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Direct Analysis of Multiphase 
Switched-Capacitor Networks 

Using Signal-Flow Graphs 
ADAM DqBROWSKI, MEMBER, IEEE, AND GEORGE S. MOSCHYTZ, FELLOW, IEEE 

Abstract -A by-inspection analysis method for multiphase switcbed- 
capacitor (SC) networks using signal-flow graph (SFG) techniques is 
presented. The method is quite general; no restrictions on the networks 
are required. It is also very simple and direct in the sense that it allows 
an immediate, by-inspection derivation of the SFG merely on the basis 
of a given SC network. The method is primarily useful for the hand 
analysis and design of small and medium-size SC networks (e.g., build- 
ing blocks of modular SC systems). It may also serve as a tool for the 
symbolic computer analysis and for the synthesis of general multiphase 
SC nehvorks. Illustrative examples demonstrate the simplicity and effi- 
ciency of the method. 

I. INTRODUCTION 

S IGNAL-flow graph (SFG) techniques have proven to 
be very usefi;ll for the design and hand analysis of 

small and medium-size switched-capacitor (SC) networks, 
e.g., of SC modules and building blocks of larger systems 
[l]-[31. Although many different methods for the deriva- 
tion of SFG’s for SC networks have already been pro- 
posed (e.g., [ll-[lo]), they are still relatively complicated 
and time consuming. Many of them are also subject to 
restrictions on the class of networks that can be analyzed. 
Furthermore, most of the methods are not direct in the 
sense that they require some intermediate steps compris- 
ing auxiliary circuit transformations [41, or even algebraic 
or topological manipulations [5]-[ 101. The direct methods 
are limited to the analysis of biphase [21, [31 or stray- 
insensitive SC networks [l], [2]. 

The SFG analysis method described in this paper is a 
generalization of the direct method introduced in [2] and 
an extension of [l]. The latter is restricted to a special 
class of networks (the so-called SSN-type networks) com- 
prising only source and sink nodes as explained further 
on.’ Since new technologies (such as GaAs) relax the 
restriction of parasitic insensitivity (while admittedly im- 
posing others) [ll]-1131, not only multiphase but also 
general SC circuits with, say, unity-gain buffer amplifiers 
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Fig. 1. A symmetric N-phase clock. 

instead of conventional op amps may be expected in the 
near future. This was the motivation for extending the 
SFG analysis method beyond SSN-type networks so as to 
cover the most general multiphase SC networks. Since the 
treatment of multiphase SSN-type SC networks was only 
summarized in [l], the detailed rationale behind the by- 
inspection analysis technique is first presented here. The 
analysis of general, nonrestricted networks then follows, 
along with some illustrative examples. 

II. ANALYSIS OF SSN-TYPE SC NETWORKS 

We consider multiphase SC networks driven by a sym- 
metrical N-phase clock2 as shown in Fig. 1. In this section 
we assume furthermore that the SC networks under con- 
sideration contain only three types of nodes (except for 
the grounded reference node): 

i) nodes driven by ideal voltage sources (e.g., op amp 
outputs), the source nodes; 

ii) nodes at virtual ground, the sink nodes; 
iii> nodes connecting capacitors with switches; these 

nodes do not appear in the SFG and need not be 
considered further because they are also connected 
either to source or to sink nodes or are discon- 
nected from the network (when corresponding 
switches are open). 

We refer to SC networks belonging to the class defined 
above as source-sink-node-type (SSN) SC networks.3 All 
possible switching transitions for the capacitor plate of 
such a network are illustrated in Fig. 2. Switch connec- 

‘Generalization of our considerations to an arbitrary (i.e., nonsym- 
metric) N-phase clock is straightforward but not relevant to the analysis 
described here. 

3Note that the definition of SSN-type networks can be applied to any 
active network; SSN-type networks are those containing source and sink 
nodes only. 
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Fig. 

plate 
disconnected 

to a  sink node 

2. Switching possibilities for any capacitor plate of a multiphase 
SSN-type SC network. 

(4 (6) 
Fig. 3. SFG subgra hs (a) Subgra h modeling Ith op amp in mth 

switching phase. (b P P Branch mode mg capacitor Cj switched between 
kth source node in nth phase and Ith sink node m  mth phase. 

tions designated by dashed lines are not allowed for 
stray-insensitive SC networks [14]. Hence, the class of 
SSN-type SC networks is slightly broader than that of 
stray-insensitive networks. 

In the following considerations we shall assume that 
the only active elements contained in an  SSN-type net- 
work are inverting op  amps. This is a  m inor restriction 
because in the general  case (considered in Section 111-3.3) 
an  SSN-type network can also contain finite-gain amp li- 
fiers controlled by op  amp outputs. The  op  amp outputs 
are, therefore, called independent source nodes and the 
finite-gain amp lifier outputs dependent source nodes. Note 
that an  independent source node can be  represented by a  
grounded norator, and  a  sink node by a  grounded nullator 
La. 

