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The Collision Channel Without Feedback 
JAMES L. MASSEY, FELLOW, IEEE, AND PETER MATHYS, MEMBER, IEEE 

Ahstrucf-A model is proposed for the situation where M users share a 
common communication resource but, because of unknown time offsets 
among their clocks, cannot transmit their data packets in a time-sharing 
mode and, because of the lack of a feedback link, can never determine 
these time offsets and also can never be sure of the outcomes of their 
individual packet transmissions. Each user is required to make his packet 
transmissions at times determined by a protocol signal that is independent 
of the data to be sent. 

The capacity and zero-error capacity regions of this channel are de- 
termined for both the unsynchronized and slot-synchronized cases; these 
four regions are shown to coincide. It is further shown that a dense set of 
rate points on the outer boundary of this region can be achieved in the 
slot-synchronized case. Specific constructions of protocol sequences for 
achieving these points are given, and the technique of “decimation decod- 
ing” is introduced for identifying the sender of each successfully trans- 
mitted packet. Maximum-erasure burst-correcting codes over an alphabet 
of arbitrary size are constructed and shown to suffice for reconstructing the 
packets lost in “collisions” when these protocol sequences are used. 

I. INTRODUCTION 

T HE USUAL PURPOSE of “random accessing” is to 
reduce the large message delay that would otherwise 

result if many senders, who only infrequently had mes- 
sages, shared a common communications resource on a 
time-division multiple-access (TDMA) basis. Sometimes, 
however, random accessing is necessitated where TDMA 
might be preferred but is impractical because of the diffi- 
culty in synchronizing transmission from the senders. Satel- 
lite relay systems and mobile radio systems are instances 
where such synchronization of data packets may be well- 
nigh impossible. 

Random accessing leads inevitably to “collisions” when 
two or more senders simultaneously transmit. It is often 
thought that “feedback” is required in such systems so that 
senders can retransmit packets after being notified via 
feedback of their loss in collisions. 

The purpose of this paper is to explore how much loss of 
transmission capacity occurs when M senders are forced to 
use random accessing because they cannot synchronize 
their transmissions. This viewpoint requires us to rule out 
the presence of a feedback link, as such feedback could 
otherwise be exploited by the users to bring their transmis- 
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sions eventually into any desired synchronism. We shall 
demonstrate that reliable random-access communications 
is indeed possible without a feedback link. 

In Section II, we describe the channel model that will be 
used through this paper. Section III introduces four differ- 
ent capacity regions and states the main result of this 
paper, viz. that these four regions coincide. Section IV 
gives the required proof that reliable communication out- 
side the capacity region is impossible. Section V gives a 
constructive scheme for signaling without error at rates on 
the outer boundary of the capacity region when the senders 
are slot-synchronized. Section VI gives a similar construc- 
tive scheme for signaling without error at all rates in the 
interior of the capacity region in the fully unsynchronized 
case. Finally, in Section VII, we place the results of this 
paper in historical perspective, and we make some remarks 
about the significance and proper interpretation of these 
results. 

II. THECHANNELMODEL 

Channel models generally have two distinct features: 1) 
specification of the conditional probability law (or de- 
terministic rule) for the channel output(s) given the chan- 
nel input(s); and 2) specification of constraints on channel 
usage. The first of these two specification might well be 
called the “basic channel model.” For instance, the basic 
channel model might be a discrete-time memoryless ad- 
ditive Gaussian noise channel. The constraint on channel 
usage then might be a specified upper bound on the second 
moment of the input variable or a specified upper bound 
on the magnitude of the input variable. Note that the 
channel model is not complete (and in particular the 
capacity is not computable) until the constraints on the 
channel usage are specified. 

A. The Basic Channel Model 

The basic channel model for the collision channel without 
feedback (CCw/oFB) is illustrated in Fig. 1. Our intent is 
to model the situation in which there are M channel users, 

Fig. 1. Basic channel model of collision channel without feedback. 
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each of which occasionally sends a  “packet” of some fixed 
duration, say T seconds, but otherwise is silent. Thus, the 
input signal xi(t) from user i in F ig. 1  will be  zero except 
in those intervals of length T seconds where user i is 
actually sending a  packet, in which intervals we assume 
only that xi(t) is some suitably recognizable nonzero 
waveform. W e  assume that a  packet has Q  possible values 
for some fixed integer Q , Q  2  2, and  we define log, Q  bits 
of information to be  a  packet of information. 

Our intent further is to mode l the situation where there 
is no  common time  reference between any of the users or 
the receiver. To  achieve this, we introduce the time  offsets 
s,, 6,; * *> 8, as shown in F ig. 1. In F ig. 1, xi(t) denotes 
user-i’s transmitted signal at his own local time  t, while 
y(t) denotes the received signal at the receiver’s local 
time  t. 

,The time  offset ai should be  interpreted as the difference 
between the time  shown on  the receiver’s clock and the 
time  shown on  user i’s clock so that a  signal from user i, 
received at time  t on the receiver’s clock, was actually sent 
at time  t - ai on  user i’s clock. (Note that this situation is 
entirely equivalent to assuming that the clocks at user i 
and  at the receiver are perfectly synchronized, but that the 
signal from user i is delayed by Si before reaching the 
receiver. It does not hurt to think of ai as the propagation 
delay for user i’s signal-provided one is willing to allow 
negative delays.) The  key point in our mode l is that all 
time offsets are unknown to all users, and  can never be  
learned as the users receive no  feedback from the channel, 
and  are also unknown in advance to the receiver. 

Our intent next is to mode l the situation in which 
packets that overlap at the receiver, partially or completely, 
are completely destroyed by such “collision,” but are re- 
ceived error-free in the absence of a  collision. A packet 
sent by user i starting at time  t, will be  assumed to collide 
with a  packet sent by user j starting at time  t, if and  only 
if 

I(r, - Sj) -(t, - sj) I< T , 0) 
i.e., if and  only if the time  difference between receipt of 
their leading edges is less than the packet duration. W e  
assume that the received signal y(t) at the output of the 
“collision mechanism” in F ig. 1: 1) coincides with the 
corresponding recognizable packet waveform during re- 
ceipt of a  noncoll ided packet; 2) is recognizable as a  
“garble” (and nothing more) during receipt of any collided 
packets; 3) is recognizable as “silence” during periods 
when no  packet (collided or not) is received. (To be  fully 
precise, we need also to assume that the receiver is able to 
recognize the boundary between packets received success- 
fully and  precisely adjacent to one  another.) 

W e  complete our basic channel mode l by distinguishing 
two cases for the possible values of the unknown time  
offsets, namely 

1) the slot-synchronized case in which the time  offsets 
w,,*. *3 6, are arbitrary integer mu ltiples of T, 

2) the unsynchronized case in which the time  offsets 
&S,,* * -9 6, are arbitrary real numbers.  

W e  define time slot n  to be  the semi-open interval 
nN I t < (n + l)T, where local time  is understood. In the 
slot-synchronized case, if user i sends a  packet precisely 
within his own time  slot n, then it will be  received precisely 
within the receiver’s time  slot n + 6/T. Thus, if all users 
align their packet transmissions within time  slots, collisions 
will result only when received packets completely overlap. 
In the unsynchronized case, however, the users have no  
way to avoid collisions that result from only partial over- 
lapping of packets. 

B. The Constraints on Channel Usage 

The constraints on  channel usage for the CCw/oFB are 
illustrated by F ig. 2  which shows the detailed structure by 
which user i is permitted to use the basic channel of F ig. 1. 
Each user has an  independent information source which, 
upon demand,  produces a  Q-ary symbol to be  transmitted 
to the destination. 

Fig. 2. Constraint on channel usage for collision channel without 
feedback. 

In actual random-access systems, “information” is trans- 
m itted only via the contents of packets and  not also via the 
tim ing of access attempts. To  say this in another way, the 
randomness of the “information” is not used in the selec- 
tion of transmission times. Such a  prohibition has the 
desirable effect that system performance does not vary 
with the statistical nature of the information transferred. 
W e  wish to impose such a  prohibition against the depen-  
dence of starting times on  information to be  transmitted in 
our channel mode l. W e  do  this by requiring that each user 
have a  protocol signal generator as shown in F ig. 2  whose 
output is a  predetermined periodic waveform that com- 
pletely specifies the transmission times for that user. This 
protocol signal si(t) for user i has period 7i, has value 
either zero or one  for all t, and takes on  value one only 
over semi-open intervals whose lengths are integer mu lti- 
ples of T. The encoder for user i is required to emit 
packets whenever si( t) = 1  and is required to be  silent (i.e., 
to emit the zero waveform) whenever si(t) = 0. W e  assume 
that the users may jointly choose their protocol signals and  
that their choice is known by the receiver. 

