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1. INTRODUCTION

The history of cryptology shows that most secret-key cipher systems that
have been broken were broken by exploiting the departure of the plaintext
statistics from those of a completely random sequence. The technique of
"homophonic substitution" is an old technique for converting an actual
plaintext sequence into a (more) random sequence. At EUROCRYPT '88,
Günther [1] introduced an important generalization of homophonic sub-
stitution, which we will call "variable-length homophonic substitution".
The purpose of this paper is to give an information-theoretic treatment of
Günther's type of homophonic substitution.

In Section 2, we give a rather careful discussion of Shannon's concept
of a "strongly-ideal" cipher system, as this provides the motivation for any
type of homophonic substitution. Section 3 gives the precise definition of
variable-length homophonic substitution together with the necessary and
sufficient condition for such substitution to be perfect, i.e., to create a
completely-random sequence. Section 4 shows that perfect homophonic
substitution can be achieved by the introduction of less than 2 bits of
entropy into each source letter that is coded, and Section 5 shows that such
perfect homophonic substitution can be realized using less than 4 random
bits per letter coded. Section 6 indicates certain obvious generalizations of
the previous results and mentions their implications for source coding (or
"data compression").

The information-theoretic results used in this paper are quite basic and
may be found in any good textbook on information theory, e.g., the book by
Gallager [2].
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2. STRONGLY-IDEAL AND UNBREAKABLE CIPHER SYSTEMS

The purpose of "homophonic substitution" can be explained by
considering a secret-key cipher system as diagrammed in Fig. l. For ease of
notation, let Xn  and Yn denote the plaintext and ciphertext sequences  [Xl,
X2,..., Xn]  and [Yl, Y2, ..., Yn],  respectively.  As customary and as Fig. l
suggests, we assume always that the secret key Z is statistically independent
of the plaintext sequence Xn for all n. We shall call the cipher n o n -
expanding if the plaintext digits and ciphertext digits take values in the
same D-ary alphabet and there is an increasing infinite sequence of positive
integers nl, n2, n3, ... such that, when Z is known, Xn and Yn uniquely
determine one another for all n ε S = {nl, n2, n3, ...}. We shall also call a
sequence of D-ary random variables completely random if each of its digits
is statistically independent of the preceding digits and is equally likely to
take on any of the D possible values. The following proposition is proved in
the Appendix by elementary information-theoretic arguments.

Proposition l: If the plaintext sequence encrypted by a non-expanding
secret-key cipher is completely random, then the ciphertext sequence is also
completely random and is also statistically independent of the secret-key.

Encrypter  Plaintext
   Source

   Key
Source

     Y1, Y2, Y3, ...
  X1, X2,  X3,  ... 

Z

Plaintext
   Source

    Key
  Source

Fig. 1:  A secret-key cipher system.

Shannon [3] has defined the key-equivocation function  f(n)  of a secret-
key cipher system to be the conditional entropy of the key given the first n
digits of ciphertext, i.e.,  f(n) = H(Z|Yn).  The key-equivocation function f(n)
is thus a measure of the number of values of the secret key Z that are
consistent with the first n digits of ciphertext. Because f(n) can only decrease
as n increases, Shannon called a cipher system ideal if f(n) approaches a
non-zero value as n tends toward infinity, and strongly ideal if f(n) is
constant, i.e., if H(Z|Yn) = H(Z) for all n, which is equivalent to the
statement that the ciphertext sequence is statistically independent of the
secret key.
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Corollary l to Proposition l: If the plaintext sequence encrypted by a
non-expanding secret-key cipher is completely random, then the cipher
system is strongly ideal (regardless of the probability distribution for the
secret key).

Virtually all useful non-expanding ciphers have the property, which
we call "non-degeneracy", that changing the value of the secret key Z,
without changing the value of the plaintext sequence Xn, will change the
value of the ciphertext sequence for all n sufficiently large, except for a
negligibly small fraction (often 0) of possible key values for any given value
of Xn. Equivalently, a non-expanding cipher is non-degenerate if

H(Yn|Xn) ≈ H(Z)

holds for all sufficiently large n and all probability distributions for Xn when
all possible values of the secret key Z are equally likely. But, as shown in the
Appendix,

H(Yn|Xn) = H(Xn|Yn)

holds for all n in a non-expanding cipher when the plaintext sequence Xl,
X2, ... is completely random. The following conclusion is immediate.

