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Abstract

Sum-product message passing (belief propagation) was recently extended to
messages/summaries with some nontrivial Markov structure. In this paper, a gen-
eral update rule for Markov-structured messages is proposed, and further experi-
mental results are presented for the synchronization of noisy linear-feedback shift
register (LFSR) sequences.

1 Introduction

In [1], we considered the general idea of message passing with messages that have some
nontrivial Markov structure, and we applied this idea to the problem of synchronization
(or state estimation) of noisy linear-feedback shift register (LFSR) sequences. In this
paper, we further elaborate this topic. First, we will present new experimental results
for LFSR synchronization by non-iterative forward-only message passing. Second, we
propose a general message update rule for Markov-structured messages that can also be
used in iterative algorithms. The proposed new update rule, which has some similarity
to generalized belief propagation (GBP) proposed by Yedidia et al., [2], [3], [4], does
not work well for iterative LFSR synchronization but will perhaps work well in other
applications.

2 LFSR Synchronization with Forward-Only Mes-

sage Passing

We recall the setup of [1]. For fixed integers ` and m, 1 ≤ ` < m, let

X
4
= X−m+1, . . . , X−1, X0, X1, X2, . . . (1)

be a sequence of binary random variables Xk with

Xk = Xk−` ⊕Xk−m (2)

for k > 0 and where “⊕” denotes addition modulo 2. The state of X at time k, k ≥ 0, is

the m-tuple [X]k
4
= (Xk, Xk−1, . . . , Xk−m+1). The whole sequence X is fully determined

by its state [X]k at any time k ≥ 0.
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Figure 1: Linear-feedback shift register (LFSR) sequence observed via a noisy channel.
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Figure 2: A factor graph (FFG) corresponding to Fig. 1 (with m = 4 and ` = 1).

As in [1], we assume that the sequence X1, X2, . . . is observed via a memoryless channel
with transition probabilities p(yk|xk). From the received sequence Y1, Y2, . . . , Yn, we wish
to estimate the state [X]n (or, equivalently, [X]0) of the transmitted sequence. In the
numerical examples, we will assume a memoryless Gaussian channel, i.e., Yk = X̃k + Zk

with X̃k = (−1)Xk and where Z1, Z2, . . . are independent zero-mean Gaussian random
variables with variance σ2.

An example with ` = 1 and m = 4 is shown in Fig. 1, where the boxes labelled “D”
are unit-delay cells. A factor graph corresponding to Fig. 1 is shown in Fig. 2. We use
Forney-style factor graphs (FFGs) where variables are represented by edges [5].

As pointed out in [1], the maximum-likelihood estimate of [X]n may be obtained
by non-iterative forward-only message passing with messages µk(xk, . . . , xk−m+1) that
represent a full joint probability mass function over the state variables, cf. Fig. 3 (right).
A much simpler algorithm is obtained by forward-only sum-product message passing
(belief propagation) with scalar messages as indicated in Fig. 3 (left). This algorithm
may be viewed as using the approximation

µk(xk, . . . , xk−m+1) ≈ µk(xk) · · ·µk(xk−m+1) (3)

in every step (and likewise for µ̃k in Fig. 2).
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Figure 3: Forward-only message passing for marginals (left) and for full joint pmf (right).
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Figure 4: Messages as first-order Markov chain (left) and second-order Markov chain
(right).

As in [1], we are interested in algorithms with a complexity in between these two
extreme cases. The example worked out in [1] uses the Markov-chain approximation

µk(xk, . . . , xk−m+1) ≈
µk(xk, xk−1) · µk(xk−1, xk−2) · · ·µk(xk−m+2, xk−m+1)

µk(xk−1) · µk(xk−2) · · ·µk(xk−m+2)
(4)

(and likewise for µ̃k) in every step. As in (3), the factors on the right hand side of (4)
are defined as marginals of the left-hand side. In each step, these marginals (µk(xk, xk−1)
etc.) are computed by the standard sum-product rule (cf. [5]) applied to the big dashed
boxes in Fig. 2; see [1] for a worked-out example. Note that the right hand side of (4)
is the maximum-entropy distribution with these marginals (cf. the appendix), and this
property extends to more general cycle-free Markov structures.