It may seem strange that we have included an  “on 
demand” information source in our mode l, as one  usually 
thinks of a  random-access system as the appropriate way to 
transmit many sources each of which only infrequently has 
something to say. However, it seems desirable when possi- 
ble to decouple the channel mode l from the source mode l 
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so that “capacity” does not depend on the source. One 
m ight view our “on demand” source model as a kind of 
worst-case assumption that all of the sporadic sources are 
active and hence each has a nonempty queue of messages 
awaiting transmission. Capacity can then be interpreted as 
the best possible performance for heavy loading of the 
system. Effectively, one makes such an “on demand” source 
assumption when one asserts, for instance, that the capac- 
ity of a time-division multiple-access system is one packet 
per slot. At bottom however, we must admit that our 
channel model is aimed primarily at determining how 
much loss results when M  senders share a common chan- 
nel but are prevented from time-sharing this channel by 
what appears to be the m ildest possible assumption that 
prevents such time-sharing, namely, lack of a common time 
reference. 

It may also seem strange that we have required de- 
terminisitic protocol signals (and indeed periodic ones) to 
control access in our model of a random-access ,system. 
Note, however, that nothing prevents user i from choosing 
the first period of si( t) as a realization of some appropriate 
random process. The point is that the random process that 
controls transmission time should not depend on the infor- 
mation source; thus we can conveniently consider that any 
random experiment used to produce the protocol signals 
has been carried out in advance of performing the random 
experiment used to produce the output sequences of the 
information sources. We have required the protocol se- 
quences to have finite periods for analytical convenience, 
but we have placed no finite bound on these periods so this 
is no real lim itation on the model. 

The purpose of the encoder in Fig. 2 is to code the 
output of the Q-ary source into packets for transmission so 
that the receiver will be able to reconstruct the output of 
this source from the received signal y(t) with an accept- 
ably small error probability. The receiver must, of course, 
so reconstruct each of the M  sources. 

III. CAPACITYREGIONSANDMAIN RESULTS 

In proving coding theorems for the CCw/oFB, we shall 
always assume that the “on demand” source for each user 
is a Q-ary symmetric source (QSS), i.e., a source whose next 
output digit is equally likely to be any of the Q possible 
values, independent of its past history. The QSS has an 
information rate of log, Q bits per symbol or, equivalently, 
one packet per symbol. 

For the CCw/oFB, it is convenient to define the duty 
factor pi for user i as that fraction of its period during 
which the protocol signal si(t) is nonzero, i.e., the fraction 
of time during which user i is actually transmitting packets. 
Of course, 0 I pi I 1. Note that if user i is transmitting 
information from his QSS at a rate Ri packets/slot, then 
he is actually transmitting information at a rate Ri/pi 
packets/slot during those times that he is actively using the 
channel. 

In general, by the “capacity region” of any multiuser 
channel, one means the set of all joint user rates such that 
it is possible to communicate with arbitrarily small (posi- 
tive) error probability at any joint rate inside this set, but it 

We now define the capacity region %2,, of the M-user 
unsynchronized CCw/oFB as the set of all rate vectors 
R = (R,, R, . ‘a , RM), with Ri 2 0 for 1 I i 5 M, that 
are approachable in the sense that, given any positive 
numbers 6 and e, there exist a protocol signal si(t) and a 
block code of length n, packets for each user i such that 

1) 

2) 

blocks of at least ( Ri/pi - 6)ni packets from the 
QSS for user i are encoded into blocks of ni packets 
for transmission during successive slots in which user 
i actually uses the channel; and 
a decoder can, from the channel output signal, recon- 
struct the output sequence of user i’s QSS with 
average packet error probability at most c, regardless 
of the values of the time offsets 6,, 8,; * *, 6,. 

is impossible to do so at any joint rate outside this set. By 
the “zero-error capacity region,” one means the joint rate 
region where zero-error probability is possible. To define 
such regions precisely, it is convenient to make use of 
Shannon’s concept of an “approachable” rate [l, p. 6141 so 
that the capacity regions are always closed sets. 

The zero-error capacity region, qUuo, of the unsynchro- 
nized CCw/oFB is defined in the same way as % ,, except 
that E = 0 is specified. The capacity region and zero-error 
capacity region of the slot-synchronized CCw/oFB, 9Zs 
and %ZsO, respectively, are similarly defined. 

It proves convenient here to introduce the concept of the 
“outer boundary” of a capacity (or zero-error capacity) 
region. We shall write an inequality between vectors, e.g., 
R’ I R, to denote the corresponding inequality between 
each of their components. By definition, any point R in 
any of the capacity (or zero-error capacity) regions defined 
above satisfies R 2 0, where 0 denotes the all-zero vector 
with M  components. We also see immediately that if R is 
in a capacity (or zero-error capacity) region and 0 I R’ I 
R, then R’ is also in this capacity (or zero-error capacity) 
region. Thus, we can define the outer boundary of a capac- 
ity (or zero-error capacity) region as the set of all points R 
of this region such that there is no other point R’ in this 
region for which R < R’. Note that specification of a 
capacity (or zero-error capacity) region is equivalent to 
specification of its outer boundary. As a trivial illustration of 
these concepts, we remark that the capacity region of a 
single-sender single-receiver discrete memoryless channel 
(DMC) with capacity C is the closed interval [0, C] and its 
outer boundary is the singleton set {C}. Because the outer 
boundary of a capacity (or zero-error-capacity) region for a 
multi-user channel is the natural generalization of the 
capacity (or zero-error capacity) of a DMC, we shall de- 
note points on the outer boundary of such a region by 
c = (C,, c,; * *, CM). 

The following inclusions are an immediate consequence 
of the definitions of the corresponding regions and the fact 
that the allowable values of 6 = (ai, a,, . . a, 8,) for the 
slot-synchronized CCw/oFB are a subset of those for the 
unsynchronized CCw/oFB: 
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Our ma in result, which is proved in the following two 
sections, is that these four regions in fact coincide. 

Theorem I: For the M-user CCw/oFB, 
quo  = vu = gso = GTTs. 

Moreover, the outer boundary of this common capacity 
and  zero-error-capacity region %?  is the set of all points 
C = (C,, C,; . ., C,) such that 

‘izPi,fil(l -Pj) (3) 
j#i 

wherep = (p1,p2,..., pw) is a  vector satisfying 
pro (44 

and 

iclPi = ‘; (4’4 

and each such C is determined by a  unique such p. 
W e  remark that conditions (4a) and  (4b) are equivalent 

to saying that p is a  probability vector. Thus, Theorem 1  
states that there is a  simple one-to-one correspondence 
between probability vectors and  points on  the outer 
boundary of V. 

F ig. 3  shows the region %  for the M = 2 user CCw/oFB. 
For M = 2, a  probability vector has the form p = (y, 1 - 
y) where 0  I y 2  1. Equation (3) then gives C, = y2 and 

44 

44 
RI (packets/slot) 1 

Fig. 3. Capacity region of two-user collision channel without feedback 

C, = (1 - v)~. Thus, the outer boundary of %  is just the 
set of all points C = (C,, C,) such that C 2  0  and  

&-+G=1. 

The  region V is not convex for any M 2 2, as follows 
from the M = 2  case by consideration of that portion of 
the outer boundary corresponding to probability vectors 
with pi = 0  for 3  I i I M. This is the first instance known 
to us of a  capacity (or zero-error capacity) region that is 
not convex.’ As Shannon has pointed out [l], all capacity 
(and zero-error capacity) regions are convex if it is possible 
to time-share the coding schemes used to approach individ- 
ual rate points of the region. The  fact that %  is not convex 
for the M-user CCw/oFB when M 2 2  must thus be  seen 
as a  consequence of the fact that the lack of a  common 
time  reference prevents the users from time-sharing differ- 
ent coding schemes. 

