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An Exact and Direct Analytical Method for the
Design of Optimally Robust CNN Templates

Martin Hanggi, Student Member, IEEEANd George S. MoschytEellow, IEEE

Abstract—In this paper, we present an analytical design ap- CNN'’s, whereu, y(t — o) € B™ and x(0) € By for
proach for the class of bipolar cellular neural networks (CNN's) B = {—1 1} and B, = {-1, 0, 1}.

which yields optimally robust template parameters. We give  pg nroplem of template design or template learning is
a rigorous definition of absolute and relative robustness and

show that all well-defined CNN tasks are characterized by a @ key topic in CNN research. The methods which have
finite set of linear and homogeneous inequalities. This system been investigated since the inception of the CNN may be
of inequalities can be analytically solved for the most robust classified as analytical methods [2]-[4], local learning al-
template by simple matrix algebra. For the relative robustness gorithms [5]-[7], and global learning algorithms [8], [9]

of a task, a theoretical upper bound exists and is easily derived, . ' ’ )

whereas the absolute robustness can be arbitrarily increased by 1he analytical approaches are based upon a set of local
template scaling. A series of examples demonstrates the simplicity rules characterizing the dynamics of a cell, depending on its

and broad applicability of the proposed method. neighboring cells. These rules are transformed into an affine
Index Terms—Cellular neural networks (CNN's), robustness, Set of inequalities which must be solved to get correctly
template design. operating templates. Local learning algorithms are derived

from training methods developed for other neural networks
such as multilayer perceptrons, and their global counterparts
mostly use stochastic optimization techniques such as genetic
algorithms [8] or simulated annealing [9].

Analog very large scale integration (VLSI) implementations
N THIS paper, we consider the class of single-layer spgf the network equation (1) have a number of limitations that
tially invariant cellular neural networks (CNN's) with @peed to be taken into account in the theory of CNN's in

neighborhood radius of one, defined in [1]. The dynamics gfder to guarantee correct and efficient operation of analog
the network is governed by a systemsof= M N differential /| 5| hardware. Template parameters can only be realized

I. INTRODUCTION

A. Cellular Neural Networks and Template Learning

equations with a precision of typically 5-10% of the nominal values,
di; (t) and usually only a discrete set of possible values is available
g = )+ 7 (ki jsat(r(t) [10], [11]. The requirement that a template set fulfills a
ko IEN; given task reliably under these circumstances poses additional
+ br—i,i—jurt) + 1 + iy, (1) obstacles to template design. The problem of synthesizing such
(4, ))e{l, ..., M} x{1,...,N} robust templates has been successfully attacked using genetic

algorithms [12], or by means of hybrid approaches where
where V;; denotes the neighborhood of the cé€ll;, ar  stochastic optimization techniques were combined with hill
and by; the feedback and the control template parametet§imping algorithms [13]. However, they are computationally
respectively. Since the cells on the margins do not have,gry expensive and yield little insight into the dynamics
complete set of regular neighbors, the CNN is assumed 10 heihe resulting templates. Analytical methodologies for the
surrounded by a virtual ring of cells with constant input andesign of robust parameters deal with the problem of solv-
output. Their contribution is subsumed undgy. sat(-) is the g 3 system of affine inequalities for the best or, at least,

piecewise linear saturation function a sufficiently robust template [4], [14]-[17]. The proposed

sat(z) = L(|lz + 1| — |z — 1)) ) algorithms include linear programming or relaxation methods
2 which entail considerable effort, often without yielding guar-
andy,;(t) = sat(x;,(¢)) is referred to as the output &f;;. anteed optimal solutions. In this paper, we show that after a

In this class of CNN's, the template sét= {A, B, I} is small translation of the template space, the set of inequalities
fully specified by 19 parameters} = {ax;} and B = {0x;} becomes homogeneous, and we propose the application of
are 3x 3 matrices. We restrict ourselves to the class of bipoléte matrix-vector notation to solve the CNN design problem,
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tent, does not contain any loopsaind encompasses all cell tends to an (intermediate) equilibriuaj = —a. + g4 <
configurations at the desired equilibria then its solution will -1 and z(¢) to z5 = a. + g > 1. Suppose the
be stable. configuration around the second cell changes fiom
to C4 att = t9. The derivativeias(tg) = —z3% + a. + ga
B. Locally Regular Template Sets is negative and thus satisfies the local rule fox.

