estimators of [3] to
the EM based phase estimator [1]. To this end, we formulate also the EM based
estimator as a message passing algorithm. We refer to [6] for a classical exposition
of the EM algorithm. We then compare the EM based phase estimator to several
sum-product based algorithms in terms of performance and complexity. We also
propose an alternative criterion for phase ambiguity resolution and compare it
to the one proposed by Wymeersch et al. [5].

This paper is structured as follows. In Section 2, we briefly explain the factor
graph we use to represent channel (1). In Section 3, we review both types of
phase estimators and elaborate on the main differences between them. Section 4
considers the problem of phase ambiguity resolution. In Section 5, we investigate
the computational complexity of the various estimation algorithms. In Section 6,
we present simulation results.

2 Factor Graphs of the channel model

We use Forney-style factor graphs (FFG), where nodes (boxes) represent factors
and edges represent variables. A tutorial introduction to such graphs is given
in [7]. The system described in Section 1 is easily translated into the FFG of
Fig. 1, which represents the factorization of the joint probability function of all
variables. The upper part of the graph is the indicator function of the LDPC
code, with parity check nodes in the top row that are “randomly” connected
to equality constraint nodes (“bit nodes”). The nodes below the bit nodes rep-
resent the deterministic mapping f :

(
B

(1)
k , . . . , B

(log2 M)
k

)
7→ Xk of the bits

B
(1)
k , . . . , B

(log2 M)
k to the symbol Xk. These nodes correspond to the factors

δf

(
b
(1)
k , . . . , b

(log2 M)
k , xk

)
,

{
1, if f

(
b
(1)
k , . . . , b

(log2 M)
k

)
= xk;

0, otherwise.
(3)

In Fig. 1, the variable S is defined as S
4= ejΘ. The equality constraint node

imposes the constraint Sk = S, ∀k. Furthermore, Zk is defined as Zk
4= XkSk.

The row of “multiply nodes” represents the factors δ(zk − xksk). The bottom
row of the graph represents the factors p(yk|zk) 4= (2πσ2

N )−1 e−||yk−zk||2/2σ2
N .

3 Phase Estimation through Message Passing

Both in the sum-product based algorithms and in the EM based algorithm (which
we will also view as message passing in the factor graph), the messages are
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Fig. 1. FFG of LDPC code and the channel model

updated according to the following schedule. First, the bottom row in Fig. 1 is
updated, i.e., messages are sent from the received symbols Yk towards the phase
model. Then, one alternates between

1. An update of the messages along the Sk edges, which can be scheduled as a
horizontal (left-to-right) sweep.

2. A subsequent horizontal (left-to-right) sweep for updating both the messages
µ ×→xk

(Xk) out of the multiply nodes along the Xk edges and the messages
µf→bk

(Bk) out of the mapper nodes along the Bk edges.
3. Several iterations of the LDPC decoder.

In both algorithms, the messages out of the mapper nodes and inside the graph
of the LDPC code are computed according to the standard sum-product rule [7];
we will therefore only consider the computation of the messages related to the
phase Θ. First, we briefly elaborate on how the messages are computed according
to the sum-product rule, then we consider the EM rule.

Straightforward application of the sum-product rule to compute the mes-
sages along the Sk edges leads to (intractable) integrals. Several methods to
approximate these integral (or, equivalently, to represent the messages along the
Sk edges) are proposed in [3] and [4]: numerical integration, particle methods,
canonical distributions (Fourier, Gaussian and Tikhonov) and gradient methods
(“steepest descent”); each of these methods leads to a different phase estimator.

