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A General Computation Rule for Lossy Summaries/Messages
with Examples from Equalization

Junli Hu, Hans-Andrea Loeliger, Justin Dauwels, and Frank Kschischang

Abstract— Elaborating on prior work by Minka, we formu-
late a general computation rule for lossy messages. An impor-
tant special case (with many applications in communications)
is the conversion of “soft-bit” messages to Gaussian messages.
By this method, the performance of a Kalman equalizer is
improved, both for uncoded and coded transmission.

I. I NTRODUCTION

We consider message passing algorithms in factor graphs
[1], [2]. If the factor graph has no cycles, the messages
computed by the basic sum-product and max-product al-
gorithms areexact summaries of the subgraph behind the
corresponding edge. However, in many applications (espe-
cially with continuous variables), complexity considerations
suggest, or even dictate, the use ofapproximateor lossy
summaries. For example, it is customary to use Gaussian
messages even in cases where the “true” (sum-product or
max-product) messages are not Gaussian, or to use scalar
(i.e., single-variable) messages instead of multi-dimensional
(i.e., multi-variable) messages.

In this paper, we first formulate a general message update
rule for lossy summaries/messages that is a nontrivial gener-
alization of the standard sum-product or max-product rules.
This rule was in essence proposed by Minka [3], [4], but our
general formulation of it may not be obvious from Minka’s
work.

We then focus on one particular application: the conver-
sion of binary (“soft-bit”) messages into Gaussian messages,
which has many uses in communications. For our numerical
examples, we then further focus on equalization: we give
simulation results for an iterative Kalman equalizer both for
a linear FIR (finite impulse response) channel and for a linear
IIR (infinite impulse response) channel. For uncoded trans-
mission, the new algorithm almost closes the gap between
the BJCR algorithm and the LMMSE (linear minimum mean
squared error) equalizer; for coded transmission, the new
algorithm improves the performance of the iterative Kalman
equalizer at very little additional cost.

It should be noted that the new message computation rule
yields iterative algorithms even for cycle-free graphs. We
also note that some sort of damping is usually required to
stabilize the algorithm.
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Fig. 1. Lossy message
→
µapprox along a general edge/variableX.

In this paper, we will use Forney-style factor graphs as
in [2] where edges represent variables and nodes represent
factors.

II. A G ENERAL COMPUTATION RULE FOR LOSSY

MESSAGES/SUMMARIES

Consider the messages along a general edge (variable)X
in some factor graph as illustrated in Fig. 1. Let

→
µ true(x)

be the “true” sum-product or max-product message which
we want (or need) to replace by a message

→
µapprox(x) in

some prescribed family of functions (e.g., Gaussians). In
such cases, most writers (including these authors) used to
compute

→
µapprox as some approximation of

→
µ true. However,

the semantics of factor graphs suggests another approach.
Note that the factor graph of Fig. 1 represents the function

f(x) 4=
→
µ true(x)

←
µ (x), (1)

which the replacement of
→
µ true by

→
µapprox will change into

f̃(x) 4=
→
µapprox(x)

←
µ (x). (2)

It is thus natural to first compute

f̃(x) = some approximation of
→
µ true(x)

←
µ (x) (3)

and then to compute
→
µapprox from (2). The approximation in

(3) must be chosen so that solving (2) for
→
µapprox yields a

function in the prescribed family.
Important special cases of this general approach (including

the Gaussian case) were proposed as “expectation propaga-
tion” in [3] and [4].

The choice of a suitable approximation in (3) will, in
general, depend on the application. For many applications,
a natural approach (proposed and pursued by Minka) is to
minimize the Kullback-Leibler divergence:

f̃ = argmin
f ′ in chosen family

D(f‖f ′). (4)

In this paper, the approximate messages will always
be Gaussian. However, other families of functions can be
used. For example, multivariable messages with a prescribed
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Fig. 2. Converting a soft-bit message
→
µb into a Gaussian message

→
µgs

or
→
µgM.

Markov-chain structure were used in [6]; with hindsight, the
update rule for such messages that was proposed in [6] is
indeed an example of the general scheme described here. A
related idea was proposed in [5].

III. C ONVERTING SOFT-BIT MESSAGES TOGAUSSIAN

MESSAGES

We will now apply the general scheme of the previous
section to the conversion of messages defined on the finite
alphabet{+1,−1} into Gaussian messages. The setup is
shown in Fig. 2, which is (a part of) a factor graph with
an equality constraint between the real variableX and the
{+1,−1}-valued variableY . (The equality constraint node
in Fig. 2 may formally be viewed as representing the factor
δ(x − y), which is to be understood as a Dirac delta inx
and a Kronecker delta iny.) The messages

→
µb and

←
µb are

defined on the finite alphabet{+1,−1} and the messages
←
µg,

→
µgs, and

→
µgM are Gaussians;

→
µgs denotes the standard

Gaussian approximation and
→
µgM denotes the alternative

Gaussian approximation due to Minka, as will be detailed
below.