New simulation results for an LFSR with m = 15 and ` = 1 are shown in Figures

5–7. Fig. 5 shows Psynch
4
= P ([X̂]k = [X]k) vs. the time index k at a signal-to-noise ratio

(SNR) of −4 dB. Fig. 6 shows 1 − Psynch in logarithmic scale. Fig. 7 shows 1 − Psynch

vs. SNR at k = 130. All these plots show both the ML estimate (the best) and scalar
message passing (the worst; in Fig. 5 and 6, it does not work at all).

Between these two extremes, the plots show the performance of messages with non-
trivial Markov-structures. The worst-performing (but simplest) of these is the first-order
Markov chain (4). Then come Markov chains of order 3, 5, and 7 (which work with joint
marginals of 4, 6, and 8 variables, respectively). Contrary to our expectation (expressed
in [1]), these higher order Markov chains offer very little improvement over first-order
Markov chains; in Fig. 7, they lie all essentially on top of each other.

Essentially the same performance was obtained also with the Markov structure given
by (the right-hand side of) the following approximation:

µk(xk, . . . , xk−m+1) ≈
µk(xk, xk−1) · µk(xk, xk−2) · · ·µk(xk, xk−m+1)

µk(xk)m−2
(5)

A distinct improvement was obtained, however, by the Markov structure given by (the
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Figure 5: Psynch vs. k at -4 dB. From bot-
tom to top: scalar BP; Markov chains of
order 1, 3, 5, 7; structure (6) and gener-
alizations to higher order; and ML.
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Figure 6: 1 − Psynch vs. k at -4 dB.
From top to bottom: scalar BP; Markov
chains of order 1, 3, 5, 7; structure (6)
and generalizations to higher order; and
ML.
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Figure 7: 1−Psynch vs. SNR at k = 130.
From top to bottom: scalar BP; Markov
chains of order 1, 3, 5, 7; structure (6)
and generalizations to higher order; and
ML.
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Figure 8: 1−Psynch vs. SNR at k = 130.
Solid lines: iterative scalar BP, with and
without damping. Dashed lines: for-
ward only; from top to bottom: scalar
BP; Markov chain of order 1; struc-
ture (6); and ML.



right-hand side of) the approximation

µk(xk, . . . , xk−m+1) ≈
µk(xk, xk−1, xk−2) · µk(xk, xk−2, xk−3) · · ·µk(xk, xk−m+2, xk−m+1)

µk(xk, xk−2)µk(xk, xk−3) · · ·µk(xk, xk−m+2)
(6)

This Markov structure yields the best performance that we could achieve so far with
moderate complexity. Interestingly, the obvious generalizations of (6) to higher order
marginals yield only minor improvements; in Fig. 7, they lie all on top of each other.

A comparison with standard iterative message passing (BP) is given in Fig. 8. At
high SNR (low error probability), the performance of BP can be improved by damping
the messages, but it is still outperformed by the forward-only algorithms.

3 A General Update Rule for Markov-Structured

Messages

As mentioned, the computation of the Markov-structured messages in the previous section
amounts to the computation of “overlapping” multi-variable marginals, which in turn are
computed by applying the elementary sum-product rule to the dashed boxes in Fig. 2.
However, for iterative message passing, it is not obvious how the Markov-structured
messages should be computed. In this section, we propose a general update rule for
Markov structured messages in an arbitrary factor graph.

3.1 Problem Statement

The setup is shown in Fig. 9. The three variables/edges X, Y , and Z may be “vectors”,
i.e., they may consist of many elementary variables/edges. The solid box labeled f is
a generic function/node in some “big” (Forney-style) factor graph (cf. [5]). The other
solid box in Fig. 9 is the whole rest of the graph, which is summarized by the message
←
µ (x, y, z). By standard factor graph syntax, the graph of Fig. 9 (ignoring the dashed
box) represents the global function

g(x, y, z)
4
= f(x, y, z)

←
µ (x, y, z). (7)

We will propose a general rule for the computation of messages out of f , which
subsumes the standard sum-product rule and generalizes it to Markov-structured multi-
variable messages.