The EM based phase estimator of [1] may be viewed as a message passing
algorithm that is similar to the steepest descent sum-product based estimator.
In both algorithms, the message µSk→ × (sk) is represented by an estimate Ŝ.
In the EM based phase estimator, this estimate is computed according to the
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rule [1]:

Ŝ = arg max
s

∑

i

(∑
x

µXi→ × (x)µ ×→Xi
(x) log µzi→ × (xs)

)
. (4)

The rule (4) is similar to the sum-product rule [3]

Ŝ = arg max
s

∑

i

log

(∑
x

µXi→ × (x) µZi→ × (xs)

)
. (5)

Note the difference in the position of the logarithm. In addition, the update
rule (4) involves both the incoming messages µXi→ × (x) and the outgoing mes-
sages µ ×→Xi

(x); in the expression (5), only the incoming messages µXi→ × (x)
occur. In this particular case, the EM rule can be evaluated analytically [1].
In more complicated problems, this is not the case. One then typically uses
steepest descent to compute a hard estimate. In this case, the similarity be-
tween EM based and steepest descent sum-product based synchronizers is even
stronger.

4 Phase Ambiguity Resolution

The algorithms presented in the previous section make estimates of Φ (see
Eq. (2)); they are not able to resolve the phase ambiguity, i.e., to detect Q.
We determine Q by hypothesis testing. For each possible value of Q, we apply
the algorithms presented in the previous section. We restrict the domain of the
Sk messages to the set {exp jθ : θ ∈ [Q2π/M, (Q + 1)2π/M)}. We subsequently
select the most likely hypothesis. Wymeersch et al. [5] derived the following EM
rule for selecting Q:

Q̂ = arg max
q

∑

i

(∑
x

µXi→ × (x)µ ×→Xi
(x) log µZi→ × (xŝk(q))

)
, (6)

where ŝk(q) is the estimate of Sk under hypothesis Q. The rule (6) is an approx-
imation of the MAP detector

Q̂ = arg max
q

log
∑
x

∫

φ

p(x,y, φ, q)dφ. (7)

We propose as alternative approximation

Q̂ = arg max
q

∑

i

log
∑

x

µXi→ × (x)µ ×→Xi
(x). (8)

If the messages µSk→ × (sk) are represented as single values, then the rule (8)
reduces to

Q̂ = arg max
q

∑

i

log
∑

x

µXi→ × (x)µZi→ × (xŝk(q)) , (9)
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which is very similar to the expression (6). One observes the same differences and
similarities between the expressions (6) and (9) as between the expressions (5)
and (4). The criterion (8) is more general than (6): the phase messages need not
to be represented as single values.

5 Computational Complexity

The computational complexity of the phase estimators is directly related to
the way the phase messages are represented. Both in the EM algorithm and in
the steepest descent sum-product algorithm, the phase messages are single real
numbers. As a consequence, the complexity of both algorithms is similar and very
low. The complexity of the approach based on numerical integration and particle
filtering is much larger: it is proportional to the number of quantization levels
and particles respectively, which is typically choosen between 100 and 1000. It is
well known that numerical integration becomes infeasable in higher dimensions.
Particle filtering on the other hand scales much better with the dimension of the
system.

6 Simulation Results and Discussion

We performed simulations of the sum-product based as well as the EM based
algorithms for joint phase estimation and phase ambiguity resolution. We used
a fixed rate 1/2 LDPC code of length 100 that was randomly generated; we did
not optimize the code for the channel at hand. The symbol constellation was
Gray-encoded 4-PSK. We iterated three times between the LDPC decoder and
the phase estimator, each time with hundred iterations inside the LDPC decoder.
We did not iterate between the LDPC decoder and the mapper. In the particle
filtering (sum-product based) algorithm, the messages were represented as lists
of 100 samples; in the numerical integration (sum-product based) algorithm, the
phase is uniformly quantized over 100 levels.

Fig. 2 presents the FER (frame error rate) of the presented algorithms for
joint phase estimation and ambiguity resolution. We include the FER for perfect
synchronization, i.e., for the case in which the phase Θ is known. Moreover,
we show the FER resulting from the M-law phase estimator assuming perfect
phase ambiguity resolution. We observe that the M-law estimator gives rise to a
degradation of up to 0.5 dB compared to perfect synchronization. Both the EM
estimator as well as the sum-product based estimators are able to reduce most of
this degradation. The particle filtering and numerical integration (sum-product
based) estimators have slightly lower FER than the EM algorithm and steepest
descent sum-product based algorithm, but their complexity is higher.
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Fig. 2. FER of several phase estimators
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