Let us first recall the conversion of Gaussian messages

into soft-bit messages. Let
←
mg and

←−
σ2

g be the mean and the

variance, respectively, of
←
µg. The (lossless) conversion from

←
µg to

←
µb is an immediate and standard application of the

sum-product (or max-product) rule [1], [2]:( ←
µb(+1)
←
µb(−1)

)
∝

( ←
µg(+1)
←
µg(−1)

)
; (5)

in the standard logarithmic representation, this becomes

ln
←
µb(+1)
←
µb(−1)

=
2
←
mg
←−
σ2

g

. (6)

We now turn to the more interesting lossy conversion of
→
µb into a Gaussian. Let

→
mb and

−→
σ2

b be the mean and the
variance, respectively, of

→
µb, which are given by

→
mb =

→
µb(+1)− →µb(−1)
→
µb(+1) +

→
µb(−1)

(7)

−→
σ2

b = 1− (
→
mb)2. (8)

The traditional approach forms the Gaussian message
→
µgs

(with mean
→
mgs and variance

−→
σ2

gs) from the mean and the

variance of
→
µb:

→
mgs =

→
mb and

−→
σ2

gs =
−→
σ2

b . (9)

The approach of Section II yields another Gaussian message
→
µgM (with mean

→
mgM and variance

−−→
σ2

gM) as follows. In
Fig. 2, the true global function corresponding to (1) is

δ(x− 1)
→
µb(+1)

←
µg(+1) + δ(x + 1)

→
µb(−1)

←
µg(−1) (10)

which (when properly normalized) has mean

mtrue =
→
mb +

←
mb

1 +
→
mb
←
mb

(11)

and variance

σ2
true = 1− (mtrue)2, (12)

where
←
mb is the mean of

←
µb (5), which is formed as in (7).

The approximate global function (corresponding to (2)) is
the Gaussian

→
µgM(x)

←
µg(x) (13)

with mean mg and varianceσ2
g given by

1/σ2
g = 1/

−−→
σ2

gM + 1/
←−
σ2

g (14)

mg/σ2
g = →

mgM/
−−→
σ2

gM +
←
mg/
←−
σ2

g . (15)

Now a natural choice for the approximation (3) is to equate
the mean and the variance of the Gaussian approximation
with the corresponding moments of the true global function:

mg = mtrue and σ2
g = σ2

true. (16)

(As pointed out by Minka, this choice may be derived
from (4).) The desired Gaussian message

→
µgM is thus

obtained by first evaluating (11) and (12) and then computing−−→
σ2

gM and
→
mgM from (14) and (15).

Note that, in general, the message
→
µgM is not trivial even

if
→
µb is neutral (

→
mb = 0 and

−→
σ2

b = 1).

IV. I SSUES

A. Negative “Variance”

Solving (14) for
−−→
σ2

gM may result in a negative value for
−−→
σ2

gM. (This indeed happens in the examples to be described

in Section V.) In such cases,
→
µgM is a correction factor (not

itself a probability mass function) that tries to compensate
for an overly confident

←
µg. The product (13) usually remains

a valid probability mass function, up to a scale factor.
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Fig. 3. Joint code/channel factor graph.

B. Damping

In our numerical experiments (Section V), simply replac-
ing the standard Gaussian message

→
µgs by

→
µgM yielded

unstable algorithms. Good results were obtained, however,
by geometric mixtures of the form

→
µg(x) =

(
→
µgM(x)

)α (→
µgs(x)

)1−α

(17)

with 0 ≤ α ≤ 1. The mean and the variance of the resulting
Gaussian

→
µg are given by

1/
−→
σ2

g = α/
−−→
σ2

gM + (1− α)/
−→
σ2

gs (18)

and
→
mg =

→
mgMα/

−−→
σ2

gM +
→
mgs(1− α)/

−→
σ2

gs

α/
−−→
σ2

gM + (1− α)/
−→
σ2

gs

(19)

V. A PPLICATION EXAMPLE : EQUALIZATION

Consider the transmission of binary ({+1,−1}-valued)
symbols X1, . . . , Xn over a linear channel with transfer
function H(z) =

∑M
`=0 h`z

−1 and additive white Gaussian
noiseW1, . . . ,Wn. The received channel output symbols are
Y1, . . . , Yn with

Yk =
M∑

`=0

h`Xk−` + Wk, (20)

where we assumeXk = 0 for k < 0. The binary symbols
Xk may or may not be coded.

