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Abstract— It is shown how steepest descent (or steepest ascent)
may be viewed as a message passing algorithm with “local”” mes-
sage update rules. For example, the well-known backpropagation
algorithm for the training of feed-forward neural networks may
be viewed as message passing on a factor graph. The factor
graph approach with its emphasis on “local” computations makes
it easy to combine steepest descent with other message passing
algorithms such as the sum/max-product algorithms, expectation
maximization, Kalman filtering/smoothing, and particle filters.
As an example, parameter estimation in a state space model is
considered. For this example, it is shown how steepest descent can
be used for the maximization step in expectation maximization.

I. INTRODUCTION

Suppose we want to find
émax 2 argmax f(6), (1)
0

where 6 takes values in R™. The familiar steepest descent (or
“steepest ascent” or “gradient descent/ascent”) method tries to
find émax as follows [1]: starting from some initial guess 9(0),
compute

glE+D = k) 4 ), Vog (@)l » ()

for k =1,2,3,..., where the parameter A, (the “step size”) is
a positive real number that may be depend on k. An alternative
update rule is

g+ = ) L x; Vg log 900 - 3)
The update rule (2) or (3) is iterated until a fixed point is
reached or until the available time is over.

In this paper, we will describe steepest descent as a message
passing technique that operates on a factor graph. (See [2]
for an introduction to factor graphs.) In particular, we will be
interested in solving (1) in the case where f(#) is a “marginal”
of a real-valued function f(z,8):

F0)=>" f(x,0), “

where ) denotes either summation of integration over the
whole range of z. We will assume f(z,6) > 0 for all z and
all 6.

The described problem arises, for example, in the context of
parameter estimation in state space models. In such a context,
the variable x is itself a vector and the function f(x, ) has a
nontrivial factor graph (cf., for example, Fig. 5). In such cases,
the naive computation of (4) and/or (1) is often not feasible.

We will now assume that a factor graph for f(z,0) is
available. It may then be possible to compute f(6) (4) and
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Brmax (1) by sum-product message passing and by max-product
message passing, respectively [2]. Unfortunately, this approach
is often unfeasible due to the following reasons:

« If the variable z is continuous, the sum-product (integral-
product) rule may lead to intractable integrals; in this
case, we cannot compute (4).

o The max-product rule may lead to an intractable expres-
sion; in this case, we cannot compute (1).

One way to deal with the second problem (the maximization
step) is to use steepest descent.

An alternative way to compute Bmax (1) (exactly or ap-
proximately) is expectation maximization (EM). (A message
passing view of EM is developed in [4] [5].) However, the
maximization step of EM is often intractable; we will show
how steepest descent can be applied in such cases.

This paper is structured as follows. In Section 2, we describe
steepest descent as message passing and its interaction with
the sum-product algorithm. In Section 3, we demonstrate the
maximization step of EM by means of steepest descent as
message passing. Some concluding remarks are offered in
Section 4.

II. SUM-PRODUCT ALGORITHM AND STEEPEST DESCENT

In earlier work [6], we briefly touched upon the subject
of gradient descent in the context of the sum(mary)-product
algorithm. Here, we present a more detailed exposition. As
in [6], we start by considering the factor graph depicted
in Fig. 1(a), which represents the global function f(§) =
fa(0)fB(0). The gradient Vg f(6) in update rule (2) is given
by

Vof(0) = [fe(0)Vofa(®) + fa(@)Vafs(®), (©)

and similarly, the gradient Vglog f(f) in update rule (3)
equals

Velog f(6) = Vglog fa(0) + Vylog fr(f). (6)

Steepest descent according to rule (3) (and similarly (2)) may
be viewed as follows:
1) The equality constraint node in Fig. 1(a) broadcasts
the estimate (). Node f4 replies with the mes-
sage Vglog fa(f)|ya) and likewise node fp.

N

2) A new estimate #(**1) is computed as

G+ — gik) 4y (Ve log fa(0)

)
+Vologfa®),, ). @



3) Iterate 1-2.

(@ fa and fp as
closed boxes.

(b) Opening the box f4.

Fig. 1. Factor graph of f(0) = fa(0)f5(9).

