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Abstract—In this paper, we present an analytical design ap-
proach for the class of bipolar cellular neural networks (CNN’s)
which yields optimally robust template parameters. We give
a rigorous definition of absolute and relative robustness and
show that all well-defined CNN tasks are characterized by a
finite set of linear and homogeneous inequalities. This system
of inequalities can be analytically solved for the most robust
template by simple matrix algebra. For the relative robustness
of a task, a theoretical upper bound exists and is easily derived,
whereas the absolute robustness can be arbitrarily increased by
template scaling. A series of examples demonstrates the simplicity
and broad applicability of the proposed method.

Index Terms—Cellular neural networks (CNN’s), robustness,
template design.

I. INTRODUCTION

A. Cellular Neural Networks and Template Learning

I N THIS paper, we consider the class of single-layer spa-
tially invariant cellular neural networks (CNN’s) with a

neighborhood radius of one, defined in [1]. The dynamics of
the network is governed by a system of differential
equations

(1)

where denotes the neighborhood of the cell
and the feedback and the control template parameters,
respectively. Since the cells on the margins do not have a
complete set of regular neighbors, the CNN is assumed to be
surrounded by a virtual ring of cells with constant input and
output. Their contribution is subsumed under. is the
piecewise linear saturation function

(2)

and is referred to as the output of .
In this class of CNN’s, the template set is

fully specified by 19 parameters; and
are 3 3 matrices. We restrict ourselves to the class of bipolar
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CNN’s, where , IB and IB for
IB and IB .

The problem of template design or template learning is
a key topic in CNN research. The methods which have
been investigated since the inception of the CNN may be
classified as analytical methods [2]–[4], local learning al-
gorithms [5]–[7], and global learning algorithms [8], [9].
The analytical approaches are based upon a set of local
rules characterizing the dynamics of a cell, depending on its
neighboring cells. These rules are transformed into an affine
set of inequalities which must be solved to get correctly
operating templates. Local learning algorithms are derived
from training methods developed for other neural networks
such as multilayer perceptrons, and their global counterparts
mostly use stochastic optimization techniques such as genetic
algorithms [8] or simulated annealing [9].

Analog very large scale integration (VLSI) implementations
of the network equation (1) have a number of limitations that
need to be taken into account in the theory of CNN’s in
order to guarantee correct and efficient operation of analog
VLSI hardware. Template parameters can only be realized
with a precision of typically 5–10% of the nominal values,
and usually only a discrete set of possible values is available
[10], [11]. The requirement that a template set fulfills a
given task reliably under these circumstances poses additional
obstacles to template design. The problem of synthesizing such
robust templates has been successfully attacked using genetic
algorithms [12], or by means of hybrid approaches where
stochastic optimization techniques were combined with hill
climbing algorithms [13]. However, they are computationally
very expensive and yield little insight into the dynamics
of the resulting templates. Analytical methodologies for the
design of robust parameters deal with the problem of solv-
ing a system of affine inequalities for the best or, at least,
a sufficiently robust template [4], [14]–[17]. The proposed
algorithms include linear programming or relaxation methods
which entail considerable effort, often without yielding guar-
anteed optimal solutions. In this paper, we show that after a
small translation of the template space, the set of inequalities
becomes homogeneous, and we propose the application of
the matrix-vector notation to solve the CNN design problem,
very generally, using simple matrix algebra. Furthermore, our
approach provides informative insight into the interaction of
the parameters.

Stability issues of CNN’s [1], [18]–[22] are beyond the
scope of this paper. If the system of inequalities is consis-
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tent, does not contain any loops,1 and encompasses all cell
configurations at the desired equilibria then its solution will
be stable.

B. Locally Regular Template Sets

The template design method we propose is applicable to
the important class of locally regular templates which is
characterized in the following.

Definition 1: A CNN template set is locally regular if its
operation can be characterized by a set of time-invariant local
rules. The operation itself is then also called locally regular.

A local rule prescribes whether the state’s derivative of a
cell is to be negative or positive for a particular bipolar
configuration of the input and output values of the neighboring
cells.

