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Abstract— It was shown in prior work that, with proper digital
calibration, ADCs with high static resolution can in principle be
built without precise analog components. The paper offers some
afterthoughts on this topic and connects it with beta expansions.
It is suggested that, with proper calibration (but not without),
ADC architectures based on the beta expansion can indeed
achieve an effective resolution of m bits with analog circuit
complexity linear in m and without precise analog components.

I. INTRODUCTION

The static accuracy of certain analog-to-digital converters
(ADCs) with low-precision components and digital correction
was studied in [1], [2]. In this paper, we continue the discus-
sion in [2] and connect it with the work by Daubechies et al.
on ADCs based on beta expansions [3]–[5]. As in [1], [2],
we will consider only the static accuracy of ADCs; both noise
and dynamic issues (including the thorny practical problem of
accurate sampling) will be ignored in this paper.

Our interest will be in sequential ADC schemes that do not
require precise analog circuits (but do need digital calibration).
The necessary background and the motivation will be given
in Section II. In particular, it will be pointed out that such
an ADC (with attractive analog complexity) may be obtained
by using the digital-to-analog converter (DAC) of [2] in a
successive-approximation ADC scheme.

Nevertheless, a more direct “robustification” of the ideal
sequential ADC (cf. Section II) is desirable. A promising step
in this direction was made by Daubechies et al. in [3]–[5].
By using beta expansions, exact comparators are no longer
needed. However, exponentially precise analog computations
are still required. We will review this approach in Section IV.

Generalizations of this approach will be considered in
Section V. These generalizations do not require precise analog
computations, but some sort of digital calibration. For a
simplified version of such a scheme, the effective resolution is
assessed by simulations. We will conclude that such schemes
may be attractive and deserve further study.

II. BACKGROUND AND MOTIVATION

Let x be the real number in the analog domain that we
wish to convert into the digital domain and let x̂ ∈ R be the
resulting digital approximation of x. Without loss of generality,
we will assume 0 ≤ x < 1. As in [2], we will measure the
accuracy of an ADC in terms of its effective resolution (in

bits), which is defined as

Reseff = − log2

√
12 ·MSE (1)

where MSE denotes the mean squared error

MSE =
∫ 1

0

(x̂(x)− x)2dx. (2)

Let us begin by recalling two standard ADC schemes and
the “random” flash ADC of [2].

Ideal Sequential ADC. Let x1
4= x and let x2, x3, . . . , xN ∈

R and b1, b2, . . . , bN ∈ {0, 1} be defined by the recursion

xk+1 = 2xk − bk (3)

with
bk =

{
0, if xk < 1/2
1, if xk ≥ 1/2 (4)

Then

x̂ =
N∑
k=1

bk2−k (5)
2

This ADC scheme provides the bits b1, . . . , bN of x̂ in the
standard digital representation in N steps and its effective
resolution (1) is N bits. The problem with this scheme is that
both (3) and (4) need to be performed by analog circuits and
with sufficient precision. The cost of such circuits in terms of
chip area (and therefore also in terms of power consumption)
grows exponentially with N and is unaffordable unless N is
very small.

Ideal Flash ADC. The analog input x is fed in parallel to K
comparator circuits. Each comparator has its own threshold
θk = k∆ with ∆ = 1/(K + 1) and it computes as digital
output the sign of x− θk. If θk ≤ x < θk+1, we have

x̂ = k∆ + ∆/2. (6)
2

This ADC scheme provides an effective resolution of
log2(K + 1) bits. The required accuracy (and thus the chip
area and the power consumption) of each comparator is linear
in K, i.e., exponential in the effective resolution.

However, it was shown in [2] that the precision of the com-
parators can be reduced almost arbitrarily if digital calibration
is used.



“Random” Flash ADC with Digital Calibration. As with
the ideal flash ADC, we have K comparator circuits, but
now with arbitrary thresholds θk, k = 1, . . . ,K. For the
sake of clarity, we will define the dummy thresholds θ0 = 0
and θK+1 = 1 and assume θk < θk+1 (after reordering, if
necessary). If θk ≤ x < θk+1, we have

x̂ = (θk + θk+1)/2. (7)
2

The MSE (2) of such an ADC is

MSE =
1
12

K∑
k=0

(θk+1 − θk)3. (8)

The following observations were made in [2]:
1) If the thresholds θk are distributed uniformly between 0

and 1, then the expected effective resolution (in bits) is

Reseff = log2K − log2

√
6 (9)

≈ log2K − 1.29 bits (10)

in the limit of K →∞.
2) Even slight deviations (as well as large deviations) from

the ideal flash ADC (where θk = k∆) tend to yield an
effective resolution close to the asymptotic value (9).

It follows that such an ADC does not need precise comparators
and may therefore be attractive. However, with cheap compara-
tors, the thresholds θk will vary from chip to chip and need to
be measured somehow. Moreover, the number of comparators
still grows exponentially with the effective resolution.

Having thus set the stage, it is natural to ask whether some
sort of calibrated sequential ADC scheme exists that retains
the compactness and elegance of the ideal sequential ADC but
does not need precise analog computations.