A rate vector R in a  capacity (or zero-error capacity) 
region is said to be  achievable (cf. [5, p. 51) if R satisfies 
the above definition of an  approachable rate with the 
change that 6  = 0. Interior points of a  capacity (or zero- 
error capacity) region are always achievable, but boundary 
points may or may not be  achievable. Our second ma in 
result is that, for the slot-synchronized CCw/oFB, the 
outer boundary is everywhere dense with achievable rates. 

Theorem 2: Every open neighborhood of every point on  
the outer boundary of the capacity regions %7$  and gs, 
contains achievable rates that also lie on  the outer 
boundary.  

In a  random-access system, one  is usually most in- 
terested in the “symmetric case” where all users are signal- 
ing at the same rate. Thus, we define the symmetric capac- 
ity, Gym, of the M-user CCw/oFB to be  the maximum rate 
r such that R = (r/M, r/M,. . . , r/M) is in % ‘. Note that 
if there is an  r such that C = (r/M, r/M,. . . , r/M) is on  
the outer boundary of % , then Csym = r. But, from (3) and  
(4), we see that the choice p = (l/M, l/M ,. . . , l/M) 
gives such a  C. This proves all but the final part of the 
following corollary. 

Corollary to Theorem 1: The symmetric capacity of the 
M-user CCw/oFB with M 2 2  (whether unsynchronized 
or slot-synchronized and whether for arbitrarily small posi- 
tive error probability or for zero-error probability) is 

C vm 

M-l 

packets/slot. (5) 

Moreover, the rate point (C,,/M, C,,,/M, . . . , C,,,JM) 
is achievable in the slot-synchronized case. 

From (5) one  calculates, for instance, 

c = 4/9 = .444, 
sym 

i 

l/2, M=2 
M=3 

= .3874, M  = 10 
= .3678, M  = 100. 

Moreover, C,, decreases monotonically as M increases 
and 

The  region %?  in F ig. 3  is not convex, but it is easy to check 
that its complement in the first quadrant (i.e., the set of all asM-+co. (6) 
R such that R 2 0  but R t% 9) is convex. This led us to 
conjecture earlier [2] that for every M 2 2, the complement 
of V in the first “orthant” is convex-the correctness of ‘The “achievable region” of Wyner’s wire-tap channel [4] is not convex, 

this conjecture has been proved by Post [3]. 
but this is not actually a capacity region as one of the coordinates is not 
an information rate. 
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The quantity l/e is, of course, the well-known maximum 
throughput of the slotted ALOHA algorithm [6] for in- 
finitely many identical users. Thus, (6) could perhaps be 
expected for the slot-synchronized case, although ALOHA 
algorithms make essential use of the feedback that is not 
present in our model. That (6) holds for the unsynchro- 
nized case seems truly surprising because the maximum 
throughput of the “pure” ALOHA algorithm [7] is only 
1/2e. 

We remark here that Csym is also the minimum of 
c, + c, + . *. + C, for any point C = (C,, C,; * ., CM) 
on the outer boundary of V. This confirms the intuition 
about random-access systems which claims that a given 
total amount of traffic is most difficult to serve when it is 
equally apportioned among the M users. 

IV. NONAPPROACHABILITYOF RATES,~UTSIDE V 

We now wish to show that rates outside the region %, as 
defined in Theorem 1, cannot be approached for the 
CCw/oFB in either the slot-synchronized or unsynchro- 
nized case and for either error probability criterion. From 
(2), we see that it suffices to show that points outside V 
cannot be approached with arbitrarily small positive error 
probability in the slot-synchronized case. Thus, for the rest 
of this section, we consider only the slot-synchronized case. 

Consider now any choice of protocol signals and codes 
for the users. Without loss of essential generality, we may 
assume that the period ri of the protocol signal si(t) is a 
rational multiple of the slot length T, for 1 I i I M. Thus, 
we can write 7; = (m,/m)T where mi and ri are integers. 
Then NT, where N = mIm2 . . . m M is an integer multiple 
of each 7,. Thus, for all t, 

s;( t + NT) = s;(t) (7) 
for 1 I i 5 M. 

For purposes only of our proof, we now impose a 
fictitious probability distribution on the time offsets 
4, &,* . -7 8,; namely, we specify that these are indepen- 
dent and identically distributed (IID) random variables 
that are equally likely to take on any of the N values 
0, T, 2T; . . , (N - l)T. It follows from (7), from the defini- 
tion of the duty factor pi, and from the fact that s;(t) is 
nonzero only over semi-open intervals of lengths which are 
integer multiples of T, that 

E[s;(t - S;)] = pi (8) 
for every time instant t. 

At any given time instant t on the receiver’s clock, user i 
will be the only user in the act of transmission if and only 
if 

Sj(t - sj),Qi[l -sj(t - 6,)] = l; (9) 

Moreover, the left side of (9) will otherwise be zero. Thus, 
defining T, as the total time within an arbitrary semi-open 
interval, [to, t, + NT), on the receiver’s clock of length NT 
during which the receiver is receiving noncollided packets 
from user i, we have 

q < /“+?;(t - 8;): [l - sj(t - aj)] dt; (10) 
to 

the inequality is required by the fact that the satisfaction of 
(9) for some t does not ensure that the packet being sent at 
receiver time t by user i will not experience a “partial” 
collision. (Note that the users need not align their packets 
with a time slot even though the channel is slot-synchro- 
nized.) Taking expectations in (9) and making use of (8) 
and of the independence of a,, a,, * * *, 6, gives 

E[si(r - ‘i) II [l - sj(t - ‘,)]I = PiIG,O - Pj). 
j#i 

01) 
Now taking expectations in (10) and using (11) gives 

E[T,] I NTp;n(l - p,). 
j#i 

02) 

For any given i, it follows from (12) that there must be 
some specific choice of S,, 8,; * *, S, such that 

?sNTPiII<l-PI> 
j#i 

(13) 

and, indeed, it was only to arrive at this conclusion that we 
introduced the fictitious probability distribution on 
4, a,,. . -3 s,- 

We now recall that, according to the model of the 
CCw/oFB as given in Section II, the specific time intervals 
over which the received signal is indicating either “idle” or 
“collision” are determined entirely by the protocol signals 
and the time offsets. Thus, the information from the QSS 
of user i can affect the received signal at most during the q 
seconds of the interval [to, to + NT] when the receiver is 
receiving noncollided packets from user i. It follows from 
(12) that, given i, there is a specific choice of S,, 6,; . . , 6, 
such that the receiver receives noncollided packets from 
user i at a “rate” of at most piIIjzi(l - pi) packets/slot. 
Suppose further that there is a friendly genie who identifies 
in advance, for both user i and the receiver, each interval 
in which user i sends a noncollided packet. Then user i 
has, with this extra help, a noiseless Q-ary DMC to the 
receiver with a capacity of one packet per use and with at 
most piFIjzi(l - pj) uses per slot. Thus, by the usual 
coding theorem for a DMC, user i cannot send informa- 
tion from his QSS at a rate Ri with arbitrarily small 
positive error probability, regardless of the values 
4, s,,* . * , S,, unless 

Ri I pin (1 - p,) packets/slot. (14 
jti 

It follows that R = (R;, R;;.., R,) cannot be ap- 
proached with arbitrarily small positive error probability, 
independent of 6, unless (I4) is satisfied for i = 1,2,. . . , M. 

To complete the proof that points outside %’ cannot be 
achieved, we need only show that every R 2 0 that satisfies 
(14) for 1 < i I M lies in the region q defined in Theorem 
1, i.e., that if R satisfies (14) for 1 I i I M for some duty 
factor vector p, then R also satisfies (14) for 1 I i I M 
for some probability vector p. In fact, Abramson has 
already proved this last statement in his determination of 
the “achievable throughput region “for an M-user slotted 
ALOHA system [8] (cf. [9, pp. 365-3691). Nonetheless, in 
Appendix A, we give an elementary proof of the following 
lemma that also establishes this result; our proof also 
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shows that each point C on  the outer boundary of %?  is each user such that, regardless of the values of the time  
determined by a  unique probability vector p, as stated in offsets, the receiver can reconstruct each source output 
Theorem 1. [We write 1  to denote the all-one vector sequence without error. Moreover, we must show that the 
(l,l, . * . 1) with M components.]  joint rates R that can be  so achieved are dense on  the outer 

Lemma 1: For any p’ = (p;,p$;..,ph) with 0  <p’ boundary of the region %?  defined in Theorem 1. 
I 1, there is a  probability vector p = ( pl, p2, * * *, pM) 
such that B. Protocol Matrices and an Example 

P(,Hi(l -P,‘) I Pil~i(l - Pj>y lIi<M. W e  define the protocol matrix S as the M X N binary 
matrix whose i th row is the protocol sequence s, of user i. 