Definition 2: A cell is directly connected to a cell
if and , i.e., and

.
Definition 3: A linear cell is a cell for which

or, equivalently, holds.
Lemma 4: A template is locally regular if and only if, for

all linear cells, there is no other directly connected linear cell.
Proof: ( ) Let be a linear cell. For a locally regular

template, all cells that are directly connected to must have
constant output. The dynamics of in the linear region is
then governed by where comprises
the contributions from the neighbor’s output values from the
input, bias, and boundary which are all constant by assumption
as long as is linear. is the center element of the

-template. For bipolar tasks is assumed. The solution
then is a single exponential function with a positive argument,
which guarantees that the equilibrium lies in the saturation
region. Hence, the sign of is determined by the bipolar
output values of the neighboring cells and cannot change while
in the linear region, which implies that the template is locally
regular.

( ) If any cell and a directly connected cell are linear
at the same time, the dynamics is described by a time-
varying differential equation since it is influenced by its linear
neighbor’s nonbipolar and time-varying output. Thus the sign
of cannot be determined by time-invariant local rules.

Remarks:

• The system of inequalities is valid during the whole
transient, not only at . It does not matter whether
a certain configuration of neighboring cellsoccurs at
the beginning of a transient or at a later time .
To see this, we consider two state trajectories
and . Positive initialization
and a neighborhood with a configuration and ,
respectively, are assumed. The local rule for may
prescribe a negative derivative, ,
whereas . and subsume
the contribution from the neighbors and the bias for the
configurations and , respectively. Clearly,

1A loop is when, e.g., some configuration of cellsC1 is supposed to lead
to a configurationC2 and vice versa.

tends to an (intermediate) equilibrium
and to . Suppose the

configuration around the second cell changes from
to at . The derivative
is negative and thus satisfies the local rule for.
Hence, the fact that such intermediate equilibria lie in
the saturation region and the negative sign of on the
right side of the CNN, (1) guarantees the validity of the
local rules during the whole transient. It is not important
how precisely these equilibria are reached before the
configuration changes and, accordingly, a new local rule
applies.

• All uncoupled templates, where only the center element of
the template is nonzero, are inherently locally regular
since there is no influence from the neighbor’s output.
Most of the well-known propagation-type tasks such as
shadowing, connected component detection, hole filling,
and global connectivity detection are locally regular as
well. A counterexample is the Laplacian template [23],
which is locally irregular since its behavior cannot be
described by a set of local rules.

• Local regularity does not imply any symmetry or sign
symmetry of the template.

II. THE ROBUSTNESS OF ATEMPLATE SET

A. Absolute and Relative Robustness

The robustness of a CNN template set is a measure which
quantifies the degree by which a template set can be altered
while still producing the desired output. In programs for CNN
VLSI chips it is crucial that all templates have a certain degree
of robustness since their values cannot be guaranteed to be
reproduced exactly by the analog circuit.

Various definitions of robustness [12], [16], [17], [24] exist.
We define the vector to contain all nonzero2 entries in a
template set with the center element of the template as
its first element ( ) and the other elements
in arbitrary order. We refer to the final output of a CNN
programmed with by .

Definition 5: The absolute robustnessof a template set
is

IB

Hardware tolerance effects due to physical and manufacturing
imperfections give rise to parameter errors roughly propor-
tional to the absolute value of the respective parameter [25].
We therefore consider a relative robustness criterion.

Definition 6: The relative robustness of a template set
is

IB

denotes componentwise vector multiplication.

2A zero template entry is assumed to be realized by omitting some circuitry,
or by switching or disabling some controlled source, not by nulling. Zero
template entries are therefore precise.
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For the sake of clarity and mathematical tractability we
define a slightly modified template vectorto be

or, alternatively, where is the unit vector in
direction of increasing .

Locally regular CNN tasks are fully characterized by a set of
inequalities for . Utilizing the modified template vector
and matrix-vector notation, the region where a

template set operates correctly is then defined to be

(3)

for a coefficient matrix IB representing the different
constellations of and . (If a negative derivative is
prescribed, the sign of the corresponding row inis adapted.)
The strict greater than inequality may also be a greater than or
equal to inequality for, at most, of these inequalities.3

Note that a value of zero in is only possible in case of zero
initialization or zero boundary values.