Corollary 2 to Proposition l: If the plaintext sequence encrypted by a
non-expanding secret-key cipher is completely random and all possible key
values are equally likely, then the conditional entropy of the plaintext
sequence given the ciphertext sequence satisfies

H(Xn|Yn) ≈ H(Z)

for all n sufficiently large.

This corollary implies in particular that, in a ciphertext-only attack, the
cryptanalyst can do no better to find Xn than by guessing at random from
among as many  possibilities as there are possible values of the secret key Z.
In other words, the cipher system is unbreakable in a ciphertext-only attack
when the number of possible key values is large.

The foregoing has shown that virtually any non-expanding secret key
cipher can be used as the cipher in an unbreakable cipher system, provided
that the plaintext source emits a completely random sequence. But it is
precisely the goal of "homoponic substitution" to convert a source not of
this type into such a source. When the homophonic coding is "perfect", it is
then a trivial task to build unbreakable secret-key cipher systems in the form
shown in Fig. 2.
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Non-Expanding
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U1, U2, ...
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    Key
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Fig. 2:  Use of homophonic substitution within a secret-key cipher system.

Y1, Y2, ...

3. VARIABLE-LENGTH HOMPHONIC SUBSTITUTION

Here and hereafter, we will look upon the plaintext source of the
previous section as the result of coding the actual message source, whose
output sequence we denote by U1, U2, U3, ..., into the D-ary sequence X1, X2,
X3, ... .  We assume that the random variables Ui take values in an alphabet
of L letters where 2 ≤  L < ∞.  Until further notice, we assume that the source
is memoryless and stationary or, equivalently, that U1, U2, U3, ... is a
sequence of independent and identically-distributed (i.i.d.) L-ary random
variables. The coding problem for the actual message source then reduces to
the coding problem for the single random variable U = U1. To avoid
uninteresting  complications,  we assume hereafter that all L values of D
have  non-zero probability.

Note that, when L = Dw for some positive integer w and when all L
possible values of U are equally likely, the simple coding scheme of
assigning a different one of the Dw D-ary sequences of length w to each
value of U makes the codeword X1, X2, ..., Xw  completely random.
Conventional homophonic substitution attempts to achieve this same
result when the values of U are not equally likely by choosing (if possible)
an appropriate w with Dw > L, partitioning the Dw D-ary sequences of
length w into L subsets, placing these subsets in correspondence with the
values of U in such a manner that the number of sequences in each subset is
proportional to the probability of the corresponding value of U, and then
choosing the codeword for a particular value u of U by an equally-likely
choice from the subset of sequences corresponding to u. (Successive letters
from the message source are independently coded in this manner.) When
such a partitioning of the D-ary sequences of length w is possible, the
codeword Xl, X2, ..., Xw is equally likely to be any of the D-ary sequences of
length w so that the sequence X1, X2, ..., Xw  is completely random. The
different codewords that represent the same value u of U are  traditionally
called the "homophones" for U, but we shall soon use this terminology in a
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slightly different and more fundamental sense. It is easy to see that
conventional homophonic substitution for which X1, X2, ..., Xw  is
completely random is possible if and only if each value ui of U has
probability ni/Dw for some integer ni, in which case ni is the number of
homophones that must be assigned to ui.

Variable-length homophonic substitution, introduced by Günther [1],
generalizes the conventional scheme in that the D-ary sequences used can
have different lengths, and the seqences in the subset corresponding to a
given value u  of U can be selected with unequal probabilities as the
codeword for u. The length W of the codeword X1, X2, ..., XW for U can thus
be a random variable. For an arbitrary probability distribution for U,
Günther [1] gave an algorithm for such variable-length homophonic
substitution with D = 2 that makes the resulting binary codeword X1, X2, ...,
XW  completely random. He also noted that, when L = 2n so that the
"natural coding" of a value of U would be a binary sequence of length n, his
algorithm sometimes gave an expected codeword length E[W] less than n so
that his algorithm also performed "data compression".