V. ACHIEVABILITY OF RATES ON THE OUTER 
For instance, with M = 2  users, and  protocol sequence 

BOUNDARY OF V 
periods Ni = 2  and  N, = 4  with least common mu ltiple 
N = 4, we could choose 

In this section, we will give a  constructive proof of 
Theorem 2. In the following section, we shall use the SC1 0  10  

[ 1 110 0’ (15) 
results of this section to obtain a  simple proof of the direct 
part of Theorem 1. W e  shall be  interested in the received sequence over a  span 

of N consecutive time  instants, which, with no  loss of 

A. Preliminaries 

Throughout  this section, we will consider only the slot- 
synchronized case. As we are now dealing with constructive 
schemes, we can and do  adopt the restriction that all users 
align their packet transmissions to fall within time  slots on  
their local clocks, and  hence also within time  slots on  the 
receiver’s clock, since the time  offsets are integer mu ltiples 
of the slot length T. W ith no  loss of generality, we take 
T = 1  so that each time  offset Si is an  integer. The  period 
of each protocol sequence is now also an  integer that we 
denote by Ni for user i, and we write N for the least 
common mu ltiple of N,, N2, * . . , NM. 

W e  can now equivalently describe the protocol signal 
si( t) by the protocol sequence si = [sil, si2; . 0, si,,,] in the 
manner  that sin is the value of si( t) in the n th time  slot 
n < 1  < n + 1. W e  further assume that a  transmitted packet 
takes values in the set (0, 1,2; . 0, Q  - l}, and  we write A 
to denote the silent signal (“idle”) in a  slot. Thus, we can 
denote the transmitted signal from user i in his own nth 
time  slot by the discrete random variable X,(n) in the 
manner  that 

essential generality, we can take to be  time  instants 
1,2,. . * ) N. W e  write 

Y= [Y,,Y,,- Y,] 
to denote this received N-tuple. W e  see from (15) that, in 
case the time  offsets are 6, = 6, = 0, 

Y= bWJ’,,M , 
i.e., that slot 1  is a  collision slot, that slot 4  is idle, and  that 
slots 2  and  3  contain packets. From (15), we see further 
that packet PA was sent by user 2  whereas packet PB was 
sent by user 1. 

Suppose next that S, = 5. This delays the periodic pro- 
tocol sequence of user 1  by 5  slots, so that it will appear  to 
the receiver that user 1  is actually using the protocol 
sequence [0, 1, 0, l] in slots 1  through 4. Similarly, if S, = 3, 
it will appear  to the receiver that user 2  is actually using 
the protocol sequence [l, 0, 0, 11. Thus, it will appear  to the 
receiver as if the mod ified protocol matrix 

ml [ 0 1  0  1  = 1 0  0  1  I 

Y= [P,,P,J,Al 

is actually in use. In particular, we see that 
X,(n) = A, 

X;(n) E {O,l;*.,Q- l}, 

if sin = 0  
if sin = 1. 

Similarly, we can denote the received signal in the n th time  
slot by the discrete random variable Y(n) in the manner  
that 

where the packets PA and PB are from users 2  and  1, 
respectively. 

As we have observed from this example, a  time  offset (or 
“delay”) of Si slots corresponds to Si right cyclic shifts of 
the protocol sequence si. W e  write si[Si] to denote the 
sequence obtained from si after Si right cyclic shifts and, 
as we have already done in (16), we write S[S] for the 
effective protocol matrix whose ith row is si[Si]. Note that 
S = S[O]. Because sin = s~,~+,,, for all i and n, it follows 
that si[Si] = s,[Si + N]. Thus, given N, we can and do  
hereafter restrict ourselves to the condition 

Y(n) = A, if Xi(n - Si) F  A for 1  I i I M  

Y(n) = Xi(n - S,), if Xj(n - Sj) = A for all j #  i 

Y(n) = A, otherwise, 
where A denotes a  collision of two or more packets. In this 
manner,  we obtain a  fully discrete representation for the 
slot-synchronized CCw/oFB. Note that the channel input 
alphabet of each user contains Q  + 1  letters and  that the 
channel output alphabet contains Q  + 2  letters. Hence- 
forth, we shall sometimes speak of “time  instant n,” rather 
than the “nth time  slot.” 

W e  assume for convenience that the output alphabet of 
the QSS of each user is also the set (0, 1; * +, Q  - l}. W e  
seek then to choose a  protocol sequence and block code for 

O IS;<N (17) 
without loss of essential generality. Because of (17) we see 
that there are only NM values of 6  = [S,, S,, . . . , S,] to be  
considered, and  hence at most this many distinct effective 
protocol matrices. 

For the protocol matrix S of (15), the reader can easily 
check that all 16  choices of 6  result in an  S[S] such that 
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the resulting Y = [Y,, Y,, Y3, Y,] always contains one colli- 
sion slot, one idle slot, and one packet from each of the 
two users. Moreover, the packet from user 2 is always 
adjacent to a collision slot [provided we count slot 1 as 
adjacent to slot N] whereas the packet from user 1 is never 
adjacent to a collision slot. Thus, the receiver can, from 
examination of Y = [Y,, Y2, Y,, YJ, uniquely identify the 
sender of each of the two successfully received packets in 
this sequence regardless of the values of the time offsets. 
Suppose further that each user employs the simple rate 
Y = l/2 packets/slot repeat code in which each informa- 
tion packet from his QSS is sent twice. Precisely one of 
these two packets will be correctly received, and its sender 
identified, as the other packet will be lost in a collision. 
Hence, the receiver can perfectly reconstruct the output 
sequence from each of the two QSs’s. Note that user i is 
sending information packets at the rate Rj = l/4 
packets/slot for i = 1 and 2. (We note from (15) that the 
duty factors are pi = pZ = l/2, which, since the code rates 
are rl = r, = l/2 packets/slot, also implies R, = piri = 
l/4 packets/slot for i = 1 and 2.) Thus, we have demon- 
strated a coding scheme that achieves the equi-rate point 
C = (l/4,1/4) on the outer boundary of the zero-error 
capacity region of the two-user slot-synchronized 
CCw/oFB. 

In the following subsections, we develop the appropriate 
generalization of this example. We shall show, in fact, how 
to achieve, with zero-error, any C = (C,, C,, . . . , C,) on 
the outer boundary of % ’ for which the corresponding prob- 
ability vector p = ( pl, p2; . ., pM) of (3) has only rational 
components. 

C. Construction of Protocol Sequences 

Any duty factor vector p = ( pl, p2; . ., p,+,) with only 
rational components may be written as p = (qJq, 
4*/q, - * * Y qM/q), where a, q2,- . . , qM are nonnegative in- 
tegers and q is a positive integer that we assume is chosen 
as small as possible. We shall construct a special protocol 
matrix S for this p, using as an intermediary a matrix with 
q-ary components. We write A,,.,, to denote the M  x qM 
matrix whose j th column is the M  place radix-q represen- 
tation of the integer q M  - j, with the least significant digit 
at the top. For example, with p = (l/3,2/3), we have 
M  = 2 and q = 3 so we first construct 

1 222111000’ (Isa) 
We then obtain the desired protocol matrix, which we 
denote simply by SM4 [although it also depends on the 
values of ql, q2,. . . , qM], by mapping, within the ith row of 
A Mq, the q-ary digits q - 1, q - 2; * a, q - qi to l’s and 
mapping the q-ary digits q - qi - 1,. * ., 1,O to zeros. Con- 
tinuing our example, we obtain (from (18a) and the fact 
that q1 = 1 and q2 = 2) the protocol matrix 

1 111111000’ (18b) 
We write A Mq[8] to denote the matrix whose ith row is the 
vector obtained by ai right cyclic shifts of the i th row of 

A Mq. Note that S,,[6] is obtained if we apply the above 
q-ary to binary digit mapping to the entries of AM,[6]. 