By means of the set

(4)

which includes the boundary of we introduce the term safety
margin. We will denote it by and formally define it to be

(5)

The absolute and the relative robustness may now be expressed
as

and (6)

respectively.
It may seem tedious to establish a system (3) for a task with

a high connectivity. To reduce the dimension, the system
can be recast in a form where parameters knowna priori to
be identical are represented by a single variable. Since most
highly connected tasks exhibit such isotropic behavior, this
results in a manageable system. The new matrixwill then
be in .

B. Template Scaling

From (5) and (6) it follows that , i.e., by
scaling the template vector by a factor of , we achieve
proportionally higher absolute robustness (cf. [26]).

For the relative robustness we obtain

where we have made use of the fact that .
Hence, the relative robustness is strictly monotonically increas-
ing with increasing but it is upperbounded by .

3If none of the inequalities were strict, a template for which_x � 0 would
be allowed. No operation would be performed, since the initial state would
be the equilibrium.

III. D ESIGN OF OPTIMALLY ROBUST TEMPLATES

With the results from the previous section it is now easily
seen that template optimization with respect to relative ro-
bustness implies increasing while keeping small.
Template scaling by large factors does not improve the ro-
bustness significantly and has the disadvantage of resulting in
larger template values, which may not be realizable on the
CNN chip.

The design of a template with maximum robustness is in
fact a design centering problem since is, in some sense,
centered in . Formulated more precisely, the problem is to
find a template set (or ) having the same safety
margin in all its inequalities

(7)

assuming that the system of inequalities is nonredundant in
the sense of the following definition.

Definition 7—Nonredundant Set of Inequalities:A system
is nonredundant if every row in contributes

to a diminution of the solution space or, equivalently, if no
inequality in the system can be removed without affecting the
solution space.

Lemma 14 in the Appendix shows how redundant inequal-
ities are found.

Using the concepts introduced here, it emerges that the
optimally robust template set can be calculated analytically in
a rather elegant manner. The method of solving (7) depends on

, and the rank of . We refer to a set of inequalities for
which rank as a basic set (or system). Clearly,

is invertible in case of such basic sets. For the sake of
simplicity and clarity, we restrict ourselves to this important
class in the following theorem and treat all nonbasic systems
in the Appendix.

Theorem 8—Optimally Robust Templates for Basic Sys-
tems: Assuming that

IB (8)

is a set of nonredundant inequalities characterizing a CNN
task, the optimally robust template vector as a function
of a scaling parameter is

(9)

( denotes the vector in with all its components .)
Its relative robustness is

(10)

where equals the safety margin and the theoretical maximum
for the achievable robustness is

(11)

An optimally robust template set is a template set that has
maximum robustness for a given norm .
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Proof: It follows directly from (7) that the optimum
template set is the product of the inverted coefficient matrix
and the vector of identical safety margins for all inequalities.
The robustness is derived from (6).

Definition 9—The Principal Axis of a CNN
Task: Assuming that a CNN task is characterized by a
set of inequalities (3), the principal axis points in the direction
of the unit vector and contains all
templates with .

The principal axis of a task comprises all templates that
are optimal with respect to robustness. Hence, scaling such a
template does not affect its property of being optimal.

Corollary 10—Unboundedness of: is infinite. For
basic systems, it is spanned by

(12)

Proof: In every case is not bounded along the principal
axis. For basic systems (8) is satisfied for any vectorwith
solely positive components.

For all CNN chips, there is an upper bound for . The
next corollary shows how to find the optimum template under
this constraint.

Corollary 11—Optimum Template for : Under
the constraint the optimum template is

(13)

with a relative robustness of

(14)

Proof: Expressed by the constraint is
. Solving for and inserting (6) and (9) yields the above

results.

Given the constraint , (14) tells us directly how far we are
from the theoretical optimum. For , for example, we
achieve 90% of this upper bound.

Corollary 12—Initialization for Uncoupled Tasks:If, for
an uncoupled bipolar CNN task, the initial state is chosen to
be , , or then the space of
optimally robust templates according to (7) is not necessarily
a single point, but may have dimension1. Depending on the
initialization, there is a degree of freedom in the or
in the plane, subject to the constraint in order
to guarantee bipolar output .

: is the optimum choice.
Proof: does not appear in the parameter vector. Any

does not influence the functionality of the template.
Thus, we set for maximum relative robustness.

. Let . From (7) we get only a
value for , but not for the individual parameters and . If

we may choose and without
affecting the robustness. If then and is
the only optimum solution.