In Fig. 1(a), the nodes f4 and fp may be summaries
of the subgraph “behind” them, as illustrated in Fig. 1(b):
the function f, is a summary of the dashed box. This box
contains a.o. the local node h, which is connected to the
equality constraint node ©. The summary f4() is computed
from the messages (1 x,_p, arriving at the node h from the
left, according to the sum-product rule [2]:

n
fa(f) x Z h(z1,...,zp,0) - H px,—n(xe).  (8)
T1y.0yTp (=1

The above gradient method requires Vg fa(0)
and/or Vglog fa(0) (see (7)). In the following, we show
how these expressions can be computed. We distinguish three
cases:

1) h is an equality constraint node

2) h is differentiable

3) h corresponds to a deterministic mapping.

A. Equality constraint node

6 1 X 1
: ~ = % : ~ \Y% [/} h %
= fa(9) = Vofa
O, Xn
(a) Equality constraint (b) Differentiable node

node. function.

Fig. 2. Generic nodes.

If h is an equality constraint node (see Fig. 2(a)), the
required gradients are computed similarly as in (5) and (6):

Vofa®) = > Voussm®) [ #e.-g0), O

(=1 m=1;m#L
and

Volog fa(f) = Zvologuez—ﬁ(@)-
=1

(10)

B. Differentiable node function

Let h(z1,...,%n,0) be differentiable w.r.t. §. The gradi-
ent Vg fa(f) can then be computed as follows:

Vofa(®) < > Voh(ar,...,xn,0) - [[ pxoonle). (A1)
(=1

Tyl

Note that in (11), we differentiated under the integral sign;
we will always assume in this paper that this is allowed. The
update rule (11) can be viewed as applying the sum-product
rule to the node Vyh, as illustrated in Fig. 2(b). The incoming
messages are the standard sum-product summaries p x,— 4. In
other words, if h is differentiable, the differentiation operator
does not propagate to the subgraph on the left of h; it is (only)
applied to the local node function h. This is not the case if i
corresponds to a deterministic mapping, which is the subject
of next subsection.
The gradient Vg log f4(6) equals

Vo fa(8)

fa®) ’
and is computed from (8) and (11). In order to evalu-
ate Vg log fa(#), the sum-product rule is applied both to h
and Vg h.

If the variables X, are discrete (and the alphabet is not “too
large”), the expressions (11) and (12) can be evaluated in a
straightforward manner. If on the other hand those variables (or
a subset of them) are continuous, the integrals in (8) and (11)
may be evaluated in several ways [6] (see also [7] for an
illustration):

Violog fa(6) (12)

o In some cases, a closed-form expression of (8) or (11)
exists.

o The integrals in (8) and (11) can be approximated based
on canonical distributions as for example Gaussian dis-
tributions.

o The incoming messages px,—,»(x¢) may be a hard deci-
sion Z¢. The expressions (11) and (12) reduce to

v0fA(0) OCVgh(ii’l,...,i'n,a) (13)
and
 Voh(d, ..., #n,0)
v0 IngA(a) - h(ifl,...,fffn,e) (14)

o The messages jix,—n(2¢) may be lists of samples (a.k.a.
“particles”) {a:g“)} [6]. Consequently

Vofa(®) o< > Voh(ai™, ...zl 9), (15)
and
Y Voh(a{M, .2l 0)
Vg log fa(f) = 2 . . :
o log fa(6) ) B, 20 6)
e (16)

where the sums are taken over the lists of samples.



¢ An alternative method to solve the integrals in (8)
and (11) is to quantize the variables x¢; the integrals be-
come finite sums, which can be evaluated in a straightfor-
ward manner [6]. This method is however only applicable
in low-dimensional systems.

« Combinations of the previous options are possible.

C. Deterministic mapping

We consider the case where the local function & corresponds

to the deterministic mapping y = g(z1,...,2n,0), ie.,
h(xl,"',xnay,a)éé(y_g($1,"'7mn70))' (17)
We assume that g is differentiable. Let x = (x1,...,2p). The
message fa(f) is computed as follows
n
fa®) o< Y 5(y—9(@,0) uy ) [] nxesnlee) (18)
T1s00Tn (=1
Z py —n (9 H x,—n(Te). (19)
As a consequence
Vofa(® Zve 1y —n (9 Huxﬁh (@) (20)
- Zv"g (@,0) Vy by —n(y )|y=g(wy9)
(21)