Lemma 2: For every 6 = (S,, 6,; . . , S,), the matrix 
S,,[6] can be obtained from SM4 by a permutation of 
columns. 

Proof: It suffices to prove that the columns of A,,[61 
are a permutation of those of A,,. To prove this, we note 
that the first row of A,, (periodically repeated-as we 
shall always mean when we speak of the “period” of finite 
sequences) is a sequence of period q in which each q-ary 
symbol appears. But the symbols in the second row of A,, 
occur in runs of q identical symbols and this row has 
period q2. Thus, no matter how the first and second rows 
are cyclically shifted, the first two rows of the resulting 
A,,,J8] must, like AMq’, form a submatrix in which each 
2-place q-ary number appears as a column and in which 
the columns are periodic with period q2. But the symbols 
in the third row of A,, occur in runs of q2 identical 
symbols and this row has period q3. Hence, the first three 
rows of A &8] must, like A,,, form a submatrix whose 
columns have period q 3 and in which each possible column 
appears. By a simple induction, we conclude that every 
q-ary M-tuple must appear exactly once as a column of 
A,,[6], and hence that the columns of AMq[8] are indeed 
just a permutation of those of A,,. 

The practical import of Lemma 2 is that Y = 
[Yl, y2,. . *, Y,], N = q M , will contain the same number of 
collisions, the same number of idle slots and the same 
number of successes from user i, 1 I i I M , regardless of 
the time offset 6, when we use the protocol matrix SM4. 
For example, from (18b), we see that for 6 = 0 

y= ~~,P,,P,,~,P,,P,,P,,~,~l 
where the packets PA, PB, PC and PO are from user 2 
whereas packet PE is from user 1. Lemma 2 implies that Y 
will always contain two collisions, two idle slots, four 
successful packets from user 2 and one successful packet 
from user 1, regardless of the time offset 6, when the 
protocol matrix S,, of (18b) is used. Our next step is to 
show that the receiver can identify the sender of each 
successfully received packet, regardless of the time offset 6. 

D. Decimation Decoding 

By the k th phase of the dth decimation of a sequence 
[a,, a2; - e3 a,], where d is a divisor of N, we shall mean 
the subsequence [a,, ak+d, ak+2d, * . . ] of length N/d ob- 
tained by selecting every dth digit of the sequence, com- 
mencing with the kth digit. The following lemma is the key 
to recognizing the sender of successfully received packets. 

Lemma 3: For every 6, the effective protocol matrix 
S,,[ 61, which has N = q M  columns, is such that, for every 
d=qjwithl<j<Mandforeverykwithl<k<d, 
the k th phase of the dth decimation of the received vector 
Y = [YI, Y2;. -, Y,] has the following two properties. 

1) If i I j, then user i is either active in each of the 
4 M-j slots of this phase or is silent in each of the 
q”-j slots of this phase. 
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2) If qi < q for all i, then there is at least one  slot of this p,, P,, PC, and PE, are now identified as having been sent 
phase where all users i with i > j are silent. by user 2. 

Proof: Property 1) follows from the fact that the i th 
It must be  pointed out that, al though decimation decod- 

row of A,,[61 has period qi, and hence the ith row of 
ing identifies the sender of all successfully received packets, 

S[6] also has period qi. If i < j, then d = qj is divisible by 
it does not in general  identify the position of such a  packet 

qi so the k th phase of the d th decimation of the i th row of in the (unshifted) protocol sequence of the sender. This 

S[6] must have the same entry [O or l] in every position, knowledge is not always required to decode the block code 

and this is precisely the mean ing of property 1). 
that the user has emp loyed for his packets, as the example 

To  prove property 2), we note that, if d = qj where 
in Subsection V-B shows, but it is required in general. 

i < j < M, then any phase of the d th decimation of the i th 
Thus, we need some scheme by which such packet location 

row of A Mq is just the (j - i)th row of AMej,,. The matrix 
information can be  obtained by the receiver. Note that it is 

A,,[61 inherits this property in the sense that such a  dth 
necessary to locate only one  packet for each user, and  note 

decimation of its i th row is the ( j - i)th row of AMej, J 8’1 
that this packet location information allows the receiver to 

for some offset 6’. It follows that there must be  some slot 
construct the effective protocol matrix S,,[8] and  thus to 

in the dth decimation, d = qj, where the corresponding 
identify the subset of users participating in each collision 

column of A,,[61 has only zeros in rows j + 1, j + 
contained in y 

2; . *, M. Because qi < q for all i, all zeros in A,, are 
converted to zeros in S; hence users j + 1, j + 2, * f f, M 
must all be  silent in this slot. 

E Finding packet Locations 

Note that decimating j times by q is the same as one 
W e  assume that, for each user, there is some finite time  

decimation by qj. This fact, together with Lemma 3, estab- 
in the past when that user first began to transmit informa- 

lishes the validity of the following procedure, which we call 
tion from his QSS, and  we further assume that this user 

decimation decoding, by which the receiver can identify the 
transmitted the zero packet, P = 0, in all previous slots 

sender of each successfully received packet contained in 
into the infinite past in which he  was required by his 

Y = [Y,,Y,; - *, YN] when the protocol matrix SM4 is used. 
protocol sequence to send a  packet. Note that user i sends 

W e  assume that qi < q for all i. The case qi = q, and 
Npi packets during one cycle of his protocol sequence sI; 

hence pi = qj/q = 1, is interesting only for those trivially 
we shall call these Npj packets a  frame. When user i is 

obtained points C on  the outer boundary of V where 
ready to send information from his QSS, he  first sends the 

Cj = 1  and  Cj = 0  for j #  i. 
f rame [l,l; . ., l] consisting only of packets P = 1. He 
then sends successively the following Npj frames contain- 

1) Form the q distinct phases of the q th decimation of ing one 1  packet: tl, 0,. * . ) 0, 019 1% 1, * * . ) 0301y~ .*) 
Y. Identify as coming from user 1  all successfully [O, 0,. . . , I, 01, [O, 0; * *, 0, I]. 
received packets in phases containing no  idle slot. Set The  receiver will see only 0  packets, idle slots and  
i = 2. collisions into the infinite past. As soon as the receiver 

2) Form the q distinct phases of the qth decimation of identifies, by decimation decoding, a  packet P = 1  from 
each of the phases with an  idle slot that were formed user i, he begins to count the number  of slots, taken at 
in the previous step. Identify as coming from user i intervals of N slots, until packet P = 1  again appears in 
all successfully received packets in those newly formed this slot. This number  is the location of this slot in user i’s 
phases containing no  idle slot. If i = M, stop. O ther- frame, and  this allows the receiver to locate this slot in user 
wise, increase i by 1  and repeat this step. i ‘s protocol sequence. 

As an  example, suppose that M = 2 users have the 
It remains only to formulate an  appropriate coding 

protocol matrix S,, of (18b) and  that 6  is such that the 
scheme for user i so that he  can code the information 

received vector is 
packets from his QSS into his transmitted frame at the 
desired rate and  in such a  way that the receiver can always 

Y= [A,P,,A,P,,A,P,,P,,A,P,l. correctly decode these packets. 
Decimating by q = 3, as called for in step l), yields the 
three phases F. Coding the Packets 

[A, PB, P,l, [P,, A, Al, [A> Pc, Pd. The matrix A,, has qjIlj+ j( q - q/) columns in which 
On ly the second of these phases contains no  idle slot; thus, the entry in row i is a  digit equal to or greater than q  - qi 
only packet PA is identified as having been sent by user 1. but in which the entry in each other row j is an  integer less 
O f course, because M = 2, the other four packets in Y than q - qj. It follows then from the construction of SM4 
were sent by user 2. But, in principle, we find this out and  Lemma 2  that, for every 6, the matrix S,,[6] will be  
according to step 2) by decimating by q = 3  the first and  such that Y contains exactly qjnj + i( q - qj) successfully 
third of the above phases to obtain the six phases received packets from user i. Thus, provided we can find a 

[Al, &I, [f’d, [Al> P’cl> [P,l. 
coding scheme that allows each user i to send one information 
packet without error to the receiver for each successfully 

The packets in these phases with no  idle slot, i.e., packets received packet from that user, user i will be  transmitting 
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with zero-error probability at the rate 

Ri = $4iTT(q - 4,) 
J#’ 

= pi n (1 - p,) packets/slot, 
j+i (19) 

where we have used the fact that N = q M and that the 
duty factor pi is given by pi = qJq. Thus, our proof of 
Theorem 2 will be complete if we can find a coding scheme 
that meets this proviso. 