Hence, the fact that such intermediate equilibria lie in
the saturation region and the negative sigr:@) on the
right side of the CNN, (1) guarantees the validity of the
local rules during the whole transient. It is not important
how precisely these equilibria* are reached before the
configuration changes and, accordingly, a new local rule
applies.

All uncoupled templates, where only the center element of
the A template is nonzero, are inherently locally regular
since there is no influence from the neighbor’s output.
Most of the well-known propagation-type tasks such as
shadowing, connected component detection, hole filling,
and global connectivity detection are locally regular as
well. A counterexample is the Laplacian template [23],
which is locally irregular since its behavior cannot be
described by a set of local rules.

¢ Local regularity does not imply any symmetry or sign
symmetry of thed template.

The template design method we propose is applicable to
the important class of locally regular templates which is
characterized in the following.

Definition 1: A CNN template set is locally regular if its
operation can be characterized by a set of time-invariant local
rules. The operation itself is then also called locally regular.

A local rule prescribes whether the state’s derivative of a
cell ;;(t) is to be negative or positive for a particular bipolar
configuration of the input and output values of the neighboring
cells.

Definition 2: A cell C;; is directly connected to a cell
Cmn if i —m| <1land|j—n| <1,ie,m,neN; and
Ai—m,j—n # 0.

Definition 3: A linear cell is a cell for whichz(¢)| < 1
or, equivalently,z(t) = y(t) holds.

Lemma 4: A template is locally regular if and only if, for
all linear cells, there is no other directly connected linear cell.

Proof: (=) LetCy, be alinear cell. For a locally regular
template, all cells that are directly connected’tp must have
constant output. The dynamics ©f (¢) in the linear region is II. THE ROBUSTNESS OF ATEMPLATE SET
then governed by 1, (t) = z1(¢)(a.—1)4¢ whereq comprises
the contributions from the neighbor’s output values from th& Absolute and Relative Robustness
input, bias, and boundary which are all constant by assumptio
as long as’y, is linear.a. = ag, ¢ is the center element of the
A-template. For bipolar tasks. > 1 is assumed. The solution
then is a single exponential function with a positive argume

i e S - VLSI chips it is crucial that all templates have a certain degree
which guarantees that the equilibrium lies in the saturatio . )

. . . . . . of robustness since their values cannot be guaranteed to be
region. Hence, the sign dfr,(¢) is determined by the bipolar

. : reproduced exactly by the analog circuit.
output values of the neighboring cells and cannot change Wh'@/arious definitio?w/s gf robustnesgs [12], [16], [17], [24] exist.

in the linear region, which implies that the template is Iocallv\/e define the vectop to contain allm nonzerd entries in a

regular. .
(<) If any cell C, and a directly connected cell are ”neagemplate sel with the center element of thd template as

at the same time, the dynamieg (¢) is described by a time- its first element ; := ac) and the othenn — 1 elements

. ) ) : . s . __in arbitrary order. We refer to the final output of a CNN
varying differential equation since it is influenced by its linear .
rogrammed withp by y..(p).

neighbor's nonbipolar and time-varying output. Thus the sig[fw Definition 5: The absolute robustnesf a template set
of 1, (t) cannot be determined by time-invariant local rules.is '
]

rhe robustness of a CNN template set is a measure which
guantifies the degree by which a template set can be altered
hile still producing the desired output. In programs for CNN

Remarks:
e The system of inequalities is valid during the whole

transient, not only at = 0. It does not matter whether yjarqware tolerance effects due to physical and manufacturing
a certain configuration of neighboring celfsoccurs at jmperfections give rise to parameter errors roughly propor-
the beginning of a transient or at a later timg> 0.  tjonal to the absolute value of the respective parameter [25].
To see this, we consider two state trajectoriéSt) \ve therefore consider a relative robustness criterion.

and z,(t). Positive initializationz,(0) = w2(0) = 1 Definition 6: The relative robustnes® of a template set
and a neighborhood with a configuratighy and Cg, g

respectively, are assumed. The local rule € may
prescribe a negative derivative,(0) = —1+a.+¢4 <0, D(p) = max{a|yeo(po(1+al¥)) = yoo(p) V1T € B}
whereast»(0) = —1+a. +gp > 0. ¢,4 andgp subsume *

the contribution from the neighbors and the bias for tl”@ denotes Componentwise vector mu'tip"cation_
configurationsC,y and Cp, respectively. Clearlyx;(t)

€(p) = max{a|yoo(P) = Yoo P + al®) V1t e B™).