Proof: In the matrix and have the same
coefficient in every row, since for initialization with 1,

plays the role of an additional bias at . Hence,
the matrix is singular and and are only determined by
the value of and . For maximum relative robustness,

has to be minimal, which results in
the above solution space.

. Let . As in the previous case, only
is determined by (7). If all

are optimum values, whereas for only one optimum
solution exists, that is, , .

Proof: For positive initialization can be considered
as additional bias at , and and have the same
coefficients in . Thus, only is fixed by (7).
Depending on the minimization of yields the above
solution(s).

. Let . The optimum solutions for
and are if and ,

if .
Proof: Similar reasoning as in the previous case applies.

Simply replace by since and have the same
coefficients in for input initialization.

Remark: When applying Theorem 8 to uncoupled tasks,
it is advantageous not to include (and or , respectively)
in the matrix , but just (as defined in Corollary 12) in order
to get a regular matrix and then to determineand or ,
respectively, after having calculated the optimum value for.

However, by using decomposition, Theorem 15 in the
Appendix would of course lead to the same result with a
parameter vector including , , and .

IV. EXAMPLES

Intentionally, we make only minimal use ofa priori knowl-
edge, and merely assume symmetry of isotropic tasks. For
those examples, we use the reduced coefficient matrix

instead of IB . We consider the actual image
to be in black ( 1) on a white ( 1) background. The boundary
condition for both state and input is assumed to be1
throughout this section.

The functionality of the templates proposed in this section
may be verified using the simulator available on the World
Wide Web4 [27].

Example 1—Uncoupled Horizontal Line Detection:
Template Prototype:

Definition of the Task:With , we get

(1)

(2)

(3)

(4)

4http: //www.isi.ee.ethz.ch/ �haenggi/CNNsim_ adv.
html
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Removal of Redundant Inequalities:The last row vector
is the sum of the other three and should be eliminated. No

additional nonredundant inequalities (i.e., cell configurations)
can be included.

Solution:

leads to the extrema

and

The maximum achievable robustness is .
Example 2—Shadowing:

Template Prototype:

Definition of the Task:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Removal of Redundant Inequalities:We find
and . The remaining six inequalities

are nonredundant.
Solution: Since we end up with a system with

this is not a basic set and we have to solve it in the
least squares sense (cf. Case III in Theorem 15) which yields

which is, in fact, the well-known shadowing template. The
maximum achievable robustness is .

Remark: This method may also be applied to check
whether there exists a shadowing template with a symmetrical

template and, if so, to determine the most robust solution.
With the prototype

and we find the nonredundant set

Evaluating and minimizing yields

with a maximum robustness of .
Example 3—Connected Component Detection:
Template Prototype:

Definition of the Task:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Removal of Redundant Inequalities:We eliminate the
last two rows since and .

Solution: Solving this nonbasic system in the least
squares sense (cf. Case III in Theorem 15) yields

with a maximum achievable robustness of .
Example 4—Global Connectivity Detection:The global

connectivity detector deletes any connected objects that are
marked in the binary image. An object is marked by changing
at least one pixel from black to white in the initial state. The
output contains the unmarked objects only.
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Template Prototype:This task exhibits isotropic behav-
ior. The off-center entries in and are thereforea priori
assumed to be identical. To ensure that the template will
operate on both white images on a black background and black
images on a white background, the bias is set to zero

bipolar image

Definition of the Task:

(1)

(2)

(3)

(4)

(5)

(6)

Removal of Redundant Inequalities:Inequalities (1)–(4)
constitute a regular nonredundant matrix. Other constel-
lations such as and are
clearly redundant.

Solution:

in agreement with the template found by stochastic optimiza-
tion [13] where with a robustness of .
The maximum robustness for this task is

.

V. SUMMARY AND CONCLUSIONS

In this paper, we have proposed an exact and analytical
approach for the design of robust templates for the class of
locally regular CNN tasks. Absolute and relative robustness is
defined in a deterministic and easily reproducible manner. The
desired task is characterized by a set of inequalities defining
the subspace within which all correctly operating templates
lie. We have shown that this system of inequalities can be
solved directly for the optimally robust template; there is no
need for an iterative algorithm. Furthermore, this analytical
method provides insight into the dynamics of the CNN and
the interaction between different template parameters.