Note that the packets from user i that are involved in 
collisions are equivalent to “erasures” for the decoding of 
packets from user i. We assume that user i employs a block 
code of length n j = Npi to code his ki = NR, packets. This 
(ni, ki) code must be capable of correcting any of the 
patterns of n, - kj erasures within a block that are con- 
sistent with SM,[6] for some 6. 

If Q = 2” for some m such that Q 2 nj - 1 (as might 
be expected in practice), the coding problem for user i is 
trivial in principle. He can simply use a Reed-Solomon 
(RS) code over GF (2’7, possibly extended to length Q + 1 
[lo]. Such an (nj, kj) RS code has minimum distance 
nj - k, + 1 and hence can correct every pattern of ni - kj 
erasures. But this is not a satisfactory solution for our 
purposes, since we have insisted that the packet alphabet 
size Q can be as small as 2. We thus must construct 
appropriate codes over the alphabet (0, 1, . . . , Q - l} for 
any Q 2 2. In fact, we shall see that it suffices to correct 
bursts of consecutive erasures. The following lemma is the 
key to our coding scheme. 

Lemma 4: For any integers Q, n, and k with Q 2 2 
and 1 I k I n, there exists an (n, k) systematic linear 
code over Z,, the ring of integers modulo Q, that corrects 
all closed-loop erasure bursts of length n - k. 

By a “closed-loop” erasure burst, we mean that position 
1 in the block is assumed to follow position n so that a 
burst can begin near the end of the block and continue into 
the beginning of this same block. By an (n, k) systematic 
linear code over Z,, we mean that the first k symbols in 
the block can be arbitrarily chosen (the “information sym- 
bols”) and the remaining n - k symbols (the “parity sym- 
bols”) computed as linear combinations in 2, of these 
information symbols. We shall prove Lemma 4 by con- 
structing the code whose existence is asserted. First, how- 
ever, we show how these codes can be used to obtain the 
information rate Ri of (19) when the protocol matrix S,,,,4 
is used. 

For convenience, we refer to the code described in 
Lemma 4 as a maximum-erasure-burst-correcting (MEBC) 
code. We now show inductively how to nest such MEBC 
codes to obtain the desired coding system for user 1. 

User 1 will actually use q1 independent, but identical, 
codes of block length n = qMP1, one of which will be used 
to code the packets sent during each of the q1 phases of 
the qth decimation of si that consist only of ones. We 
describe the code used by user 1 for the packets sent during 
phase 1 of the q th decimation of his protocol sequence. 

We see, from the fact that each phase of the q th deci- 
mation of the second row of A,, has period q, that, in any 
q successive slots during phase 1 of the q th decimation of 
user l’s protocol sequence, the packets from user 2 will 
occur as a (closed-loop) burst of length q2 packets occur- 
ring with a period of q slots. Thus, if, as we now assume to 
be the case, the packets from user 1 in each successive q 
slots of phase 1 of his protocol sequence form a codeword 
in an (n = q, k = q - q2) MEBC, then the decoder will be 
able to determine all user l’s packets correctly, provided 
that users 1 and 2 are the only active users. 

We now assume that an (n = qMP2, k = IIJy;‘(q - qj) 
code has been found for user l’s packets during phase 1 of 
his protocol sequence that allow the decoder to correct all 
erasure patterns that can result when users 1,2, * * . , M - 1 
are the only active users. We must show that we can extend 
this to an (n=q ~4-l k = nJE2(q - qj) code that will 
correct all erasure paitems that are possible when users 
1,2; . .) M are all active. We construct this code by speci- 
fying: that a codeword be the concatenation of q code- 
words from the former code of length n = qMe2; that the 
first q - qM of these q codewords can be arbitrarily 
selected; and that the last qM of these q codewords be 
determined by the rule that the digits in every phase of the 
4 M-2 th decimation of the entire codeword must be a 
codeword in an (n = q, k = q - qM) code. This new code 
obviously has the claimed length n = q M-1 and claimed 
number of information packets k = rIJE2(q - qj). It re- 
mains only to show that the decoder can correct any 
pattern of erased packets that can occur with all M users 
active. 

The decoder, for the full codeword of length n = qMP1 
just described, first forms each phase of the q M-2 th deci- 
mation of the received codeword. But each such phase is 
also a phase of the q M-‘th decimation of the vector Y 
received over the channel in some N = q M consecutive 
slots. Lemma 3 thus implies that the only collisions in any 
such phase that would not also be collisions when only 
users 1,2; . ., M - 1 were active must occur within phases 
where all the collisions are only between user 1 and user 
M. From the structure of AMq, we see that user M causes 
an erasure burst of length qM in such a phase. But, by our 
construction, the packets from user 1 form a codeword in 
an (n = q, k = q - qM) code in such a phase. Thus, the 
decoder can at the outset correct all erasures resulting from 
collisions involving user M that would not also have been 
erasures when only users 1,2, * . *, M - 1 were active. The 
decoding problem then reduces to that for decoding q 
codewords of the length n = q M-2 code to correct the 
erasures caused by users 2,3,. * . , M - 1, which, by hy- 
pothesis, can be done. 

We now show that essentially the same coding strategy 
just developed for user 1 can be used by all M users. To 
see this, let (Y denote any chosen q-ary digit, i.e., any digit 
in {O,l; . ., q - l}. If one modifies the matrix A,, first 
by deleting all columns in which the entry in a chosen row, 
say row i, is not the digit (Y, and next by deleting row i, 
then one obtains the matrix A,-,,,. This follows from the 
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fact that the columns of A,, contain the M-place q-ary 
numbers in natural order. It is then easy to see that the 
coding strategy just developed for user 1  applies directly to 
user i with the roles of users 2,3,. . . , M in the former 
scheme being played by users 1,2,. . . , i - 1, i + 1, . . . M, 
respectively, in the coding scheme for user i. It is only 
necessary that each codeword of the length n = q M-1 code 
for user i be placed in those slots in which the ith row of 
A,, contains the same digit (Y. 

It remains finally to construct the MEBC code described 
in Lemma 4. W e  do  this by specifying the systematic 
generator matrix G  for this code, where G  is a  k x n 
matrix with entries in Ze  = (0, 1, . . . , Q  - l} whose first k 
columns form an  identity matrix. In fact, the entries in G  
will take values only in the subset (0, l} of Z, so that the 
form of G  does not depend on  the particular value of Q . 

Our construction is perhaps best explained by an  exam- 
ple, for which we choose n = 64  and k = 21. W e  first 
divide k = rO into n to obtain the quotient qO = 2  and 
remainder r1 = 10. W e  then divide rl into rO to get a  new 
quotient q1 = 2  and a  new remainder r2 = 7. Continuing 
in this manner  until the remainder is zero, we obtain in this 
instance the following values: 

rO = 27, rl = 10, r2 = 7, r3 = 3, r4 = 1 
q. = 2, q1 = 2, q2 = 1, q3 = 2, q4 = 3. 

These values specify the following 27  X 64 systematic gen- 
erator matrix: 

I 10 

I 10 

G  = I27 12, I3 

I, I3 

I1 I1 I1 

where I, denotes an  m X m identity matrix. The  matrix G  
is formed by starting with a  row of q. matrices Ir9; then, 
starting from the top, adding a  column of q1 matrices IY1; 
then, starting at the left, adding a  row of q2 matrices I,,, 
etc. The  proof that this construction always yields the 
systematic generator matrix of a  Q-ary (n, k) code that can 
correct all closed-loop erasure bursts of length n - k is not 
especially insightful, and  thus is deferred to Appendix B. 

G. Completing the Proof of Theorem 2 

In the previous subsections, we have shown that the M 
users of the slot-synchronized CCw/oFB can send infor- 
mation without error at the joint rate R = C for every 
point C on  the outer boundary for %?  for which the 
corresponding probability vector p has only rational com- 
ponents. But every open neighborhood of every probability 
vector contains probability vectors with only rational com- 
ponents. Moreover, the mapp ing (3) from probability vec- 
tors p to points C on  the outer boundary of %?  is continu- 
ous. It follows that every open neighborhood of every point 

C of the outer boundary of %?  contains outer boundary 
points that correspond to probability vectors with only 
rational components and  that thus are achievable with 
zero-error probability, which is the assertion of Theorem 2. 