2 zero template entry is assumed to be realized by omitting some circuitry,
1A loop is when, e.g., some configuration of cefls is supposed to lead or by switching or disabling some controlled source, not by nulling. Zero
to a configuratiorC, and vice versa. template entries are therefore precise.
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For the sake of clarity and mathematical tractability we I1l. DESIGN OF OPTIMALLY ROBUST TEMPLATES

define a slightly modified template vectprto be With the results from the previous section it is now easily

1 B = ps 2<i<m seen that template optimization with respect to relative ro-

’ o - bustness implies increasingp) while keeping||p||1 small.

or, alternatively,p := p — e; Wheree; is the unit vector in Template scaling by large factors does not improve the ro-

direction of increasing.. bustness significantly and has the disadvantage of resulting in
Locally regular CNN tasks are fully characterized by a set &rger template values, which may not be realizable on the

7 inequalities forx(¢). Utilizing the modified template vector CNN chip.

p and matrix-vector notation, the regiocR c IR™ where a  The design of a template with maximum robustness is in

template set operates correctly is then defined to be fact a design centering problem sinpeg, is, in some sense,
centered iNR. Formulated more precisely, the problem is to

R={peR™|(K-p);i >0, VI<i<sm} (3) find a template se,,, (Or pop:) having the same safety
margin in all its inequalities

151 ::pl_]-:ac_

for a coefficient matrixK € Bglxm representing the different
constellations ofu and x(¢). (If a negative derivative is (K - Popt(1)i =7, 1<i<m 7)
prescribed, the sign of the corresponding roviKins adapted.)
The strict greater than inequality may also be a greater thanagsuming that the system of inequalities is nonredundant in
equal to inequality for, at mostp — 1 of these inequalitied. the sense of the following definition.
Note that a value of zero IK is only possible in case of zero Definition 7—Nonredundant Set of Inequalitie&:system
initialization or zero boundary values. (Kx); > 0 is nonredundant if every row i contributes
By means of the set to a diminution of the solution space or, equivalently, if no
, . . L inequality in the system can be removed without affecting the
R = {p € R™ | (K : p)z Z 07 v1 S ? S m} OR (4) solution space.
Lemma 14 in the Appendix shows how redundant inequal-
ities are found.
Using the concepts introduced here, it emerges that the
YT) =~(p) = 11<m<n {(K-p)i}, pe®R. (5) optimally robusttemplate set can be calcula_ted analytically in
sram a rather elegant manner. The method of solving (7) depends on

The absolute and the relative robustness may now be expresged’* and the rank oK. We refer to a set of inequalities for

which includes the boundary & we introduce the term safety
margin. We will denote it byy(7) and formally define it to be

as which m = i = rankK as a basic set (or system). Clearly,
K is invertible in case of such basic sets. For the sake of

«(7T) = 7 and D(7) = 1T (6) simplicity and clarity, we restrict ourselves to this important
m 1711 class in the following theorem and treat all honbasic systems

respectively. in the Appendix.

It may seem tedious to establish a system (3) for a task with | "eorem 8—Optimally Robust Templates for Basic Sys-
a high connectivity. To reduce the dimension the system tems: Assuming that
can be recast in a form where parameters knawpriori to
be identical are represented by a single variable. Since mos{
highly connected tasks exhibit such isotropic behavior, t
results in a manageable system. The new magiwill then
be in z™>7,

K-p)7>0, 1S'LSm’K€Bglxn7’p€Ian (8)

N§ a set of nonredundant inequalities characterizing a CNN
task, the optimally robust template vectds,. as a function
of a scaling parametey is

B. Template Scaling Popt () = gK™'1™. 9)

From (5) and (6) it follows that(¢p) = q¢(p), ie, by o _
scaling the template vectgs by a factor ofg, we achieve (1™ denotes the vector ilR™ with all its componentst1.)

