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Our results use algebraic geometry codes based on elliptic curves.
In many ways, the elliptic codes are very similar to the Reed–Solomon
codes. Intuitively we expect that the decoding problem for elliptic
codes is the easiest among all algebraic geometry codes. We leave
it as an open problem to prove that both problems are NP-hard for
codes based on curves of any fixed genus. We conjecture that the max-
imum-likelihood decoding is NP-hard even for a family of algebraic
geometry codes with a fixed alphabet, and leave it as an open problem.
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Computation of Information Rates by Particle Methods
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Abstract—Prior work on the computation of information rates of chan-
nels with memory is extended to continuous state spaces by means of se-
quential Monte-Carlo integration (“particle filtering”).

Index Terms—Continuous channels with memory, information rate, par-
ticle filtering, sequential Monte-Carlo integration.

I. INTRODUCTION

We consider the problem of computing the information rate

I(X; Y )
4

= lim
n!1

1

n
I(X1; . . . ; Xn;Y1; . . . ; Yn) (1)

between the input process X = (X1; X2; . . .) and the output process
Y = (Y1; Y2; . . .) of a time-invariant discrete-time channel with

memory. Let xnk
4

=(xk; xk+1; . . . ; xn) and xn
4

=(x1; x2; . . . ; xn).
We will assume that there is an ergodic stochastic process
S = (S0; S1; S2; . . .) such that

p(xn; yn; sn0 ) = p(s0)

n

k=1

p(xk; yk; skjsk�1) (2)

for all n > 0 and with p(xk; yk; skjsk�1) not depending on k.
For finite input alphabet X (= range of Xk) and finite state space S

(= range of Sk), a practical method for computing the information rate
(1) was proposed in [1]–[3]. This method was generalized in [4]–[7] to
the computation of upper and lower bounds on the information rate of
more general channels. An alternative approach to compute approxima-
tions of (1) was presented in [8]. An extension to 2-D channels (using
generalized belief propagation [9]) was proposed in [10].

In this correspondence, we extend the methods of [1] and [4] to
continuous state spaces S . For the sake of clarity, we will assume
that S is a bounded subset of � , the �-dimensional Euclidean
space. The input alphabet X may also be continuous. The key to this
extension is the use of sequential Monte-Carlo integration methods
(“particle filters”) [11], [12].

This correspondence is structured as follows. In Section II, we re-
view the basic idea of [1]. In Section III, we show how particle methods
allow to deal with a continuous state space. Two numerical examples
are given in Section IV: two channels with phase noise, where the phase
noise has memory.
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Fig. 1. Computation of p(y ) by message passing through the factor graph of
(2).

II. REVIEW OF BASIC METHOD

We briefly review the basic idea of [1] as presented in [7]. We
first note that, as a consequence of the Shannon–McMillan–Breiman
theorem and the assumptions of stationarity and ergodicity (cf.
Section I), the sequence � 1

n
log p(Xn) converges with probability 1

to the entropy rate H(X), the sequence � 1
n
log p(Y n) converges with

probability 1 to the differential entropy rate h(Y ), and the sequence
� 1
n
log p(Xn; Y n) converges with probability 1 toH(X)+h(Y jX).

From these observations, the quantity I(X; Y ) = h(Y ) � h(Y jX)
can be computed as follows.

1) Sample two “very long” sequences xn and yn.
2) Compute log p(xn) log p(yn), and log p(xn; yn). If h(Y jX) is

known analytically, then it suffices to compute log p(yn).
3) Conclude with the estimate

Î(X;Y )
4

=
1

n
log p(xn; yn)�

1

n
log p(xn)�

1

n
log p(yn) (3)

or, if h(Y jX) is known analytically

Î(X;Y )
4

=�
1

n
log p(yn)� h(Y jX): (4)

The computations in Step 2 can be carried out by forward sum-
product message passing through the factor graph of (2), as is illus-
trated in Fig. 1. (See [13] for an introduction to factor graphs.) If the
state space S is finite, this computation is just the forward sum-product
recursion of the BCJR algorithm [14].

Consider, for example, the computation of

p(yn) =
x s

p (xn; yn; sn0 ) dx
n
ds

n
0 : (5)

(In [1] and [7], the integral (5) is actually a finite sum.) Define the
state metric �k(sk)

4

= p(sk; y
k). By straightforward application of

the sum-product algorithm [13] we recursively compute the messages
(state metrics)

�k(sk) =
x s

�k�1(sk�1)

� p(xk; yk; skjsk�1)dxkdsk�1 (6)

=
x s

p(xk; yk; sk0)dx
k
ds

k�1
0 (7)

for k = 1; 2; 3; . . . with �0(s0)
4

= p(s0). The desired quantity (5) is
then obtained as

p(yn) =
s

�n(sn); dsn (8)

the sum of (or the integral over) all final state metrics.
For large k, the state metrics �k computed according to (6) quickly

tend to zero. In practice, the recursion (6) is therefore changed to

�k(sk) = �k
x s

�k�1(sk�1)p(xk; yk; skjsk�1)dxkdsk�1

(9)
where �1; �2; . . . are positive scale factors. We will choose these fac-
tors such that

s

�k(sk)dsk = 1 (10)

Fig. 2. A probability density function f : ! and its representation as a
list of particles.

holds for all k, i.e.