VI. APPROACHABILITYOF RATESIN % ?  

To prove the direct part of Theorem 1, we see from (2) 
that it suffices to show that any rate vector R in the region 
59  defined in Theorem 1  can be  approached without error 
for the unsynchronized CCw/oFB. However, we first show 
that such R can be  approached without error for the 
slot-synchronized CCw/oFB, and  then we give a  simple 
argument that reduces the unsynchronized case to the 
slot-synchronized case. 

A. The Slot-Synchronized Case 

Let R be any vector in V as defined in Theorem 1. Note 
that R can be  on  the boundary or even on  the outer 
boundary of V. But, in any case, there must exist a  point 
C’ (possibly R itself) on  the outer boundary of 59  such 
that R < C’. Hence, for any given positive 8, R - 61 < 
C’. It now follows from Theorem 2  that there is a  point C 
on  the outer boundary of ??  that is achievable with zero 
error in the slot-synchronized case and for which R - 61 
< C. Therefore, R is indeed approachable in the slot- 
synchronized case. 

B. The Unsynchronized Case 

Since we are dealing with constructive coding schemes, 
we can and do  enforce the provision that all users must 
align their packet transmissions to fall within time  slots on  
their local clocks, even in the unsynchronized case that we 
now consider. O f course, because the components of 6  are 
now arbitrary real numbers,  received packets will in gen- 
eral not fall into time  slots on  the receiver’s clock. 

By virtue of our restriction on  packet transmission, we 
can still describe the protocol signals in the unsynchro- 
nized case by protocol sequences and protocol matrices as 
in Section V. (The slot length will again be  taken for 
convenience as T = 1.) The  following result, because of the 
arbitrariness of m, shows that any rate approachable 
without error in the slot-synchronized case is also ap- 
proachable without error in the unsynchronized case. W e  
write 0” and l”-l to denote, respectively, a  string of m 
zeroes and a  string of m - 1 ones. 

Lemma 5: Suppose that the protocol matrix S, together 
with a  given code for each user, yields error-free operation 
at the joint rate R on the M-user, slot-synchronized, 
CCw/oFB. Let the protocol matrix St”) be  constructed 
from S by replacing each zero in S with 0” and each one 
in S with 1”-lo, where m is an  arbitrary positive integer. 
Then  the protocol matrix SC”), together with interleaving 
m - 1  times the code previously given to each user, yields 
error-free operation at the joint rate ((m - l)/m)R on the 
M-user, unsynchronized, CCw/oFB. 
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For example, with M  = 3 and taking S to be the proto- 
col matrix (15), we would have 

$3) = 

[ 

110000110000 
I 110110000000’ 

(20) 
We saw in Section V-B that the protocol matrix S, together 
with r = l/2 repeat codes for both users, yielded error-free 
operation at R = (l/4,1/4) on the slot-synchronized 
CCw/oFB. Lemma 5 asserts that the protocol matrix Sc3) 
of (20), together with two interleaved r = l/2 repeat codes 
for each user, will yield error-free operation at R = 
(l/6,1/6) on the unsynchronized CCw/oFB. 

To reduce the unsynchronized case to the slot-synchro- 
nized case, we argue as follows. If user i were the only 
active user in the unsynchronized case, then his packets 
would fall into “virtual time slots” at the receiver whose 
edges would occur at noninteger times because of the time 
offset 6i that is in general not an integer. Fig. 4(a) il- 
lustrates this situation. The packets of another user, say 
user j, would not be aligned with these virtual time slots 
for user i, as illustrated in Fig. 4(b), because ai - Sj will 
not in general be an integer. However, the effect of these 
packets from user j on the packets of user i is precisely the 
same with regard to idle slots and to successes for user i as 
if the packets from user j were advanced (by less than one 
slot) in time to alignment with the virtual time slots for 
user i and then an additional dummy packet were inserted 
after each run of consecutive packets; the equivalence is 
illustrated in Fig. 4(c). We can summarize these observa- 
tions as follows. Provided that all M  users align their packet 
transmissions with time slots on their own local clocks, then, 
in the unsynchroinized case, the resulting pattern of idle slots 
and of successes by user i is the same as in the slot-synchro- 
nized case, provided that a dummy packet is inserted after 
each run of consecutive packets from every user j for which 
aj - 8, is not an integer. In what follows, we shall make the 
pessimistic assumption that Sj - Sj is not an integer for all 
j # i when considering packet transmissions from user i. 

(4 4 t “-hi Fhlil “-hi+* n-hi+3 “4 1+4 I I i I I 
I I I I I 

(b) I I 1 I I I I 
I I 
I i/ i/ i I t 
I I 

(4 t 1 I 1 W M W  I I t 

Pig. 4. (a) Packets from user i. (b) Packets from user j, as seen on 
receiver’s clock. (c) Equivalent packets from user j in user i’s virtual 
time slots. 

As an example, when the protocol matrix Sc3) of (20) is 
used, the packet transmissions from user 1 can be studied 
by replacing St3) with the matrix 

s(3.1) = 110000110000 
111111000000 1 (21) 

in which the runs of ones in the second row of Sc3) have 
been extended by one. Note that, if we take third deci- 
mations of the columns of Sc3,1), the three phases are just 
the following matrices: 

[ 
1 0 1 0 1 [ 1 0 1 0 1 [ 0 0 0 0 
1 1 0 0 1 1 0 0 1 110 0’ 

The first m  - 1 = 2 of these matrices are just the original 
protocol matrix S of (15) that was used to construct Sc3). 
By the construction of Lemma 5, each of these protocol 
matrices will be used by user 1 with an r = l/2 repeat 
code, and hence each will deliver one packet error-free. 
User 1 sends no packets in the slots corresponding to the 
last of these m  = 3 matrices. Hence user 1 sends error-free 
at a rate R = 2/12 = l/6 packets/slot, as does user 2. 

The truth of Lemma 5 should now be evident. If we 
restrict ourselves to consideration of packets from user i, 
the effect of other users on these packet transmissions is 
equivalent to that in the slot-synchronized case if each 
occurrence in SC”) of l”-‘0 in row j, all j # i, is replaced 
by 1”. But the first m  - 1 phases of the m th decimation of 
the columns of this resulting matrix, S(“,‘), are all just the 
original matrix S, while the last phase is a matrix whose 
i th row is all zeroes. In each of these first m  - 1 phases, 
user i, by hypothesis, uses a code that guarantees error-free 
coding at a rate Rj packets/slot. User i is silent in the last 
phase. Hence, user i sends information error-free precisely 
at the rate ((m - l)/m)R, packets/slot, as claimed in 
Lemma 5. 

A remark on the decoding process is in order. Upon 
seeing an uncollided packet, the receiver will extrapolate 
virtual time slots to align with its edges, then de-interleave 
the received symbols (packets, idles or collisions) in these 
virtual time slots into m  streams. The receiver then applies 
the usual decoding procedure (decimation decoding fol- 
lowed by decoding of the block code of the user whose 
packets are found) to each of these streams. This will 
succeed in general only in decoding the packets of that user 
i who sent the original uncollided packet, as packets from 
other users will fall across time slots and must be treated as 
collisions. Thus, a similar de-interleaving and decoding 
process must be carried out for each of the M  users. 

VII. PRIOR WORK AND SOME REMARKS 

We have already mentioned in Section IV that the region 
% ’ of Theorem 1 coincides with the “achievable throughput 
region” determined ,by Abramson [8] (cf. [9, pp. 365-3691) 
for an M-user slotted ALOHA system. Abramson consid- 
ered the situation where user i sends a packet in each slot 
with probability pi, independent of previous transmissions. 
This corresponds in the language of this paper to using 
stochastic protocol sequences, each of which is an indepen- 
dent identically distributed (IID) sequence. In a certain 
sense, the “time statistics” of the protocol sequences con- 
structed in Section V are the same as the ensemble statis- 
tics of Abramson’s stochastic protocol sequence, but the 
former have additional structure that permits the receiver 
to identify the sender of each successfully received packet 
and that guarantees that the number of successes is inde- 
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pendent  of the time  offsets. Reliable communication with 
stochastic protocol sequences seems to necessitate header  
information in packets to identify their sender and  also 
seems to rule out error-free operation when there is no  
feedback link. 