proportionally higher absolute robustness (cf. [26]). Its relative robustness is
For the relative robustness we obtain . 1
~ - - D(popt (q)) = —1 (10)
D(~ _ 7(p) = ( ~N qu(p) _ 7(p) ||I<—11rn,||1 + -
P 1 “qllp 1 . 1 q
Iplls + allpll: +1 7 5y, 4+ 1

whereq equals the safety margin and the theoretical maximum

where we have made use of the fact that||; = ||p||; + 1. D for the achievable robustness is
Hence, the relative robustness is strictly monotonically increas- . _ B 1
ing with increasingg but it is upperbounded by(p)/||B||:. D = lim D(popi(q)) = TR, (11)

g—0o0

3If none of the inequalities were strict, a template for whicke 0 would . I b | . | hat h
be allowed. No operation would be performed, since the initial state wouﬁ!n optimally robust template set Is a template set that has

be the equilibrium. maximum robustness for a given notfa||;.
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Proof: It follows directly from (7) that the optimum Proof: In the matrix K —p; and I have the same
template set is the product of the inverted coefficient matrooefficient in every row, since for initialization with-1,
and the vector of identical safety margins for all inequalitie$—1)(—p5; ) plays the role of an additional biastat 0. Hence,
The robustness is derived from (6). m the matrixK is singular ang; and are only determined by

Definiton 9—The Principal Axis of a CNNthe value ofc andp; > 0. For maximum relative robustness,
Task: Assuming that a CNN task is characterized by g + |I| = p1 + [p1 + ¢| has to be minimal, which results in
set of inequalities (3), the principal axis points in the directiothe above solution space.
of the unit vector popi(1)/||Popt(1)|l1 and contains all  x(0) = 1. Letc := p; + I. As in the previous case, only
templatesp = popi(g) With ¢ > 0. ¢ is determined by (7). It > 0 all p; € [0,¢] I = c— Py

The principal axis of a task comprises all templates thate optimum values, whereas foer< 0 only one optimum
are optimal with respect to robustness. Hence, scaling sucbhddution exists, that isj; = 0, I = c.

template does not affect its property of being optimal. Proof: For positive initializationp; can be considered
Corollary 10—Unboundedness & R is infinite. For as additional bias at = 0, and p; and I have the same
basic systems, it is spanned by coefficients inK. Thus, onlyc = p; + I is fixed by (7).
Depending ore the minimization ofip,|+ || yields the above
K1), Ve (RH)™. (12) solution(s).

x(0) = u. Let ¢ := p; + b.. The optimum solutions for
Proof: In every cas® is not bounded along the principalp1 andb. arep, € [0, ] b = ¢ —py if ¢ > 0 andp, =0,
axis. For basic systems (8) is satisfied for any vedtavith be = cif ¢ <0.

solely positive components. - Proof: Similar reasoning as in the previous case applies.
For all CNN chips, there is an upper bound f(F||,. The Simply replacel by b. since p, and b. have the same
next corollary shows how to find the optimum template undépefficients inK for input initialization. u
this constraint. Remark: When applying Theorem 8 to uncoupled tasks,
Corollary 11—Optimum Template fd7 ||, < 8: Under it is advantageous not to incluge (andb. or I, respectively)
the constrain{|7||; < / the optimum template is in the matrixK, but justc (as defined in Corollary 12) in order
to get a regular matrix and then to determjheandb.. or I,
~ Popt (1) respectively, after having calculated the optimum valuecfor
Poptlj7)i<s = (B —1) m (13) However, by using2 R decomposition, Theorem 15 in the
v Appendix would of course lead to the same result with a
N 1 1 IV. EXAMPLES
D(p0pt|||7||1§,8) = T= i <1 - —3> (14 . .. .
op ’ B
[[Popt (1)]2 £ Intentionally, we make only minimal use afpriori knowl

edge, and merely assume symmetry of isotropic tasks. For
Proof: Expressed by the constraint is/||popt (1)[[+1 < those examples, we use the reduced coefficient marig
/3. Solving for v and inserting (6) and (9) yields the aboveyxm instead ofK € B**™. We consider the actual image
results. to be in black ¢-1) on a white £ 1) background. The boundary
B condition for both state and input is assumed to b#
Given the constraing, (14) tells us directly how far we are throughout this section.
from the theoretical optimum. Fo¥ = 10, for example, we  The functionality of the templates proposed in this section

achieve 90% of this upper bound. may be verified using the simulator available on the World
Corollary 12—lnitialization for Uncoupled Tasksf, for wide welf [27].