Fig. 3 diagrams a coding scheme of sufficient generality to include
conventional homophonic substitution and variable-length homophonic
substitution, as well as conventional source coding (or "data compression").
By the homophonic channel of Fig. 3, we mean a memoryless channel
whose input alphabet { u1,u2,...,uL } coincides with the set of possible values
of U, whose output alphabet { v1,v2,v3,...}  is either finite or countably
infinite, and whose transition probabilities P(V=vj|U=ui) have the property
that for each j there is exactly one i such that P(V=vj|U=ui) ≠ 0.  We shall
consider those vj for which P(V = vj|U = ui)  > 0 to be the homophones for
ui, rather than  considering  the codewords into which these vj are encoded
to be the "homophones."  By the D-ary prefix-free encoder of Fig. 3, we
mean a device that assigns a D-ary sequence to each vj  under the constraint
that this codeword is neither the same as another codeword nor forms the
first part (or "prefix") of a longer codeword.  This provision, which is
satisfied by Günther's coding scheme [1], ensures that, when X1, X2, ... is a
sequence of codewords, the end of each codeword can be recognized without
examining any following  symbols in the sequence.   It is well-known in
information  theory  (cf. [2, p.49] ) that  such coding is general in the sense
that for any D-ary uniquely-decodable code there is a D-ary prefix-free code
with exactly the same codeword lengths.
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     Source

Fig. 3:  A general scheme for homophonic substitution.

When the homophonic channel of Fig. 2 is deterministic in the sense
that all non-zero transition probabilities are 1 (so that we might as well say
V = U), then Fig. 3 depicts the usual source coding (or "data compression")
situation considered in information theory. When the homophonic
channel is non-trivial but the binary encoding is trivially prefix-free because
all codewords have the same length m (i.e., the code is a "block code"), then
Fig. 3 depicts conventional homophonic substitution. In the case where
both the homophonic channel is deterministic and the binary encoding is
non-trivially prefix-free, then Fig. 3 depicts variable-length homophonic
substitution as introduced by Günther [1].

Fig. 4 gives two examples of the general homphonic-substitution
scheme illustrated in Fig. 3, both for the same binary (i.e., L=2) message
source. We will soon see that both schemes in Fig. 4 are perfect.  The upper
system exemplifies conventional homophonic substitution into binary
sequences of length w = 2. The lower system illustrates Günther's variable-
length homophonic substitution.  Note that the variable-length scheme has
an expected codeword length of E[W] = 3/2 digits compared to E[W] = 2 for
the conventional scheme.  This reduction of  coded symbols is an advantage
offered by perfect variable-length homophonic substitution even when
perfect conventional homophonic substitution is possible.
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Fig. 4:  Two examples of perfect homophonic  substitution for the
           same binary memoryless message source.

We will call a homophonic-substitution scheme perfect if the encoded
D-ary sequence X1, X2, ... is completely random. For the memoryless (source
and channel) case considered in Fig. 3, this is equivalent to the condition
that the codeword X1, X2, ...,XW for V = V1 be completely random. Hereafter,
all entropies are assumed to be in bits and all logarithms are understood to
be to the base 2.

Proposition 2: For the homphonic-substitution scheme of Fig. 3,

H(U)  ≤  H(V)  ≤  E[W] log D (l)

with equality on the left if and only if the homophonic channel is
deterministic, and with equality on the right if and only if the homophonic-
substitution scheme is perfect. Moreover, there exists a D-ary prefix-free
coding of V such that the scheme is perfect if and only if P(V = v) is a
negative integer power of D for all possible values v of V. When this
condition is satisfied, the scheme is perfect if and only if P(V = vi) = D-wi
holds for all values vi of V where wi is the length of the D-ary codeword
assigned to vi.

Proof: It is well-known in information theory  that H(V) ≤ E[W] log D holds
for every D-ary prefix-free coding of U (cf. [2, p.50]) and that equality can be
achieved if and only if P(V = v) is a negative integer power of D for all
values v of V. Moreover, equality (when possible) is achieved by and only
by a D-ary prefix-free code that assigns a codeword of length w to a value v
of V with P(V = v) = D-w. It is further well-known, (cf. [2, p.47]) that X1, X2, ...,
XW is completely random for, and only for, such a code. It remains only to
verify the left inequality in (l). Because the output V of the homophonic
channel uniquely determines the input U, i.e., H(U|V) = 0, and because
H(U,V) = H(U) + H(V|U) = H(V) + H(U|V), it follows that

H(V) = H(U) + H(V|U). (2)

The fact that H(V|U) ≥ 0 now gives the left inequality in (l). This inequality
holds with equality if and only if H(V|U) = 0, i.e., if and only if the channel
input U also uniquely determines the channel output V, which is
equivalent to saying that the homophonic channel is deterministic.