Tsybakov and M ikhailov [ll] showed that Abramson’s 
achievable throughput region % ’ coincides with the 
“ergodicity region” of a  slotted ALOHA system with 
feedback, i.e., with the region of joint user rates for which 
the retransmission processes can be  stabilized. It seems 
somewhat surprising that precisely the same set of rates 
can be  achieved error-free without feedback, as we have 
shown. 

The  only explicit prior work on  random accessing without 
feedback, of which we are aware, is that of Huber and  
Shah 1121, who were interested in applications to alarm 
systems. They considered the fully unsynchronized case 
with equal user rates. They used IID protocol sequences 
and achieved a  symmetric throughput approaching 1/(2e) 
packets/slot as the number  of users approached infinity. 
Lemma 5  of our paper  suggests that, to approach a  
throughput of l/e packets/slot with stochastic protocol 
sequences, one  must have statistical dependence of succes- 
sive digits in the protocol sequences. 

All of the results and  constructions in this paper  were 
orally presented without detailed proofs by the first author 
on  two occasions in 1982 [2], [13]. However, the abstract of 
[13] gives only the symmetric capacity results-the exten- 
sion to the full capacity region was done jointly by the two 
authors in the time  between submission of the abstract and  
summary of [13] and  its oral presentation. Armed only with 
this abstract and  summary, Tsybakov and Likhanov [14] 
independently derived the capacity region V for the 
CCw/oFB on  the assumption that the packet size Q  was 
equal to the order of a  finite field and  was sufficiently large 
to permit use of a  maximum distance separable code for 
the packets of each user. Their work also has several 
interesting differences from that in this paper, such as a  
more thorough examination of the nature of the protocol 
matrices that can be  used. For the equal-rate case, the 
abstract and  summary of [13] used protocol sequences 
different from those now used in this paper; Cohn [15] 
independently suggested the same protocol sequences, for 
the equal-rate case, that are now used here. 

APPENDIX A 
PROOF OF LEMMA 1  

The claim of Lemma 1  is trivially true if p’ = 0, if pi =  1  for 
some i, or if p’ has only one  nonzero component.  Thus, we 
restrict our attention to the case where 0  I p’ < 1  and  where p’ 
has at least two nonzero components.  For each p, 0  < /? < cc), 
we define a  vector p  by 

pi =p;/[p; + p(i -p:)], 1  i i 5  M , (Al) 

and  we note that, if pi > 0, p, decreases monotonically from one 
to zero as p  increases from 0  + to co. Hence,  there is a  unique 
value of fi, say &, such that C,p, =  1, i.e., such that p  is a  
probability vector. W e  also note that p  =  p’ if and  only if /3 =  1. 

From (Al), we obtain 

Pi,Qi(l -pj) =f(P)p:,Qi(l -pl) (A4 

for all i, where 

f(P) =  P’/ll[PI +  P(1 -PA (A3) 
I i 

W e  note that f(O+) = f(co) =  0  and  f(1) =  1, and  mat the 
derivative f’(p) is cont inuous on  0  < fi <  cc. A straightforward 
differentiation gives 

f’(P) = ICPi - l] g(P) 

Li 1  
where g( /?) > 0  for 0  < /3 < 00. Thus, f’( p> = 0  if and  only if 
p  =  &. It follows that p  =  & uniquely makimizes f(P) and  
this, because of (A2), proves Lemma 1. 

W e  have now shown that C as def ined by (3) can be  on  the 
outer boundary  of V only if p  is a  probability vector. Suppose 
then that p  is a  probability vector but the corresponding C is not 
on  the outer boundary  of Q. Then,  there is a  p*, 0  I p* I 1, 
such that 

pi,rJ(l-Pj) ~pT,~i(l-PT), 1  <is MT (Ad) 

with strict inequality for at least one  i, say i = 1. By decreasing 
only the first component  of p*, which increases the right side of 
(A4) for j >  1, we can obtain a  new p* such that strict inequality 
holds in (A4) for all i. W e  can. then appropriately decrease the 
components  of p* to obtain a  p’, 0  I p’ I 1, such that 

where (Y < 1. But (A5) implies that p  and  p’ satisfy (Al) for 
some p, 0  <  /3 <  00  and  hence that OL  = f(P). This, together 
with the fact that p  is a  probability vector, implies the coniradic- 
tion (Y = f( &) 2  1. W e  conclude that C as def ined by (3) .is on  
the outer boundary  of 4  if and  only if p  is a  probability vector. 
Moreover,  distinct probability vectors p  and  p’ must give dis- 
tinct corresponding points C and  C’, respectively, for otherwise 
(A5) would be  satisfied with (Y = 1  and  this would again imply 
that p  and  p’ satisfy (Al) for some /3 and  thus that p  =  p’. 

APPENDIX B 
PROOF OF LEMMA 4  

A systematic generator matrix for an  (n, k) linear code over 
ZQ, the ring of integers modulo Q, is a  matrix G  of the form 
G=[I, : P] where P is some k X (n - k) matrix over Ze. 
Such a  G  defines a  systematic encoding rule in which the infor- 
mation vector x =  [xi, x2, . . . ,x,] is mapped  to the codeword 
Y = bl,Y,, . * * ,y,] in the manner  y =  xG so that y, =  x, for 
i = 1,2;.. , k.’ W e  have said that such a  G  defines a  maximum- 
erasure-burst-correcting (MEBC) code if x can still be  de- 
termined when any n  - k consecut ive components  of y are 
erased (where position 1  is considered to follow position n). 
Equivalently, G  specifies an  MEBC code if and  only if each set of 
k consecut ive coiumns of G  forms an  invertible matrix over Ze 
(where column 1  is considered to follow column n). W e  now 
write Gci, to denote the k X k submatrix formed by columns, 
i,i + 1, ... i + k - 1  of G, where by column j of G  we under-  
stand column j - n  when j >  n. Note that Go, =  Ik. W ith this 
notation, the k X n  matrix G  = [Ik : P] is the systematic gener-  
ator matrix of a  Q-ary MEBC code if and  only if the matrix GcI, 
is invertible for 1  I i _< n. [A square matrix over ZQ is invertible 
if and  only if its determinant, computed over the integers, is an  
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integer relatively prime to Q.] Hereafter, all matrices are assumed 
to be over Zp. 

Proposition 1: The matrix Gci, corresponding to the k x n 
matrixG=[Z,: P] is invertible for all i with n - k < i I II if 
and only if the m X m submatrix L,(G) found in the last m 
rows and last m columns of G is invertible for all m, 1 I m I k. 

Proof This proposition follows directly from the fact that, 
for n - k < i 5 n, 

where, here and hereafter, A denotes a matrix of appropriate 
dimension whose entries are of no interest. 

Proposition 2: If G is the systematic generator matrix of an 
(N, K) MEBC code, then 

G'= [I,, : GT] 

(where there are q occurrences of .Z, in G’) is the systematic 
generator matrix of an (n = qN + K, k = N) MEBC code. 

Proposition 3 implies the validity of the MEBC code construc- 
tion described in Subsection V-F. If k is not a divisor of n, one 
first uses Proposition 3 to reduce the problem of constructing an 
(n, k) MEBC code to that of constructing an (N, K) MEBC 
code, where N = k and where K is the remainder when n is 
divided by k. One interates this procedure until K is a divisor of 
N.ForN=qK,theKXqKmatrixG=[Z,: ZK: ... : Z,] 
is trivially the systematic generator matrix of an (N, K) MEBC 
code. 

Remark: Propositions 1 through 3 hold also for matrices over 
any field, in particular over the finite field GF(Q) when Q is a 
prime power. However, every cyclic code over GF(Q) is auto- 
matically an MEBC code. Thus, the construction of MEBC codes 
given here would appear to be of interest, in the case were Q is a 
prime power, only when the parameters II and k are such that no 
cvclic code with these parameters exists. 

(where the superscript T denotes transpose) is the systematic 
generator matrix of an (n = N + K, k = N) MEBC code. 
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