an uncoupled bipolar CNN task, the initial state is chosen to  Example 1—Uncoupled Horizontal Line Detection:
be X(O) = +1, X(O) = 0, or X(O) = u then the space of Temp|ate Prototype:
optimally robust templates according to (7) is not necessarily

a single point, but may have dimensiori. Depending on the =~ 4= [Pr+1], B=ls b s, I=2 x(0)=u

initialization, there is a degree of freedom in th&, b.) or Definition of the Task:With ¢ := p; + b., we get
in the (51, I) plane, subject to the constraifit > 0 in order
to guarantee bipolar outp@p, := a, — 1). _ )
x(0) = 0: p; = 0 is the optimum choice. v=y0) = v #0)
Proof: p, does not appear in the parameter vegtoAny (1) ceo — o000 | —c+2s—2>0
p1 > 0 does not influence the functionality of the template. @) cee — ocee ctz>0
Thus, we sep; = 0 for maximum relative robustness. =
x(0) = —1. Lete¢ := —p; + I. From (7) we get only a (3 ece — eoe c—2s—220
value fore, but not for the individual parametefg and 1. If 4) e00 — 00 — >0
. - . c—z 2
¢ < 0 we may choosg, € [0, —¢] and] = p; + ¢ without

affecting the robustness. # > O thenp; = 0 and/ =cis  apyy

] X Ilwww.isi.ee.ethz.ch/ ~haenggi/CNNsim_  adv.
the only optimum solution. html
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-1 2 -1 . Remark: This method may also be applied to check
10 1 — 1%, whether there exists a shadowing template with a symmetrical
I -2 -1 - A template and, if so, to determine the most robust solution.
I 0 -1 With the prototype

Removal of Redundant Inequalitie$he last row vector -
k, is the sum of the other three and should be eliminated. NG — [s o+l s], B=[qber], I=2 x(0)=-1
additional nonredundant inequalities (i.e., cell configurationg}]dc )

i = p; — z we find the nonredundant set
can be included. pr—=z

Solution:
Popt = fyf{_ll?’ = c¢c=2y, s=rv, z2=-—v u oyt — y(t+71) ()
®ee 000 — 00O —c—2s4+q+b.+7r>0
1 € [0, 2¢] leads to the extrema
®e00 000 — oceo —c—2s4+q+b.—7r>0
A=[2v+1], B=[y 0], I=-v
and ©00 €00 — @00 c—q+b.+r>20
A=[], B=[y 2y4], I=-. 000 OO® — Oee —c—qg—b.—r>0
The maximum achievable robustnesslj§ = 20% . $00 eo0e — eee | —ct254g—be—r>0
Example 2—Shadowing: .
Template Prototype: Evaluatingp,,: = yYK~*1° and minimizing|p:| + || yields
A=lsp+lg, B=0, I=z x(0)=u A=y 19], B=[-y 270, I=2

Definition of the Task: with a maximum robustness af/7 = 14.3% .

Example 3—Connected Component Detection:

y(t) — y(t+7) () Template Prototype:
Q) | coe — cee —s—p1+q+2>0 A=[s j1+1q., B=0, I=2z x(0)=u
(2) | ece — XX s—p1+g+2>0
Definition of the Task:
3) see — csee s+pr+qg+2>0
@) | oee = oee | msthtatz20 ut) — y(t+1) (1)
(5) | coo — ooo s+p1+g—22>0 1) | eco — eeo P 4s—q4z>0
(6) | e00 — eo0o0 —s+pr+q—220 @) | cee — ooe P 4s—q—2>0
(7) | o0 — ee° Sth—qtz20 (3) | ece — ece pr—s—q—22>0
(8) | o0 — °e° —stp—qtz20 (4) | ceo — oeo p1—s—q+22>0
5 eee — eeoe in+s+qg+2z=20
1 1 1 1- (5) n q
-1 1 1 1 (6) | ooo — ooo0 P1t+s+qg—22>0
1 1 1 1 P1 (7) | 00 — eeo p1+s—qg+2>0
— s | s
1 1 1 —1| |gq =71~ (8) | coe — ooe pL+s—qg—2z>0
1 -1 1 -1 b4
1 1 -1 1 Removal of Redundant Inequalities¥e eliminate the
L 1 -1 -1 1] last two rows sincék; = ki +k4+kg andkg = ko + ks +ks.

