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Abstract — Prior work on the computation of in-
formation rates of channels with memory is extended
to continuous state spaces by means of sample-based
numerical integration (“particle filtering”).

I. Introduction

We consider the problem of computing the information rate

I(X; Y )
4
= lim

n→∞
1

n
I(X1, . . . , Xn; Y1, . . . , Yn) (1)

between the input process X = (X1, X2, . . .) and the out-
put process Y = (Y1, Y2, . . .) of a time-invariant discrete-

time channel with memory. Let xn
k
4
= (xk, xk+1, . . . , xn) and

xn 4
= (x1, x2, . . . , xn). We will assume that there is an ergodic

stochastic process S = (S0, S1, S2, . . .) such that

p(xn, yn, sn
0 ) = p(s0)

n∏

k=1

p(xk, yk, sk|sk−1) (2)

for all n > 0 and with p(xk, yk, sk|sk−1) not depending on k.

For finite input alphabet X (= range of Xk) and finite state
space S (= range of Sk), a practical method for computing
the information rate (1) was proposed earlier (e.g., see [1]).
In [2], this method was described in greater generality and
extended to the computation of upper and lower bounds on
the information rate of very general channels. In this paper,
we extend the methods of [1] and [2] to continuous state spaces
S and input alphabets X .

This paper is structured as follows. In Section II, we re-
view the basic idea of [1] as presented in [2]. In Section III,
we briefly show how particle methods allow to deal with a
continuous state space.

II. Review of Basic Method

We first note that the sequence − 1
n

log p(Xn) converges
with probability 1 to the entropy rate H(X), the sequence
− 1

n
log p(Y n) converges with probability 1 to the differen-

tial entropy rate h(Y ), and − 1
n

log p(Xn, Y n) converges with
probability 1 to H(X) + h(Y |X). From these observations,
the quantity I(X; Y ) = h(Y ) − h(Y |X) can be computed as
follows:

1. Sample two “very long” sequences xn and yn.

2. Compute log p(xn), log p(yn), and log p(xn, yn). If
h(Y |X) is known analytically, then it suffices to com-
pute log p(yn).

3. Conclude with the estimate

Î(X; Y )
4
=

1

n
logp(xn, yn)− 1

n
logp(xn)− 1

n
logp(yn) (3)

or, if h(Y |X) is known analytically, Î(X; Y )
4
=

− 1
n

log p(yn)− h(Y |X).

The computations in Step 2 can be carried out by forward
sum-product message passing through the factor graph of
(2). Consider, for example, the computation of the term

− 1
n

log p(yn). The state metric µk(sk)
4
= p(sk, yk) is com-

puted by the recursion

µk(sk) = λk

∫

xk

∫

sk−1

µk−1(sk−1) p(xk, yk, sk|sk−1), (4)

where λk are scale factors. The quantity − 1
n

log p(yn) is com-
puted as the average of the logarithms of these scale factors,
i.e., 1

n

∑n
k=1 log λk = − 1

n
log p(yn), which converges (almost

surely) to h(Y ). If necessary, the quantities log p(xn) and
log p(xn, yn) can be computed by the same method, see [2].

III. A Particle Method
If both the input alphabet X and the state space S are

finite sets, then the method of the previous section is a prac-
tical algorithm. However, we are now interested in the case
where S (and perhaps also X ) are continuous, as stated in
the introduction. In this case, the computation of (4) is a
problem.

This problem can be addressed by Monte Carlo meth-
ods known as particle filtering [3]. Such algorithms may
be viewed as message passing algorithms where the mes-
sages (which represent probability distributions) are repre-
sented by a list of samples (“particles”) from the distribu-
tion [4]. In particular, we will represent the message µk by
a list {ŝk,`}N

`=1 of N samples and we will represent the dis-
tribution µk−1(sk−1) p(xk, sk|sk−1) by a list of three-tuples
(ŝk−1,`, x̂k,`, ŝk,`). From (4), we then obtain

λ−1
k ≈ 1

N

N∑

`=1

pYk|Xk,Sk,Sk−1(yk|x̂k,`, ŝk,`, ŝk−1,`). (5)

We applied this technique to a simple channel model and
will present the results we obtained.
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