From the facts that, in the two homophonic-substitution schemes of
Fig. 3, values of V with probability l/4 are assigned binary (D = 2) codewords
of length 2 and the single value of V with probability l/2 is assigned a binary
codeword of length l, it follows from Proposition 2 that both schemes are
perfect.

When P(V = vi) = D-wi for a positive integer wi holds for all values vi
of V, it is well-known (cf. [2, p.48]) that a D-ary prefix-free code in which the
codeword for vi has length wi may be simply constructed as follows: Choose
any distinct D-ary sequences of length l to be codewords for those vi (if any)
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with P(V = vi) = D-1, choose any distinct D-ary sequences of length 2 not
having any already-chosen shorter codeword as a prefix to be the codewords
for those vi (if any) with P(V = vij) = D-2, etc.

4. OPTIMUM HOMOPHONIC SUBSTITUTION

We will call a D-ary homophonic-substitution scheme (as in Fig. 3) for a
given message source optimum if it is perfect and minimizes the expected
length E[W] of the D-ary codeword assigned to the homophonic channel
output V when the input is the message source output U. Let CD(U) denote
the set of all homophonic channels with the property that the output letters
all have probabilities that are negative integer powers of D when the input
is U. Proposition 2 shows that finding an optimum homophonic-
substitution scheme reduces essentially to finding a homophonic channel
in CD(U) that minimizes the output entropy V and thus we shall also call
such a homophonic channel o p t i m u m . We shall soon see that the
optimum homophonic channel is essentially unique. For simplicity, we
will take D = 2 in the remainder of this section and the next; the required
generalization will be indicated in Section 6.

We begin by noting that the channels in C2(U) are characterized by the
fact that, for each value u of U, the probabilities of the homophones for u
form a decomposition  of P(U = u) as a sum of negative integer powers of 2.
For example, the upper and lower homophonic channels in Fig. 4 are both
in C2(U) and decompose P(U = u2) = 3/4 as l/4 + l/4 + l/4 and l/2 + l/4,
respectively. We next note that if the channel is optimum then the
decomposition of P(U = u) for every u must consist of distinct negative
powers of 2. The reason for this is that two terms equal to 2-n would
contribute 2(-2-n log 2 -n) = n 2-n+l to the entropy H(V), whereas their
replacement by a single term equal to their sum 2-n+l would contribute only
-2-n+l log 2-n+l = (n-l)2-n+l, which is always smaller. Our assumptions that L
≥ 2 and that all L possible values of U have non-zero probabilities ensures
that 0 < P(U = u) < l for all u. But any real number r satisfying 0 < r < l either
has no decomposition as a finite sum of distinct negative powers of 2, in
which case its decomposition as an infinite sum of distinct negative powers
of 2 is unique, or it has such a finite decomposition together with a unique
decomposition as an infinite sum of distinct negative powers of 2 in which
the smallest term in the former sum is replaced by an infinite sum of
successive negative powers of 2. For example, 3/8 can be decomposed as l/4
+ l/8 or as l/4 + l/l6 + l/32 + l/64 + ...  . This finite decomposition (if
possible) of P(U = u) always contributes less to H(V) than does the infinite
one because the contribution of the successive powers of  two is

  ∞
-∑  2-n log (2-n) = (k + 2)2-k

n=k+l

and s always greater than -2-k log (2-k) = k2-k. We have thus proved the
following characterization of optimum homophonic channels.
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Proposition 3:  A homophonic channel in C2(U) is optimum if and only if,
for every value u of U,  its transition probabilities P(V = v|U = u) for the
homophones of v cause the probabilities P(V = v) = P(V = v|U = u)P(U = u)
of these homophones to equal (in some order) the terms in the unique
decomposition of P(U = u) as a finite sum of distinct negative powers of 2
when P(U = u) = i/2n for some positive integers i and n, and as an infinite
sum of distinct negative powers of 2 otherwise.

It follows from Proposition 3 that the lower homophonic channel in
Fig. 4 is optimum, and hence that E[W] = H(V) = 3/2 is the minimum value
of E[W] for perfect homophonic-substitution for the message source of Fig.4.
Proposition 3 also answers in the negative the question raised by Günther [1]
as to whether his algorithm for perfect homophonic substitution is always
optimum. It is easily checked that, for some message sources, in Günther's
algorithm the same value u of U can result in two differenct codewords of
the same length or, equivalently in our language, two of the homophones
for u can have the same probability.

