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ABSTRACT

A collection of analog “soft-gate” CMOS ASICs operating in
subthreshold-mode was implemented in a low-cost semi-custom
0.8µm technology. These soft-gates allow, in particular, the real-
ization of various decoders for simple error correcting codes on the
breadboard level. Measurement results are presented for an (8,4,4)
Hamming code.

1. INTRODUCTION

In 1998, Hagenauer [1, 2] and Loeliger et al. [3] independently
proposed to decode error correcting codes by novel analog elec-
tronic networks; these networks are a direct translation of the Tan-
ner graph [4] or factor graph [5] of such codes into networks of
electronic “probability gates” or “soft-gates”. More complete ac-
counts on these new analog decoders were given in [6] and [7, 8];
see also [9].

Since 1998, much effort has been spent towards turning these
ideas into working chips. The first fully functional analog decoder
of this type was built in 1998 by Lustenberger et al. using discrete
transistors [8]. Lustenberger et al. then designed and manufactured
first, a decoder for a four-state tailbiting (18,9,5) convolutional
code and later, a decoder for a (44,22,8) low density code, both in
0.8µm BiCMOS technology [8, 10]; unfortunately, both of these
chips turned out to have some problems with the interface circuits
(outside the actual decoder). Hagenauer et al. have demonstrated a
perfectly working decoder for a two-state (16,8,3) tail-biting con-
volutional code in 0.25µm BiCMOS technology. Winstead et al.
[11] have fabricated a decoder of the (8,4,4) Hamming code in
0.5µm CMOS technology; that decoder, too, was reported to have
some minor design error. Xotta et al. have recently announced an
ambitious design of a complete turbo decoder for magnetic record-
ing [12], but that chip has not yet been manufactured.

In this paper, we report on a more modest achievement. We
have built a series of probability gates as individual CMOS ASICs
that allow the realization of various analog decoders on the bread-
board level. In particular, we will report measurement results for
a decoder of the (8,4,4) Hamming code. That decoder works very
well and appears to be surprisingly immune against transistor mis-
match.
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2. CODES AND GRAPHS

Error correcting codes are an essential element of most modern
communication systems. The invention in 1993 of “turbo cod-
ing” and the rediscovery of “low-density parity check codes” have
now led to practical codes and decoding schemes which, for most
practical purposes, essentially achieve the theoretical performance
limits predicted by Shannon’s information theory [13]. A natural
way of looking at all such codes is by graphical models (“Tanner
graphs,” “factor graphs”), and the decoding of such codes may be
viewed as applying the general iterative “sum-product algorithm”
to such graphical models [4, 5].

A Forney-style factor graph (called “normal graph” in [14])
for the (8,4,4) extended Hamming code is shown in Figure 1. The
nodes represent either equality constraints or parity-checks. The
bits u0. . .u3 in Figure 1 will be called “information bits” and the
bits x4. . .x7 will be called “parity bits”. For details, we refer to
[14].
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Figure 1: A Forney-style factor graph for the (8,4,4) extended
Hamming code.

Any factor graph (or Forney-style factor graph, as e.g., in Fig-
ure 1) may be interpreted as a blueprint for a decoder of the cor-
responding code. In this interpretation, each node of the graph
may be viewed as a “processor”. The decoder operates by pass-
ing “messages” along the edges of the graph; the messages are
iteratively (re-)computed by the nodes/processors according to the
rules of the sum-product algorithm [5, 14].

Note that the graph of Figure 1 is far from unique. In general,
a huge variety of different graphs exists for the same code, and
each such graph yields a different decoder.



3. PROBABILITY GATES AND ANALOG DECODERS

As presented in [3], a factor graph such as shown in Figure 1 may
be immediately translated into an analog electronic network. The
nodes/processors are translated into “probability gates”, which are
wired together according to the topology of the graph. These prob-
ability gates perform computations with probabilities. The circuits
rely on the exponential characteristics of either bipolar junction
transistors or CMOS transistors operating in the subthreshold re-
gion; within the validity of the exponential model, the probability
calculations are exact. For details see [7, 8].

We have a collection of over 140 soft-parity-check gates (soft-
XOR gates) and just as many soft-equality-constraint gates (soft-
EQU gates), each as an individual ASIC in its own package. Each
gate has three bidirectional ports. For each of its three output ports,
the softXOR gate computes[

pout(0)
pout(1)

]
=

[
pin1(0) pin2(0) + pin1(1) pin2(1)
pin1(0) pin2(1) + pin1(1) pin2(0)

]
(1)

and the softEQU gate computes[
pout(0)
pout(1)

]
= γ

[
pin1(0) pin2(0)
pin1(1) pin2(1)

]
, (2)

where the scale factorγ is implicitly defined by the condition
pout(0)+pout(1) = 1. As described in [7], probabilities are repre-
sented by currents. The transistors operate in subthreshold mode,
typically at a current-level of about 1µA, i.e., 1µA corresponds
to probability 1.

The circuits are implemented in a0.8 µm N-well silicon gate
CMOS process (Philips C175SC) using the inexpensive semi-
custom mixed-signal array “MD300” provided by Microdul AG,
Zürich. The circuit topologies of the two probability gates are de-
scribed in [8]. Special care was taken to minimize the mismatch of
corresponding transistors in current mirrors and differential pairs:
24 unit-transistors were connected in a parallel and interleaved
manner (WN,P = 24 × 6 µm = 144 µm, LN,P = 5.6 µm)
to form a common-centroid layout [15]. The NMOS- and PMOS-
transistors were sized equally.