Matrix-vector notation for the coefficient matrix and the
vector of nonzero template entries is applicable. With a trans-
lation by 1 in the direction of the axis the system turns
out to be homogeneous. Redundant rows (i.e., equations that

are unnecessary since they do not impose any additional
restrictions on the solution space) of the coefficient matrix
are to be eliminated in a first step; these row vectors have
the property of being positive linear combinations of others.
Since the method includes the removal of these redundant
inequalities it is not important to specify exactly the right
inequalities and the right number thereof. One may include
inequalities for all possible constellations or restrict oneself to
a basic set. However, a small set is advantageous due to the
smaller dimension of and is, in fact, very often sufficient
to fully characterize a task.

The safety margin specifies by what amount an inequality
is satisfied. Optimally robust templates are those with
the same safety margin in all nonredundant inequalities:

. The solution depends on the dimension and
the rank of . Often is regular and we obtain simply

. If the system is overdetermined, we solve it
in a least squares sense. If it is underdetermined, we may apply
a decomposition or reduce the number of parameters. For
every the solution is optimal in the sense that no other
more robust template with a smaller or equal norm
exists.

With increasing the absolute and relative robustness
increase strictly monotonically. The relative robustness is
upperbounded for . This upper bound is a property of
the underlying task, the initial state, and the boundary value.
It can be very easily determined and permits the optimization
of the initial and boundary conditions for robustness.

In general, scaling a correctly operating templateby a
positive factor always yields another valid solution, with the
absolute robustness being scaled by the same factor. This
implies that the subspace of the solutions for a given task
is not bounded.

For VLSI implementations of the CNN’s
is constrained by some upper bound. The proposed method
directly yields the optimum solution for and
specifies its degree of robustness.

APPENDIX

Definition 13—Positive Linear Combination:A positive
linear combination of a set of vectors is a linear
combination with solely nonnegative coefficients. To denote
the subspace spanned by positive linear combinations of

we use

Lemma 14—Determination of Redundant Inequalities:In
a system , the redundant inequalities
are those which can be expressed as positive linear combina-
tions of others. Hence, all row vectors are redundant for
which

such that
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Fig. 1. Geometrical interpretation of Lemma 14.k3 is redundant.

Proof: Using to denote the rows of
we note that the system is homogeneous in the sense that all
hyperplanes intersect at the origin. If one of the
inequalities, for example, can be expressed as the
sum of positive multiples of some others, then is
trivially satisfied and therefore redundant.

This argument has a geometrical interpretation. The
vectors normal to the hyperplanes point in
the direction of the solution subspace. If one of them,
say , points into the positive subspace spanned by the
others this signifies that the
inequality defined by is redundant since it is always satisfied
when the others hold. Hence, it can be eliminated without
affecting the solution space. A possible constellation in is
depicted in Fig. 1, where is redundant.

Remark: Matrix algebra may be used to determine which
row vectors are positive linear combinations of others. In prac-
tice, however, the redundant equations can often be eliminated
simply by inspection or excludeda priori.

Theorem 15—Optimally Robust Templates:Depending
on , , and the rank of we consider different cases of
the nonredundant system

IB (15)

I) rank . The solution for these basic systems
is presented in Theorem 8.

II) rank . This system has a solution of
dimension rank . It can also be solved in a
straightforward manner using decomposition, for
example.

III) rank . This system comprises more
inequalities than parameters; it is overdetermined, but
has full rank. If there is any solution, then the most
robust one is

(16)

If is not a solution, then the underlying task
is ill defined and cannot be realized with this class of
CNN’s.
Note that in this case, the safety margin may not be
equal to but has to be determined by evaluating (5).

Proof: We project into the subspace of dimension
by multiplication with from the left and solve

the new system yielding a solution in
the least squares sense. If has an exact solution,
then it is . If there is no exact solution, but the system
(15) is not inconsistent, then there is always a point with
the lowest mean square distance between and .

However, it is not guaranteed that the template we
get from (16) in fact solves (15); this must be checked. If it
does not, then the system is not consistent.

IV) rank . In this case, the number of
parameters is to be reduced by matrix algebra to achieve

rank . The system can then be solved using the
method proposed for the previous case.

V) rank . If the number of parameters
exceeds the number of inequalities, there is always a
solution which has the dimension rank .
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