It remains only to find a tight upper bound on H(V) for an optimum
homophonic channel. Let

P(U = u) =  ∑  2-n

                   nεI
where the sum on the right is the decomposition of P(U = u) created by an
optimum homophonic channel.

Then [16 July 1996: Fallacy in next lines--see corrected proof at end of paper.]
H(V|U = u) =   ∑  (2-n/P(U = u)) log (2-n/P(U = u))
                          nεI
                      < - ∑  2-n log 2-n

                          nεI
where the inequality is strict because the sum it bounds increases
monotonically with P(U = u) but P(U = u) < l. Thus,

         ∞
H(V|U = u) <  ∑  n 2-n <  ∑  n 2-n = 2 (3)
                          nεI        n=l

where the second strict inequality results from the fact that I must be a
proper subset of the positive integers. Multiplying by P(U = u) in (3) and
summing over u gives

H(V|U) < 2. (4)
Using (4) in (2) and making use of Proposition 2, we obtain our desired
bounds on H(V).

Proposition 4: For an optimum binary homophonic-substitution scheme,

H(U) ≤ H(V) = E[W] < H(U) + 2.

The somewhat remarkable conclusion from this proposition is that an
optimum homophonic channel never increases the entropy of its input U
by more than 2 bits, regardless of how large H(U) might be! It is easy to see
that the upper bound in Propositon 4 is as tight as possible by considering
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the the binary source with P(U = u1) = 2-n and P(U = u2) = l - 2-n. As n
increases, H(U) tends to 0 but the entropy H(V) = 2(1-2-n) of the output of the
optium homophonic channel for U tends to 2 bits.

5. REALIZATION OF OPTIMUM HOMOPHONIC SUBSTITUTION

The question now arises as to how one can conveniently realize the
"awkward" transition probabilities that are required in an optimum
homophonic channel such as the lower channel of Fig. 4. We assume that
the only source of randomness available to the implementer is a binary
symmetric source (BSS), i.e., a device whose output sequence R1, R2, R3, ... is
a completely-random binary sequence.

The simple way to realize the transition probabilities of an optimum
homophonic channel is best explained by an example. Suppose that P(U = u)
= l3/32 = l/4 + l/8 + l/32. By Proposition 3, the transition probabilities to the
three homophones for u are the "awkward" numbers (l/4)/(l3/32) = 8/l3,
(l/8)/(l3/32) = 4/l3 and (l/32)/(l3/32) = l/l3. The key point is that these three
probabilities are proportional to l/4, l/8 and l/32 and hence also
proportional to l/2, l/4, and l/l6. Now consider the random experiment
illustrated in Fig. 5 in which a binary rooted tree is traversed, starting at the
root, until a leaf is reached; the experiment halts if the leaf has been
assigned to one of the three homophones v1, v2 or v3, otherwise it returns
to the root for another traversal. In any one traversal, the probabilities of
reaching v1, v2 and v3 are proportional to l/2, l/4 and l/l6. Thus the
probabilities of the experiment halting on v1, v2 and v3 must also be
proportional to l/2, l/4 and l/l6 so that these probabilities can only be 8/l3,
4/l3 and l/l3, respectively.

0

0

0

0

1

1

1

1

v1

v2

 v3

__
 -

Fig. 5:  A rooted tree which, if traversed continually from the
           root until a labelled leaf is reached, results in probabi-
           lities 8/13, 4/13 and 1/13 of terminating on the leaves
           v1, v2, and v3, respectively.
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Consider now the average number of binary digits emitted by the BSS
before the scheme just described terminates on a homophone for u. Because
one node at depth l will always be assigned to a homophone and at least one
other leaf must be assigned to a homophone, the probability exceeds l/2 that
the experiment will terminate on any one traversal of the tree. Thus, an
average of less than 2 traversals will be needed. The average number of bits
used in one traversal will be greatest if the tree is infinitely long, in  which
case this average is exactly

∞
 ∑  n 2-n = 2
n=1

because the traversal then ends with probability 2-n on the leaf at depth n.
Thus, less than 4 bits from the BSS will be required on the average to select
the homophone for any value u of U. (Of course, no bits from the BSS are
needed when P(U = u) = 2-n for some integer n.)

Proposition 5: An optimum homophonic channel for any message random
variable U can be realized with a BSS as the only source of randomness in a
manner such that the expected number of bits E[B|U = u] from the BSS
required to determine the homophone for u satisfies

E[B|U = u] < 4

for every value u of U.