�
�1
k =

x s s

�k�1(sk�1)

� p(xk; yk; skjsk�1)dxkdsk�1dsk (11)

=
x s s

�k�1(sk�1)p(xk; skjsk�1)

� p(ykjxk; sk; sk�1)dxkdsk�1dsk: (12)

It follows that
1

n

n

k=1

log �k = �
1

n
log p(yn): (13)

The quantity � 1
n
log p(yn) thus appears as the average of the loga-

rithms of the scale factors, which converges (almost surely) to h(Y ).
If necessary, the quantities log p(xn) and log p(xn; yn) can be com-

puted by the same method, see [7].
For use in Section III, we note that ��1k (12) may be written as an

expectation; due to the normalization (10), the state metric �k(sk) now
equals p(skjyk), and therefore

�
�1
k =

x s s

p(sk�1jy
k�1)p(xk; skjsk�1)

� p(ykjxk; sk; sk�1)dxkdsk�1dsk (14)

=
x s s

p(sk�1; sk; xkjy
k�1)

� p(ykjxk; sk; sk�1)dxk dsk�1dsk (15)

= E[p(ykjXk; Sk; Sk�1)jY
k�1] (16)

where the expectation is with respect to the probability density

p(sk�1; sk; xkjy
k�1) = p(sk�1jy

k�1)p(xk; skjsk�1) (17)

= �k�1(sk�1)p(xk; skjsk�1): (18)

III. A PARTICLE METHOD

If both the input alphabet X and the state space S are finite sets (and
the alphabet of X and S is not too large), then the method of the pre-
vious section is a practical algorithm. However, we are now interested
in the case where S (and perhaps also X ) is continuous, as stated in the
introduction. In this case, the computation of (9) and (16) is a problem.

This problem can be addressed by Monte-Carlo methods known
as sequential Monte-Carlo integration (“particle filtering”) [11],
[12]. Such algorithms may be viewed as message passing algorithms
where the messages (which represent probability distributions) are
represented by a list of samples (“particles”) [15]–[19] (see Fig. 2); a
list Lf of N particles representing the probability density f(x) with
x 2 X is formally defined as a list of pairs

Lf
4

= x̂
(1)
; w

(1)
; x̂

(2)
; w

(2)
; . . . ; x̂

(N)
; w

(N) (19)
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4

= x̂
(`)
; w

(`)
N

`=1
(20)

with x̂(`) 2 X and where the weights w(`) are positive real numbers
such that N

`=1 w
(`) = 1.

In particular, we will represent the message �k by a list of N
particles fŝ(`)k ; w

(`)
k gN`=1, and we will represent the distribution

p(sk�1; sk; xkjyk�1) (18) by a list of N (weighted) three-tuples
f(ŝ(`)k�1; ŝ(`)k ; x̂

(`)
k ); w

(`)
k�1gN`=1. The expectation (16) is then approxi-

mately computed as an average over those N (weighted) three-tuples

�
�1
k �

N

`=1

w
(`)
k�1p(ykjŝ(`)k�1; ŝ(`)k ; x̂

(`)
k ): (21)

The recursive computation of (9) is accomplished as follows.
1) Begin with a particle list fŝ(`)k�1; w(`)

k�1gN`=1 that represents �k�1.
2) Extend each particle ŝ

(`)
k�1 to a three-tuple (ŝ

(`)
k�1; ŝ

(`)
k ; x̂

(`)
k )

by sampling from p(xk; skjsk�1), resulting in the particle list
f(ŝ(`)k�1; ŝ(`)k ; x̂

(`)
k ); w

(`)
k�1gN`=1.

3) Compute an estimate of �k using (21).
4) Compute the weights wk:

w
(`)
k = �kw

(`)
k�1p(ykjŝ(`)k�1; ŝ(`)k ; x̂

(`)
k ): (22)

(Note that those weights sum to one.)
5) Drop ŝ(`)k�1 and x̂(`)k of each three-tuple (ŝ(`)k�1; ŝ

(`)
k ; x̂

(`)
k ); the re-

sulting particle list fŝ(`)k ; w
(`)
k gN`=1 represents �k .