Solution: Solving this nonbasic system in the least

Removal of Redundant Inequalitiee find ks = ks + squares sense (cf. Case Ill in Theorem 15) yields

k¢ +k7 andky = ko + kg +kg. The remaining six inequalities
are nonredundant.
Solution: Since we end up with a system with = 6 >

m = 4 this is not a basic set and we have to solve it in thgith a maximum achievable robustnessigh = 33% .

least squares sense (cf. Case Ill in Theorem 15) which yields Example 4—Global Connectivity Detectioithe global
connectivity detector deletes any connected objects that are
marked in the binary image. An object is marked by changing
which is, in fact, the well-known shadowing template. That least one pixel from black to white in the initial state. The
maximum achievable robustnesslig3 = 33% . output contains the unmarked objects only.

f)opt = (KtK)ith]'G — 151 =s=7%,49=—-7, 2= 07

Popt = (K'K) 'K'1® = p=q=2=1, s=0
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Template Prototype:This task exhibits isotropic behav-are unnecessary since they do not impose any additional
ior. The off-center entries iM and B are thereforea priori  restrictions on the solution space) of the coefficient matrix
assumed to be identical. To ensure that the template walle to be eliminated in a first step; these row vectors have
operate on both white images on a black background and bldhk property of being positive linear combinations of others.
images on a white background, the bias is set to zero Since the method includes the removal of these redundant
inequalities it is not important to specify exactly the right

A— S ﬁlil S B— 2 b(i 2 @nequal@t?es and the right number thereof. One_may include
0 s 0 ’ 0 ¢ 0 ’ mequghtles for all possible constellgtlons or restrict oneself to
! ) a basic set. However, a small set is advantageous due to the
=0, x(0) = bipolar image smaller dimension oK and is, in fact, very often sufficient
Definition of the Task: to fully characterize a task.
The safety margin specifies by what amount an inequality
: is satisfied. Optimally robust templatgs,,; are those with
v y(t) - yt+T) (%) the same safety margin in all nonredundant inequalities:
° ° ° . Kpope = ~1. The solution depends on the dimension and
(1)| ege ogo — o2 Prtbet+ds+4g20 the rank of K. Often K is regular and we obtain simply
Popt = ~K~!1. If the system is overdetermined, we solve it
(2)| oeo ceo —  oeo PLtb.—4s—4g>0 in a least squares sense. If it is underdetermined, we may apply
°_° ° a QR decomposition or reduce the number of parameters. For
. ) ) . every~ > 0 the solution is optimal in the sense that no other
()| oge oge — oge | P be—25—4g>0 more robust template with a smaller or equal norm ||p||;
exists.
(4)| eoe o0 —  eoe Pr—b.—4s—4g>0 With increasing~ the absolute and relative robustness
e * increase strictly monotonically. The relative robustness is
o o ) . upperbounded foty — oco. This upper bound is a property of
(5)] oge oge — o3¢ Prtbet+2s+2020 the underlying task, the initial state, and the boundary value.
It can be very easily determined and permits the optimization
(6)| eoe cee —  ooe —p1 —b.—4g>0 of the initial and boundary conditions for robustness.
¢ * In general, scaling a correctly operating templgtey a

positive factor always yields another valid solution, with the
absolute robustness being scaled by the same factor. This
implies that the subspace of the solutions for a given task
is not bounded.

For VLSI implementations of the CNN%$Z ||; = ||p||1 +1
is constrained by some upper bouidThe proposed method
Popt = 7K1 = pr=s=7v, q=—7, b.=0 directly yields the optimum solution fop < |71, and

) ) ] __ specifies its degree of robustness.
in agreement with the template found by stochastic optimiza-

tion [13] wherey = 2 with a robustness o2/19 = 10.5%.
The maximum robustness for this taskyis||popt||1 = 1/9 = APPENDIX
11.1%.

Removal of Redundant Inequalitietnequalities (1)—(4)
constitute a regular nonredundant mati Other constel-
lations such ask; = 2k; + ik, andks = ki + 2k are
clearly redundant.