6. GENERALIZATIONS AND REMARKS

The results of Sections 4 and 5 are easily generalized to the case of D-ary
homophonic coding with D > 2. In Proposition 3, 2 must be replaced by D
everywhere, and "distinct" must be replaced by "at most D-l times
occurring". The inequalities in Proposition 4 become

H(U) ≤ H(V) = E[W] log D < H(U) + D
D-1 log D. (5)

The realization of optimum D-ary homophonic substitution requires that
the BSS of Section 5 be replaced by the D-ary symmetric source whose
output is a completely random D-ary sequence, and that the binary rooted
tree traversed to obtain a homophone be replaced by a D-ary rooted tree with
D-l leaves at each depth and one node that is extended to the next depth
(except in the case of a finite tree where there are D leaves at the maximum
depth). The bound of Proposition 5 changes to

E[B|U = u] < ( D
D-1)2 (6)
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where now of course B is the count of D-ary letters from the random source.
The interested reader should have no difficulty in verifying the validity of
these generalizations as no new arguments are needed.

It is also easy to generalize all the results of this paper to the case of an
arbitrary L-ary message source. For the homophonic coding of Ui, one
merely needs to replace P(U = u) by P(Ui = u|U1...Ui-1 = u1... ui-1) where u1,
u2, ..., ui-1 is the sequence of message digits already coded. The homophonic
channel is now a channel with memory as its transition probabilities will
now depend on the past of the input sequence.

Finally, we mention the implications of Proposition 4 for source
coding. Suppose that U is actually a sequence T1, T2, ..., TN of N digits from a
memoryless and stationary source with entropy H(T). Then H(U) = NH(T)
so that proposition 4 shows that average number of binary encoded digits
per true source letter, E[W]/N,  satisfies

E[W]/N < H(T) + 2/N, (7)

which can be made as close to H(T) as desired by choice of N. Inequality (7)
differs from the traditional source-coding result of information theory (cf. [2,
p. 51]) only in that the latter has l/N in place of 2/N. The interesting fact is
that the encoded digits are completely random when the optimum
homophonic-substitution scheme is used to achieve the near-ideal data
compression described by (7), but are only "roughly" completely random in
the traditional deterministic source coding scheme. Whether this true
complete randomness might be useful in source coding is a question that we
leave to others to answer.

APPENDIX

The definition in Section 2 of a non-expanding cipher is equivalent to
the condition that

H(Yn|Xn,Z) = 0 (Al)
and

H(Xn|Yn,Z) = 0

for all n ε S, regardless of the statistics for Xn and for Z. Thus, with the aid of
the identities

H(Xn,Yn,Z) = H(Xn)+H(Z|Xn)+H(Yn|Xn,Z)

                                        = H(Yn)+H(Z|Yn)+H(Xn|Yn,Z),

it follows that

H(Yn) = H(Xn)+H(Z|Xn)-H(Z|Yn).



13

But the independence of the key Z and plaintext sequence Xn is equivalent
to H(Z|Xn) = H(Z) so that

H(Yn) = H(Xn) + H(Z) - H(Z|Yn)

holds for all n ε S. Thus, the inequality H(Z|Yn) ≤ H(Z), which holds with
equality if and only if Yn and Z are independent, implies

H(Yn) ≥ H(Xn) (A2)

for all n ε S with equality if and only if Yn and Z are independent.

The assumption that Xn is completely random gives H(Xn) = n log D bits
and thus implies H(Yn) ≥ n log D. On the other hand, H(Yn) ≤ n log D also
holds and equality occurs if and only if Yn is completely random. Thus,  if Xn

is completely random, equality must hold in (A2), which implies both that
Yn is completely random and that Yn and Z are independent for all n ε S.
But, the complete randomness of Yn and its independence from Z imply the
complete randomness of Ym and its independence from Z for all m with l ≤
m < n. Because the set S contains arbitrarily large positive integers, it
follows that the entire ciphertext sequence  Yl, Y2, Y3, ... is completely
random and independent of the key Z, which is the claim in Proposition l.

Beginning with the identities

H(Xn,Yn) = H(Xn)+H(Yn|Xn)

                 = H(Yn)+H(Xn|Yn)

and recalling that if Xn is totally random then so is Yn and thus H(Xn) =
H(Yn), we see that

H(Yn|Xn) = H(Xn|Yn)

holds for all n in a non-expanding cipher when the plaintext sequence is
completely random. This is the claim preceding Corollary 2 to Proposition l.
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