In the setup of Fig. 9, standard scalar sum-product message passing assumes that the
message

←
µ (x, y, z) arriving at f factors as

←
µ (x, y, z) =

←
µ (x)

←
µ (y)

←
µ (z) (8)

(which is often called the “independence assumption”). The outgoing message is then

→
µ (x, y, z) =

→
µ (x)

→
µ (y)

→
µ (z) (9)

with
→
µ (x) =

∑
y

∑
z

f(x, y, z)
←
µ (y)

←
µ (z) (10)
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Figure 9: Message passing out of a generic node.

and with
→
µ (y) and

→
µ (z) defined analogously. Note that (10) implies

→
µ (x)

←
µ (x) = g(x) (11)

with
g(x)

4
=

∑
y

∑
z

g(x, y, z), (12)

and analogously we have
→
µ (y)

←
µ (y) = g(y) and

→
µ (z)

←
µ (z) = g(z). Replacing f(x, y, z)

by the “lossy summary”
→
µ (x, y, z) (the dashed box in Fig. 9) changes the global function

from g(x, y, z) to

g̃(x, y, z)
4
=
→
µ (x, y, z)

←
µ (x, y, z) (13)

=
→
µ (x)

→
µ (y)

→
µ (z)

←
µ (x)

←
µ (y)

←
µ (z) (14)

= g(x)g(y)g(z), (15)

which is the maximum-entropy distribution with the marginals g(x), g(y), and g(z).
We seek to generalize (8)–(15) and the maximum-entropy property of g̃(x, y, z) to

messages with some nontrivial Markov structure such as, e.g.,

←
µ (x, y, z) =

←
µ (x, y)

←
µ (y, z)

←
µ (y)

(16)

3.2 Auxiliary Quantities

As in Section 2, we will define “marginals” of messages as if they were probability mass
functions (which they usually are); for example:

→
µ (x, y) =

∑
z

→
µ (x, y, z) (17)

→
µ (x) =

∑
y

∑
z

→
µ (x, y, z) (18)

=
∑

y

→
µ (x, y). (19)

The same rules will apply also to marginals of
←
µ (x, y, z) and of f(x, y, z) and g(x, y, z).



We will use auxiliary quantities (Merkli messages)
↪→
µ (x, y),

↪→
µ (x), etc., which (in the

setup of Fig. 9) are defined as follows:

↪→
µ (x, y, z)

4
=

g(x, y, z)
←
µ (x, y, z)

(20)

= f(x, y, z) (21)

↪→
µ (x, y)

4
=

g(x, y)
←
µ (x, y)

(22)

↪→
µ (x)

4
=

g(x)
←
µ (x)

(23)

etc. These quantities do not obey the standard rules for marginalization. Instead, we
have the following rules (Merkli marginalization):

↪→
µ (x, y) =

∑
z

g(x, y, z)
←
µ (x, y)

(24)

=
∑

z

f(x, y, z)

←
µ (x, y, z)
←
µ (x, y)

(25)

=
∑

z

↪→
µ (x, y, z)

←
µ (x, y, z)
←
µ (x, y)

; (26)

↪→
µ (x) =

∑
y

∑
z

g(x, y, z)
←
µ (x)

(27)

=
∑

y

∑
z

f(x, y, z)

←
µ (x, y, z)
←
µ (x)

(28)

=
∑

y

↪→
µ (x, y)

←
µ (x, y)
←
µ (x)

(29)

etc.

3.3 An Update Rule for Markov Structured Messages

We propose a general update rule for Markov structured messages. We will state it
explicitly for three special cases, all within the setup of Fig. 9; the general case will then
be obvious.

Standard Scalar Messages

Assumed form of incoming message:

←
µ (x, y, z) ∝ ←

µ (x)
←
µ (y)

←
µ (z). (30)

Update rule for outgoing message:

→
µ (x, y, z) ∝ ↪→

µ (x)
↪→
µ (y)

↪→
µ (z). (31)



It follows that the outgoing message can be written as

→
µ (x, y, z) ∝ →

µ (x)
→
µ (y)

→
µ (z) (32)

which has the same Markov structure as the incoming message
←
µ (x, y, z).

From (28), the quantities
↪→
µ (x),

↪→
µ (y), and

↪→
µ (z) may be computed as, e.g.,

↪→
µ (x) =

∑
y

∑
z

f(x, y, z)
←
µ (y)

←
µ (z), (33)

which is the standard sum-product rule (10). Approximating f(x, y, z) by the message
→
µ (x, y, z) amounts to approximating g(x, y, z) by

g̃(x, y, z)
4
=
→
µ (x, y, z)

←
µ (x, y, z) (34)

∝ ↪→
µ (x)

↪→
µ (y)

↪→
µ (z)

←
µ (x)

←
µ (y)

←
µ (z) (35)

= g(x)g(y)g(z). (36)

Markov Chain Messages

Assumed form of incoming message:

←
µ (x, y, z) ∝

←
µ (x, y)

←
µ (y, z)

←
µ (y)

. (37)

Update rule for outgoing message:

→
µ (x, y, z) ∝

↪→
µ (x, y)

↪→
µ (y, z)

↪→
µ (y)

. (38)

It follows that the outgoing message can be written as

→
µ (x, y, z) ∝

→
µ (x, y)

→
µ (y, z)

→
µ (y)

(39)

which has the same Markov structure as the incoming message
←
µ (x, y, z). (However, in

general,
↪→
µ (x, y) 6= →

µ (x, y), etc.)