The joint code/channel factor graph is shown in Fig. 3 with
channel-model details as in Fig. 4. (In the uncoded case, the
code graph is missing.) The factor graph shown in Fig. 4
results from writing (20) in state space form with suitable
matricesA, B, andC, whereB is a column vector andC
is a row vector, cf. [2].

Equalization is achieved by forward-backward Gaussian
message passing (i.e., Kalman smoothing) in the factor graph
of Fig. 4 according to the recipes stated in [2]. (See [7] for
a more detailed discussion.)

In this paper, we are only concerned with the messages
along the edgesXk (towards the channel model) in Fig. 3.
Using the standard messages (9) results in an LMMSE
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Fig. 4. Factor graph of the channel model (one section).

equalizer; in the uncoded case, this algorithm terminates after
a single forward-backward sweep since the factor graph of
Fig. 4 has no cycles. However, using the (damped) Minka
messages (17)–(19) results in an iterative algorithm even in
the uncoded case.

Simulation results for two different channels are given in
Figures 5–7. Figures 5 and 6 show the bit error rate vs. the
signal-to-noise ratio (SNR) for an FIR channel with transfer
function H(z) = 0.227 + 0.46z−1 + 0.688z−2 + 0.46z−3 +
0.227z−4; Fig. 7 shows the bit error rate vs. the SNR for an
IIR channel with transfer functionH(z) = 1/(1− 0.9z−1).
The FIR channel was used as an example in [8]; because
this channel has a spectral null, the difference between a
LMMSE equalizer and the optimal BCJR equalizer is large.
The IIR channel was used as an example in [9].

Two different message update schedules are used: in
Schedule A, the output messages (along edgeXk out of
the channel model) are initialized to “infinite” variance and
are updated only after a complete forward-backward Kalman
sweep; in Schedule B, these messages are updated (and
immediately used for the corresponding incoming Minka
message) both during the forward Kalman sweep and the
backward Kalman sweep. From our simulations, Schedule B
is clearly superior.

It is obvious from Figures 5 and 7 that, for uncoded
transmission, the Minka messages provide a very marked im-
provement over the standard messages (i.e., over the LMMSE
equalizer). In Fig. 5, we almost achieve the performance of
the BCJR (or Viterbi) equalizer (and we also outperform
the decision-feedback equalizer [8, p. 643]). As for Fig. 7,
we almost achieve the performance of the quasi-Viterbi
algorithm reported in [9].

For the coded example of Fig. 6, a rate 1/2 convolutional
codes with constraint length 7 was used. In this case, the
iterative Kalman equalizer does quite well already with the
standard input messages (9), but the Minka messages do give



−5 0 5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

SNR

P
ro

ba
bi

lit
y 

of
 b

it 
er

ro
r 

(B
E

R
)

Minka, Schedule A, 1st Ite (LMMSE)
Minka, Schedule A, 2nd Ite
Minka, Schedule A, 120th Ite
Minka, Schedule B, 1st Ite
Minka, Schedule B, 2nd Ite
Minka, Schedule B, 120th Ite
BCJR limit

Fig. 5. Bit error rate vs. SNR for uncoded binary transmission over FIR
channel with transfer functionH(z) = 0.227 + 0.46z−1 + 0.688z−2 +
0.46z−3 + 0.227z−4.
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Fig. 6. Bit error rate vs. SNR for coded binary transmission over FIR
channel.

a further improvement at very small cost.

A key issue with all these simulations is the choice of
the damping/mixing factorα in (17)–(19). The best results
were obtained by changingα in every iteration. Typical good
sequences of values ofα are plotted in Fig. 8. We note the
following observations:

• The initial values ofα are very small.
• After a moderate number of iterations (typically

10. . . 20), the bit error rate stops decreasing. At this
point, α is still very small.

• Many more iterations with slowly increasingα are
required to reach a fixed point withα = 1.

• At such a fixed point withα = 1, the approximation (3)
holds everywhere.
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Fig. 7. Bit error rate vs. SNR for uncoded binary transmission over IIR
channel with transfer functionH(z) = 1/(1− 0.9z−1).
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Fig. 8. Good sequences forα vs. the iteration numberk.

VI. CONCLUSION

Elaborating on Minka’s work, we have formulated a
general computation rule for lossy messages. An important
special case is the conversion of “soft-bit” messages to
Gaussian messages. In this case, the resulting Gaussian mes-
sage is non-trivial even if the “soft-bit” message is neutral.
By this method, the performance of a Kalman equalizer is
significantly improved.
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