Solution:

Definition 13—Positive Linear Combinatior positive
linear combination of a set of vectoxs, ..., x,, is a linear
combination with solely nonnegative coefficients. To denote

In this paper, we have proposed an exact and analytitaé subspace spanned by positive linear combinations of
approach for the design of robust templates for the classxf, ..., x,, we use
locally regular CNN tasks. Absolute and relative robustness is
defined in a deterministic and easily reproducible manner. The (x1, .. Xyt
desired task is characterized by a set of inequalities defining
the subspace within which all correctly operating templates

ie. We h h that thi ; ¢ lit Lemma 14—Determination of Redundant Inequalitiés:
ie. We have shown that this system of inequalities can %esysterr(Kk)i > 0, K € R™™ the redundant inequalities

solved directly for the optimally robust template; there is n e those which can be expressed as positive linear combina-

need for an iterative algorithm. Furthermore, this analytica ns of others. Hence, all row vectok¢ are redundant for
method provides insight into the dynamics of the CNN angl, .. ' '

the interaction between different template parameters.

Matrix-vector notation for the coefficient matrix and the "
vector of nonzero template entries is applicable. With a trans- Ixe (]R(J{)ﬁ’ such that k! = Z )\jkj.
lation by —1 in the direction of thez. axis the system turns i1
out to be homogeneous. Redundant rows (i.e., equations that bl

V. SUMMARY AND CONCLUSIONS
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P2 Kp=0 If popt(g) is not a solution, then the underlying task

is ill defined and cannot be realized with this class of
CNN's.

Note that in this case, the safety margin may not be
equal tog but has to be determined by evaluating (5).

Proof: We project K into the subspace of dimension
m x m by multiplication with K* from the left and solve
the new systenK*Kpop:(7) = ¢K*1™ yielding a solution in
the least squares sense Kip = ¢1™ has an exact solution,

(Kp), = U

A}
)
\)
1
\ )
1
A
A
)
\)
)
\ )
)
A}
1
A
\)
1
\)
A

ki

V)

Fig. 1. Geometrical interpretation of Lemma M is redundant.

Proof: Using ki, k5, ..., ki, to denote the rows oK

we note that the system is homogeneous in the sense that all

hyperplaneskix; = 0 intersect at the origin. If one of the
inequalities, for examplek!p > 0 can be expressed as the
sum of positive multiples of some others, thkfp > 0 is
trivially satisfied and therefore redundant.

This argument has a geometrical interpretation. Theg
vectors k; normal to the hyperplanek!p 0 point in
the direction of the solution subspace. If one of them[4]
say k;, points into the positive subspace spanned by the
others(ki, ..., ki—1, ki1, ..., ks) T this signifies that the
inequality defined b¥; is redundant since it is always satisfied [5]
when the others hold. Hence, it can be eliminated without
affecting the solution space. A possible constellatiofRihis  [6]
depicted in Fig. 1, wher&s is redundant. [ |

Remark: Matrix algebra may be used to determine which
row vectors are positive linear combinations of others. In prad”]
tice, however, the redundant equations can often be eliminated
simply by inspection or excluded priori. (8]
Theorem 15—Optimally Robust Templaté3epending

on m, 7, and the rank ofK we consider different cases of [g]
the nonredundant system

(K p)l > 07

(1]

(2]

. ~ mxm = m
1<e<m, KeBy™™, pe R™. (15) [10]

I) rankK = m = 7. The solution for these basic systems
is presented in Theorem 8. [11]
) rank(K) < m = 7. This system has a solution of
dimension(m — rankK). It can also be solved in a
straightforward manner usin@R decomposition, for
example. [13]
) rank(K) m < 7. This system comprises more
inequalities than parameters; it is overdetermined, but
has full rank. If there is any solution, then the most*
robust one is

[15]

Popi (@) = ¢(K'K)7 K 1™, (16)

then it is popt. If there is no exact solution, but the system
(15) is not inconsistent, then there is always a pgig; with
the lowest mean square distance betwkgmn and g1.

However, it is not guaranteed that the templatg:(¢) we
get from (16) in fact solves (15); this must be checked. If it
does not, then the system is not consistent.

IV) rank(K) < m < . In this case, the number of

parameters is to be reduced by matrix algebra to achieve
m = rankK). The system can then be solved using the
method proposed for the previous case.

rank(K) < @ < m. If the number of parameters
exceeds the number of inequalities, there is always a
solution which has the dimensigf: — rankK).
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