: H 1x,—h(Te).
(=1

Eq. (21) may be viewed as applying the sum-product rule
to the node function Vyg, as illustrated in Fig. 3. Note that
the differentiation operator propagates to the left of h: besides
the standard sum-product messages i x,—n(2¢), also the mes-
sage Vy py (Y )|g(z g) 18 required, which is the gradient of
a sum-product message! The message V, ,uyﬁh(y)|g(m p) 18
computed by the same rules as Vg fa(6) (cf. (9) (11) (21))
Similarly as in (11) and (12), the update rule (21) can be
evaluated in several ways, depending on the datatype of the
incoming messages. For example, if the incoming messages z ¢
and Vy py -5 (y)] g(2,0) &€ hard decisions, where Z stands for
(Z1,...,Zn), then

Vofa®) o Vog(2,0) Vy pyn(¥)ly.0) -

This rule may be familiar to the reader who has some
background in neural network theory: indeed, if one applies
the rule (22) together with (7) (13) and (14) to a factor graph
that represents a feed-forward neural network, one obtains the
popular backpropagation algorithm [8].

(22)

D. Summary
We have seen that

1) When steepest descent is combined with the sum-
product algorithm, gradients of sum-product messages
are required.

g

(C)
Vog —
Vofa
Y T Vou

Fig. 3. Deterministic mapping g.

2) If the local node function £ is differentiable, the gradient
of the outgoing message is computed by the sum-product
rule applied to Vyh, where the incoming messages
are standard sum-product messages (see (11)). In other
words, the differentiation operator does not propagate
through the node h; it is only applied to the local node
function h.

3) If the local node h corresponds to a deterministic map-
ping g, the gradient of the outgoing message is computed
by the sum-product rule applied to Vg (see (21)). All
incoming messages are standard sum-product messages,
except for one, which is the gradient of an incoming
sum-product message jy . In this case, the differentiation
operator is applied to both the local node function
and the incoming message py; in other words, the
differentiation operator propagates from node h towards
the node the message py has been sent from.

4) Differentiation also propagates through the equality con-
straint node (see (9) and (10)).

5) The three previous observations indicate that along an
edge in the factor graph, the following messages may
propagate

o standard sum-product messages,
o gradients of sum-product messages,
o hard decisions é

depending on
o the location of the edges at which the steepest
descent update rules are applied
« the kind of nodes that are involved.

6) The sum-product messages and their gradients may be
represented in various ways.

III. EXPECTATION MAXIMIZATION AND STEEPEST
DESCENT

In this section, we show how the maximization step in
the EM algorithm can be performed by steepest descent. We
start from the exposition in [5], where it is shown how the
EM algorithm can be viewed as message passing on factor
graphs (see also [4]). Consider the factorization

f(l',a) = fA(e)fB(mve)a

which is represented by the factor graph of Fig. 4.

In this setup, EM amounts to iterative computation of the
following messages [5]:
Upward message h(6):

(23)



Fig. 4. Factor graph of (23).

_ X, fB(@,0%) log i (x,6)

h(6 ~ 24
) >, fB(z,600) e
Downward message 6k
g+ = argmax(log f4(8) + h(9)). (25)
[4

The computations (24) and (25) may be simplified when f 4
and fp have “nice” factorizations. Nevertheless, the maximiza-
tion step (25) may still be intractable. We show by an example
how gradient descent can be applied to solve this problem. Let

Fa(0) = fa,(01) fa,(01,602) ... fa, (Bn—1,0,),

and

fB(mae) =

(26)

IBo(%0) fB, (%0, ®1,y1,01) [B, (%1, 2, Y2, 02)
"'an(mn—lvxnaynaen)a (27)

as illustrated in Fig. 5. As we pointed out before, the prob-
ability function f(z,6) may represent a state-space model
parameterized by the parameter 6, whose prior model is
determined by f4(6). The term h(6) is given by [5]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

! @1 @2 @n 3
i S O i I =
SO 7Y R T fao ] 1
o 1 b 1 b ¥
hy (61) 4 ha(6:) 4 ()}
o Xo L X, X, X1 X, |
s L1 [ = — 1=
! fBo fB1 fBz an
T Y1 T Y2 T Yn
Fig. 5. Factor graph of (26) and (27).
hO) = Y he(Be), (28)
(=1
where

hf(af) = Z pB(xl—laxfa |y7é) lOg fBe (wf—laxfayaef)a (29)