6) If the number of “effective” particles Nk;e� in the list
fŝ(`)k ; w

(`)
k gN`=1 is “small”, i.e., if

Nk;e�
4

=
1

N

`=1 w
(`)
k

2 < "N (23)

where " is a positive number (e.g., " = 0:3), “resample” the list
fŝ(`)k ; w

(`)
k gN`=1:

a) Draw N samples from the list fŝ(`)k gN`=1 with probability
proportional to w(`)

k . (If w(`)
k is large, the sample s(`)k may

be drawn several times, otherwise, it may not be drawn at
all.)

b) Associate the (uniform) weight 1
N

to each obtained sample
s
(`)
k , resulting in the new list fŝ(`)k ; 1

N
gN`=1, which represents

�k .
Some remarks follow.
• In Step 2 of the above algorithm, one needs to draw samples from
p(xk; skjsk�1). A closed-form expression for p(xk; skjsk�1) is
not required for that purpose. The state transitions may for ex-
ample be described by a stochastic difference equation. The ob-
servation model p(ykjxk; sk; sk�1), however, has to be available
in closed-form (cf. Step 3 and 4).

• Without resampling (Step 6), all but one particle will have negli-
gible weight after a few iterations (“degeneracy”); the resampling
step reduces this effect (Step 6) [11], [12].

• It is well known that particle-based estimates of logarithmic Lya-
punov exponents (or “log partition functions”, cf. (13) and (21))
are unbiased [20], [21]. The mean square error of those estimates
is upper bounded by an expression that is inversely proportional
to the number of particles N (for n >

p
N ) [22, Theorem 2,

Corollary 2]; those two properties carry over to the particle-based
estimate Î(X;Y ) (3), since the latter is a linear combination of
particle-based estimates of logarithmic Lyapunov exponents.

IV. A NUMERICAL EXAMPLE

We consider the channel

Yk = Xke
j� +Nk; (24)

Fig. 3. Information rates for the random-walk phase noise channel (25). From
top to bottom: � = 0 and � = 0:01 (on top of each other), � =

0:1; � = 0:5, and � = 1.

where Xk is the complex channel input symbol at time k; Yk is the
corresponding channel output symbol, and Nk is white Gaussian noise
with known variance �2N . For the sake of definiteness, we will assume,
first, that the channel input alphabet X is a 4-PSK constellation, and
second, that the channel input symbols Xk; k = 1; 2; . . ., are indepen-
dent and uniformly distributed. The phase �k (which takes the role of
the channel state Sk) is unknown to the receiver. We consider two dy-
namical models for the phase:

Random-walk phase model

�k = (�k�1 +Wk) mod 2� (25)

where Wk is white Gaussian noise with known variance �2W .

ARMA phase model

Zk =

m

`=1

a`Zk�` +

m

`=0

b`Wk�`; (26)

�k = Zkmod2� (27)

with known real coefficients a` and b` and where Wk is white
Gaussian noise with known variance �2W .

This channel models a single-carrier communications system with
phase jitter and perfect symbol timing knowledge [23]. The two phase
noise models (random-walk (25) and ARMA (26)) correspond to a free
running clock and a phase-locked loop respectively [24] (see also [19,
Ch. 2]

For this channel (with both phase noise models), the application of
the method of Section III is straightforward. Some numerical results are
shown in Figs. 3 and 4. For the example in Fig. 4, the parameters of the
ARMA model (26) are ma = 1;mb = 2; a1 = 0:4 and (b0; b1; b2) =
(0:3; 0:2; 0:1). In both Figs. 3 and Fig. 4, we simulated channel input/
output sequences of length n between 105 and 106, and we used N =
104 particles.

The numerical results of Fig. 3 were also checked with the auxiliary-
channel method of [7], and the results agree up to the accuracy of the
plot. The auxiliary channel is in this case a quantized version of (25)
where �k is quantized into 5000 bins. Note that quantization of the
state space is not practical for the ARMA noise model.

The convergence of the proposed method is illustrated by Fig. 5,
which shows the estimates Î(X;Y ) of 10 different simulation runs as
a function of the sequence length n (for the random-walk model).
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Fig. 4. Information rates for the ARMA phase noise channel (26) with m =
1;m = 2; a = 0:4; and (b ; b ; b ) = (0:3; 0:2; 0:1). From top to bottom:
� = 0; � = 0:01; and � = 0:1 (all on top of each other), � = 0:5,
and � = 1.

Fig. 5. Estimated information rate (for the random-walk phase noise channel)
as a function of the sequence length n, for 10 simulation runs of the particle
method, for SNR = 10 dB and � = 0:5.

V. CONCLUSION

Using particle methods, we have extended the basic idea of [1] and
[7] to channels with a continuous state space. A closed-form expres-
sion of the state transition probability is not required. The accuracy of
the proposed method depends not only on the length of the simulated
sequence (as in [1], [7]), but also on the number of particles.

It should be noted that the proposed method can be used also to com-
pute the auxiliary-channel bounds on the information rate of [7, Sec. VI].
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