It can be  shown that the SFG of an  SSN-type SC 
network containing only inverting op  amps is composed of 
two types of subgraphs, namely: 

i> subgraphs mode ling op amps (Fig. 3(a)), and  
ii) branches mode ling switched capacitors (Fig. 3(b)). 

The  SFG will contain only source and sink nodes;4 
these correspond to the source and sink nodes of the SC 
network. Each source and each sink node of the SC 
network generates at most N nodes in the SFG, and each 
op  amp at most N subgraphs of the type in F ig. 3(a). 
These correspond to the individual switching phases n  = 
0,l; . * , N - 1. If for any switching phase, e.g., for the 
phase m, the inverting input and  the output of the Ith op  

4We shall show later that all SFG sink nodes may be eliminated by 
tying them to the corresponding source nodes (Example 1). 

-;. 1W’)~ o j _) 2w-l)o 

Fig. 4. A multiphase SC C,. 

(a) 

(b) 

(4 
Fig. 5. Particular switching situations for a capacitor Cj. (a) Charge. 

(b) Charge transfer. (c) Discharge. 

amp are short circuited by a  switch, then the nodes Sjrn) 
(source node)  and  @) (sink node), and  the corresponding 
subgraph of the type in F ig. 3(a) do  not appear  in the 
SFG. 

Note that op  amp subgraphs (Fig. 3(a)) always start at 
sink nodes and end in source nodes, whereas the capaci- 
tor branches start at source nodes and end in sink nodes. 
The  transmittance designated in F ig. 3(a) as constim) is 
arbitrary but not equal to zero. Therefore, choosing the 
simplest and  most convenient possibility, we let constjm) 
= 1  for all 1  and  m. W ith this assumption the only 
parameters appearing in the SFG are the transmittances 
CTrn) where n  is the switching phase at the source node 
and m the switching phase at the sink node (Fig. 3(b)). 
W e  shall now show that these transmittances can be  
determined directly by inspection of the SC network. To  
this end  we consider a  general  mu ltiphase switched capac- 
itor Cj shown in F ig. 4. Switches l(“) and  2(“), n  = 
0, 1, * . . , N - 1, are closed in the nth phase, provided they 
are activated. Switches that are not activated remain open 
in our mode l and  are omitted in the actual circuit. 

The  following observations can now be  made.  
i) A capacitor is charged in the nth phase if one  of its 

plates is connected to a  source node and the other, 
directly or indirectly, to ground (via a  source node or a  
sink node), see F ig. 5(a). 

ii> The  charge of a  capacitor (acquired during the nth 
phase) is transferred to a  sink node during the m th phase 
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Fig. 6. Examples of meaningless circuit configurations. 

. 1 I . 

D /pw ( J2f.‘-11 

Fig. 7. A multiphase switched;i;uzitor Cj of an SSN-type SC net- 

C‘trunsfer charge”) if at least one capacitor plate is con- 
nected to a sink node and the other-directly or indi- 
rectly-to ground during the mth phase (Fig. 5(b)). Note 
that in general m = (n + p) mod N, p = 0, 1; * *, 
N-l. 

iii) A capacitor is discharged during any phase, say 
during the phase V, v = 0, 1, * . *, N - 1, if both capacitor 
plates are shorted to ground, directly or indirectly, during 
that phase (Fig. .5(c)). 

Note that t.he transmittance ginam) of the branch, drawn 
in Fig. 8 by a dashed line, results from switching the left 
plate of the capacitor Cj between a source node and a 
sink node. This is, however, not allowed for stray-insensi- 
tive networks (cf., Fig. 2). Thus we can formulate our 
second proposition. 

Note that the conditions for capacitor charge, charge 
transfer, and discharge are not mutually exclusive; they 
can take place simultaneously during the same phase. 

Proposition 2: In the SFG of a multiphase stray-insen- 
sitive SC network, at most two branches, corresponding to 
a particular capacitor, can leave a source node. 

The following observations are direct consequences of 
those above. 

iv) In order for a capacitor to influence the surround- 
ing network (be charged, or discharged with a transfer 
charge) in the nth phase, both capacitor plates must be 
connected directly, or indirectly (via a source node or a 
sink node), to ground in that phase. Thus no charge or 
discharge of capacitor Cj can take place in the configura- 
tion of Fig. 6. 

Finally the values of the transmittances gp,“), gy,“), 
and g’,“,“” are determined by the following broposition 
and are summarized in Table I. They follow directly from 
observations i)-vi). (Note that T is the clock subperiod; it 
will later be normalized to unity.) 

v) Each capacitor of an SSN-type SC network must 
have at least one source node and one sink node connected 
to it; without at least one source node at some phase 
period n7, the capacitor will never be charged; without at 
least one sink node at some phase period m7, the capaci- 
tor will never transfer its charge to the surrounding net- 
work. 

Proposition 3: Assume, as in Fig. 7, that node l(O) con- 
nects a capacitor Cj to a kth source node (then all other 
nodes in Fig. 7 are potential sink nodes). 