This collection of soft-gates allows us to carry out a large va-
riety of measurements. First we can examine the characteristic of
a single soft-gate. We then have the possibility to build decoders
for different codes. For each code there exists a large family of
suitable decoder structures (which we call realizations). Once we
have wired one such realization on the breadboard, the impact of
transistor mismatch can be analyzed by plugging different sets of
ASICs into the sockets. In addition, the influence of some other
conditions (e.g. supply voltage, decoder settling time) on the de-
coder’s performance can be studied.

In this paper we present results obtained from the decoder real-
ization for the (8,4,4) extended Hamming code shown in Figure 1.
A picture of the assembly is shown in Figure 2. From that figure,
it might seem doubtful whether such a decoder can work at all; in
fact, we have observed quite robust behavior, as will be detailed
below.

4. MEASUREMENT RESULTS

All measurements were carried out on our lab’s own measuring de-
vice, which contains 16 12-bit D/A- and A/D-converters. The soft-
gates’ characteristics were verified first: 50 bidirectional softEQU

Figure 2: Breadboard-level decoder with a soft-gate chip.

gates as well as 50 bidirectional softXOR gates were measured and
simulated. (One fully bidirectional soft-gate contains three unidi-
rectional soft-gates.) The results are shown in Figure 3 for the
softEQU gates and in Figure 4 for the softXOR gates. The solid
lines represent the ideal characteristics of the soft-gates, whereas
the dashed lines show the 10 and 90 percentiles for the 3×50 mea-
sured characteristics (i.e. 80 percent of the measurements lie be-
tween the dashed lines).

The variations in the soft-gates’ characteristics are primarily
due to transistor mismatch (and to some degree also due to asym-
metries among the circuits); some deviation from the ideal char-
acteristic is also due to the deviations of the real transistors from
our exponential model. The flattening of the curves for large log-
likelihood ratios of the output of the softEQU gate, as seen in Fig-
ure 3, is probably an artifact caused by the resolution limit of the
measurement equipment.

Error rate curves were measured both for the binary symmetric
channel (BSC) and for the additive white gaussian noise (AWGN)
channel. The transmission over the noisy channel was simulated
in software, and the resulting “noisy” codewords were applied
in parallel to the decoder; after a fixed and preset time the A/D-
converters then measured the decoder’s outputs. The plots in this
paper were obtained with a settling-time of 50 ms.

The effect of transistor mismatch was studied by plugging in
11 different chip sets (all stemming from the same wafer) into the
sockets of the decoder shown in Figure 2. For the AWGN chan-
nel, 10 error-rate curves were measured up to an SNR of 6 dB; one
measurement (which nearly took 2 weeks!) was measured up to an
SNR of 8 dB. The results of these measurements are summarized
in Figure 5, which shows both the block error rate (which includes
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Figure 3: Ideal and measured (10 and 90 percentile, 150 mea-
surements) characteristics of the softEQU gate. The vary-
ing parameter is the log-likelihood ratio of the second input:
log10[pin2(0)/pin2(1)].
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Figure 4: Ideal and measured (10 and 90 percentile, 150 mea-
surements) characteristics of the softXOR gate. The vary-
ing parameter is the log-likelihood ratio of the second input:
log10[pin2(0)/pin2(1)].

errors both in the information bits and in the parity bits) and the
average information-bit error rate. Also shown in Figure 5 are
the corresponding curves for an “ideal” analog decoder with ideal
soft-gates according to (1) and (2). (Since the graph of Figure 1
has loops, that ideal analog decoder is not a MAP decoder of the
code.) Somewhat surprisingly, the measured performance curves
of different chip sets are almost identical; the influence of transis-
tor mismatch, which appears to be quite significant in Figures 3
and 4, is hardly noticable in the overall decoder performance.

The error-rate curves of 10 measured decoders for the BSC are
shown in Figure 6. The BSC is obtained as a quantized AWGN
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Figure 5: Measured block error rate and measured average
information-bit error rate of 11 versions (each with a different set
of ASICs) of the decoder of Fig 1 for the AWGN channel. Ideal
block error rate and ideal average information-bit error rate for
such a decoder.

channel and parameterized by the SNR of the AWGN channel.
Independent of the actual SNR, the decoder was operating with
a fixed SNR of6 dB, which was experimentally found to give the
best results. As Figure 6 shows, the measured information-bit error
rates lie all on top of each other and agree with that of the ideal
analog decoder. In contrast, some of the measured block error rate
curves (which include errors in the parity bits) are markedly worse
than those of the ideal analog decoder. It appears that the parity
bits are more sensitive to transistor mismatch than the information
bits.
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Figure 6: Measured block error rate and measured average
information-bit error rate of 10 versions (each with a different set
of ASICs) of the decoder of Fig 1 for the BS Channel with a fixed
optimal SNR= 6 dB. Ideal block error rate and ideal average
information-bit error rate for such a decoder.
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Figure 7: Measured block error rate and average information-bit
error rate for the AWGN channel. The supply voltage is adjusted
from 5.0 V to 1.2 V and to1.0 V.

We also experimented with different supply voltages. Again,
the circuits proved quite robust. While the circuits were designed
for a supply voltage ofVdd = 5.0 V, the decoder works very well
with a supply voltage as low asVdd = 1.2 V, as shown in Figure 7.

5. CONCLUSIONS

We have presented measurements of bit error rates and block error
rates for an analog decoder implemented with probability gates on
the breadboard level. We have observed that the measured over-
all performance is virtually identical with that of an ideal analog
decoder despite of substantial measured nonidealities on the soft-
gate level. While the circuits were designed for a supply voltage
of 5 V, we have observed no substantial loss of performance when
operating them at a supply voltage as low as 1.2 V.
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