III. SUCCESSIVE-APPROXIMATION ADC
WITH DAC FROM [2]

A sequential ADC with many of the desired properties
may actually be obtained by using the DAC of [2] in a
successive-approximation ADC [6]. Indeed, the main result
of [2] is the observation that current steering DACs with N
“small” (i.e., near-unit size) and imprecise current sources can
achieve an effective resolution of about N − 2 bits. The same
effective resolution is achieved when such a DAC is used in a
successive-approximation ADC, which requires no additional
analog circuits except for a single comparator (which may
even have an offset).

However, we will continue on a different path.

IV. ON BETA EXPANSION ADCS

A beta expansion ADC [3]–[5] is a generalization of the
ideal sequential ADC as follows.

Beta Expansion ADC. Let β be a real number such that
1 < β ≤ 2. Let x1

4= x and let x2, x3, . . . , xN ∈ R and
b1, b2, . . . , bN ∈ {0, 1} satisfy the recursion

xk+1 = βxk − bk (11)

where

bk =


0, if βxk < 1
0 or 1, if 1 ≤ βxk < 1

β−1

1, if βxk ≥ 1
β−1

(12)

Then

x̂ =
N∑
k=1

bkβ
−k (13)

2

Note that (13) converges to x for N →∞.
In the middle case of (12), bk may be chosen freely. If the

difference
1

β − 1
− 1 =

2− β
β − 1

(14)

is sufficiently large, the comparison in (12) may thus be
carried out by a low-precision comparator. However, the
analog computation of (11) still requires a precision (and
the corresponding chip area and power consumption) that is
exponential in the effective resolution.

It was shown in [5] that the parameter β need not be
known in advance, but can be estimated accurately from the
digital output. While this is good news, it does not remove the
necessity of exponential precision in the computation of (11).

V. ON LOW-PRECISION APPROXIMATIONS
OF BETA EXPANSION ADC

Implementations of the computation (11) by low-precision
(i.e., small) analog circuits will result in a modified recursion

xk+1 = fk(xk, bk) (15)

where fk(xk, bk) are unknown functions (indexed by k) that
somehow approximate (11). While (13) no longer works in
this case, such circuits may nonetheless be useful. In particular,
they may be used with the correction (7), where the thresholds
θk are those values of x where at least one bit bk flips. The
effective resolution is then given by (8).

In order to get some idea of the potential performance of
such schemes, we consider generalizations of (11) with

xk+1 = βkxk − bk(1 + εk) (16)

and with

bk =
{

0, if βkxk < sk
1, if βkxk ≥ sk. (17)

Note that (16) and (17) are meant to be a toy model—
not a realistic model—of a real analog circuit. We then
consider ensembles of such ADCs where βk, εk, and sk are
random variables so as to model component mismatch between
nominally identical circuits. Specifically,
• βk is a normal random variable with mean β and standard

deviation σβ .
• εk is a normal random variable with mean 0 and standard

deviation σε.
• sk is a normal random variable with mean β

2(β−1) (which
is the middle point between 1 and 1/(β−1)) and variance
σs.
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Fig. 1. Effective resolution vs. standard deviation σ (= σβ = 2σε = 2σs)
for β = 2 and N = 12 sections (top) as well as N = 8 sections (bottom).
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Fig. 2. Effective resolution vs. standard deviation σ (= σβ = 2σε = 2σs)
for β = 1.8 and N = 12 sections (top) as well as N = 8 sections (bottom).

Some simulation results for such ADCs are given in Figures
1–3. All these plots show the effective resolution (according to
(1) and (8)) vs. the standard deviation σ = σβ and with σε =
σs = σ/2. In all three figures, results are shown both for N =
12 sections (top) and for N = 8 sections (bottom). In each
figure, the solid line represents the average effective resolution
and the dashed lines represent the top tenth percentile and the
bottom tenth percentile of the simulated ensemble.

In Fig. 1, we have β = 2; this ensemble is not very robust,
especially for N = 12. In Fig. 2, we have β = 1.8, which
results in much more robust performance. In Fig. 3, we have
β = 1.5, which extends the range of robust performance at
the expense of a reduced resolution for small σ.

These simulations confirm the suggestion that, with proper
digital calibration, ADCs based on the beta expansion can
indeed do without precise analog computation.

Note that we did not propose a practical calibration scheme,
but the simulation results give motivation to study such
schemes.
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Fig. 3. Effective resolution vs. standard deviation σ (= σβ = 2σε = 2σs)
for β = 1.5 and N = 12 sections (top) as well as N = 8 sections (bottom).

REFERENCES

[1] M. Frey and H.-A. Loeliger, “On the static accuracy of digitally corrected
analog-to-digital and digital-to-analog converters,” Proc. 2006 Informa-
tion Theory & Applications Workshop, UCSD, La Jolla, CA, Feb. 6–10,
2006.

[2] M. Frey and H.-A. Loeliger, “On the static resolution of digitally-
corrected analog-to-digital and digital-to-analog converters with low-
precision components,” IEEE Trans. Circuits & Systems I, vol. 54, no. 1,
pp. 229–237, January 2007.

[3] I. Daubechies, R. A. DeVore, C. S. Güntürk, and V. A. Vaishampayan,
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