Te—1,Te

and pB(CUg_l,CUg,|y,é) is the joint probability distribution
of X,_1 and X, (conditioned on ¥ = y and ©® = 0);
the latter can be computed from the sum-product mes-
sages px,—fp, (Te) and px, sy, (xe—1) as follows
pB(l'l—lymZ,kU,é)

[ (@1, 21,Y,00)x,— 1, (T 1X, 115, (Te-1)

> IB(@e—1, 70,9, 00 px,—p5, (TO)BX, 1 pa, (Te-1)

Te—1,2¢
(30)
The downward message 6 equals
(61,02,...,0,)7"
n n
— argmax [mg Fan(0) + 3 1og fa, (Be—1,00) + > hf(ef)].
01,02,--,0n (=2 (=1
€29

The gradient Vyh(h) = (Vo,h(8),. .. ,Vgnh(t‘)))T required
for steepest descent is computed as follows

Vo, he(6e)
ZVeg[ > pB(ﬂfthl“z,|y,é)longz(ﬂfthﬂfz,y,Oz)],
o (32)
= > pe(we1,201y,0)Vo, log f5, (e 1,20,y,0),
. (33)

where pg(z¢_1,xe, |y,0) is given by (30).

Note that (30) (and hence also the rule (33)) involves
standard sum-product messages. Those messages may again
be represented in different ways, such as lists of particles,
quantized messages, Gaussian distributions etc. [6].

! 0 % 0¢ |
fi
L fao | Fana
20
Xo1 X
f5 | — 1 ——
,,,,,,,,,,,,,,,,,,,,,,,,, foo
T Ye
Fig. 6. Steepest descent as summary propagation.

Expectation maximization, in which the M-step is per-
formed by steepest descent, may then be formulated as fol-
lows (see Fig. 6):
1) The equality constraint nodes ©, broadcast the esti-
mates éek .

2) The nodes fa, and fa,,, reply with the mes-
sages Vg, log fa,|say and Vy, longH1|é(k) respec-
tively.



3) A forward and backward sum(mary)-product sweep is
performed in the box fp.

4) The nodes fp, reply with Vg,hl;q,, computed accord-
ing to (33).

5) The new estimate G(k+1) jg computed:

éék"'l) 0( ) + /\k( Vy, log fAe|0(k)

+ v9e log fAz+1 |§(k) + v9eh|é(k) ) (34)

6) Iterate 1-5.

Several update schedules are possible [2]. For example, in
order to reduce the computational cost, one may prefer not to
update the sum-product messages (1x,— sz, (v¢) (cf. Step 3)
at each iteration; the probability functions p g(z¢—1,z¢, |y, é)
(cf. Step 4) are then recomputed according to (30) using
the new estimate 6, but the old messages 1, f5, (Te); this
type of scheduling is the main idea behind [9]. Forward-
only message passing amounts to recursive algorithms, known
as “recursive EM” or “online EM” [10]-[13]. In [10] [11],
recursive algorithms for fixed parameter estimation are derived
based on EM in conjunction with steepest descent. It is
common practice to extend the algorithms of [10] [11] to time-
varying parameters by introducing some ad-hoc “forgetting”
mechanism. We illustrated by the example (26)—(27), how
parameters with non-trivial priors can be treated in a rigorous
way (see also [4] [5] [12] [13]).

The example (26)-(27) can easily be extended to general
functions f4 and fgp. The gradient of the h-message leaving
the generic node g(z,0,,) = g(21, 22, - - -, Zn, 0 (cf. Fig. 7)
is given by

> 9(2,0m) Ve, log g(z,

) lj,uZe—)H ( )

v9mh‘(0m) == p n
00 0m) I1 w720, (20)
- (35)
Zy
Om
: ~ 9 —=
- Vo, h
Zn
Fig. 7. Generic node g.

An illustration of the above procedure can be found in [14],
where it is applied to the problem of code-aided carrier phase
estimation.

IV. CONCLUSION

We elaborated on previous work on steepest descent in the
context of the sum(mary) product algorithm; we have shown
in more detail how steepest descent can be viewed as message
passing on factor graphs. In this setting, (1) steepest descent
can easily be combined with other powerful algorithms such

as Kalman filters/smoothers, the sum-product algorithm, ex-
pectation maximization and particle filters; (2) novel iterative
signal processing algorithms can systematically be derived.
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