From (25), the quantity
↪→
µ (x, y) may be computed as

↪→
µ (x, y) =

∑
z

f(x, y, z)

←
µ (y, z)
←
µ (y)

(40)

and the quantity
↪→
µ (y) may be computed according to (29). Approximating f(x, y, z) by

the message
→
µ (x, y, z) amounts to approximating g(x, y, z) by

g̃(x, y, z)
4
=
→
µ (x, y, z)

←
µ (x, y, z) (41)

∝
↪→
µ (x, y)

↪→
µ (y, z)

↪→
µ (y)

←
µ (x, y)

←
µ (y, z)

←
µ (y)

(42)

=
g(x, y)g(y, z)

g(y)
(43)



Note that (43) is the maximum-entropy distribution with the marginals g(x, y) and
g(y, z), cf. the appendix.

In the special case where f(x, y, z) has already the Markov structure of
←
µ (x, y, z), we

obtain
→
µ (x, y, z) ∝ f(x, y, z). This can be seen as follows. Assume

f(x, y, z) =
f(x, y)f(y, z)

f(y)
(44)

and thus

g(x, y, z) = f(x, y, z)
←
µ (x, y, z) (45)

=
f(x, y)f(y, z)

f(y)

←
µ (x, y)

←
µ (y, z)

←
µ (y)

(46)

It follows that g(x, y, z) can be written as

g(x, y, z) =
g(x, y)g(y, z)

g(y)
(47)

Together with (43), this implies g̃(x, y, z) ∝ g(x, y, z), which in turn inplies
→
µ (x, y, z) =

f(x, y, z).

Lossless Messages

Assumed form of incoming message:

←
µ (x, y, z) (some general function). (48)

Update rule for outgoing message:

→
µ (x, y, z) ∝ ↪→

µ (x, y, z) (49)

= f(x, y, z). (50)

3.4 Experimental Results

The forward-only algorithms of Section 2 may all be viewed as trivial applications of the
update rule proposed in this section. However, the real test of the proposed update rule
are iterative algorithms. Unfortunately, the straightforward application of the proposed
update rule to iterative LFSR synchronization (with Markov-structured forward and
backward messages) gives poor numerical results. Damping helps, but we have not yet
studied this thoroughly. Better results may perhaps be obtained in other applications.

4 Conclusion

We have considered message passing algorithms with Markov-structured messages. How-
ever, we now have more questions than answers. We have proposed a new general update
rule, which, however, is not backed by convincing experimental results. For LFSR syn-
chronization, we have obtained good experimental results with noniterative forward-only
message passing using simple low-order Markov structures. However, the performance



of more complex higher-order Markov structures remains unsatisfactory. The design of
good iterative algorithms for this problem seems difficult. No iterative algorithm seems
to work without some sort of damping, and all iterative algorithms seem to have difficul-
ties at high SNR. However, a systematic study of all known techniques including GBP
has not yet been made.

Appendix: Max-Entropy Property of Markov Chains

The following theorem is undoubtedly well known, and its generalization to general cycle-
free Markov structures is straightforward.

Theorem: Let p(x, y, z) and q(x, y, z) be two probability mass functions such that

p(x, y) = q(x, y) (51)

p(y, z) = q(y, z) (52)

p(x, y, z) = p(x|y)p(y)p(z|y). (53)

Then
Hp(X, Y, Z) ≥ Hq(X, Y, Z) (54)

with Hp(X,Y, Z)
4
= −

∑
x,y,z p(x, y, z) log p(x, y, z) and analogously for Hq(X, Y, Z).

Proof:

Hp(X, Y, Z) = Hp(X, Y ) + Hp(Z|X, Y ) (55)

= Hp(X, Y ) + Hp(Z|Y ) (56)

= Hq(X, Y ) + Hq(Z|Y ) (57)

≥ Hq(X, Y ) + Hq(Z|X, Y ) (58)

= Hq(X, Y, Z). (59)
2
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