First, assume that switch 2(“’ connects the capacitor Cj 
to a sink node during the nth phase. If within the follow- 
ing time period N - T there exists a phase Y such that 
both switches 1’“) and 2(“) are closed, thereby discharging 
Cj in phase Y, then 

‘j 
gG’n’ = 7 

vi) A capacitor charged in the nth phase, say by the 
kth source node connected during this phase to the left 
capacitor plate (Fig. 7), can transfer its charge in an 
SSN-type SC network through at most three sink nodes, 
designated in Fig. 7 as nodes I,, 1,, and 1,; the Z,th node . 

otherwise, i.e., if no such discharging in any phase u 
occurs, then 

Second, assume that switch 2(“) connects a capacitor Cj 
is that connected to the right capacitor plate during the to a sink node during a phase m # n, m=n +p (0; 

Fig. 8. Branches possibly generated in the SFG of an SSN-type SC 
network by a capacitor Cj charged in the nth phase. 

nth phase, and the Z,th node and the 1,th node are 
connected to the left and to the right capacitor plate, 
respectively, during the mth phase, m being any phase 
within the following time period T = Nr. The charge 
transfer in the mth phase takes place only if there is no 
phase v in between phases n and m in which the capaci- 
tor is discharged. 

The following proposition follows directly from obser- 
vation vi). 

Proposition 1: In the SFG of a multiphase SSN-type SC 
network, at most three branches, corresponding to a par- 
ticular capacitor, can leave a source node (Fig. 8). 
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TABLE I 
TRANSMITTANCES RESULTING FROMTHE~APACITOR ~,CONNECTED 

TOTHESOURCENODEBYTHESWITCH 1(“) 

Switching configurations 

generally m=(n+pu)modN, ~=1,2;.-,N-1). If 
switches 2’“’ and lcm) are both closed in their respective 
phases, and  if in no  phase u  in between phases n  and  m 
are switches l(“) and  2(“’ both simultaneously closed,’ 
then 

otherwise, i.e., if at least one  of the switches 2’“’ or 1’“’ is 
not closed, or if there exists a  phase v between phases II 
and  m such that the switches 1’“) and  2’“’ are both closed 
(thereby discharging Cj during the vth phase, i.e., before 
the m th phase), then 

gp”’ = 0. (4) 
F inally, assume that switch lcm) connects a  capacitor Cj 

to a  sink node during a  phase m f n, m  = (n + FIrnod N, 
p=1,2;*-, N - 1. If switches 2’“) and  2(“) are both closed 
in their respective phases, and  if in no  phase v in between 
phases n  and  m are switches 1’“’ and 2’“’ both simultane- 
ously closed, then 

(n m) - ci 
glj’ - 2-p 

7 (5) 
otherwise, i.e., if at least one  of the switches 2cn) or 2cm) is 
not closed, or if there exists a  phase v between phases YZ 
and m such that the switches 1’“) and  2’“’ are both closed 
(thereby discharging Cj in phase v), then 

g;y = 0. (6) 
W ith the propositions above, the steps required for the 

derivation of the SFG of an  N-phase SSN-type SC net- 
work can be  summarized as follows. 

i) Number all source and sink nodes of the SC net- 
work and check whether it belongs to the class of SSN-type 

5Note that, in general, v  = (n + 1)mod N, (n +2)mod N; . .,(m - 
1) mod N. 

(b) Cc) 
Fig. 9. 3-phase SC delay element [16]. (a) SC circuit. (b) Correspond- 

ing SFG. (c) Simplified SFG. 

networks (i.e., every node must be  either a  source or a  
sink node). 

ii) Draw all SFG nodes. F irst, N SFG nodes for each 
network node may be  drawn. Then, the nodes discon- 
nected from the network in individual switching phases 
must be  omitted from the SFG. Furthermore, those 
source-sink-node pairs corresponding to op  amps with the 
inverting inputs shorted to their outputs in individual 
phases, must also be  omitted. 

iii) Connect the SFG nodes using op  amp subgraphs of 
the type shown in F ig. 3(a) and  switched capacitor 
branches of the type shown in F ig. 3(b). Transmittances of 
the latter are determined on  the basis of Table I or, 
equivalently, by (l)-(6) of proposition 3. 

iv) F inally, simplify the SFG by eliminating all sink 
nodes by tying them to the corresponding source nodes.6 
Thus for example, the node sjrn) of a  capacitor Cj branch 
(Fig. 3(b)) can be  directly connected to the node Slrn) of 
the corresponding op  amp subgraph (Fig. 3(a)). W ith a  
little practice, this simplified SFG (which corresponds to 
a  Coates graph) can also be  obtained directly by inspec- 
tion. 

The  following example illustrates the above procedure. 

Example I: Consider the 3-phase delay element of F ig. 
9(a). This circuit was proposed in [16]. It contains two 
source nodes (nodes 1  and 3  in F ig. 9(a)) and  one sink 
node (node 2). Because it is customary in the literature, 
we number  the switching phases 1, 2, 3  (and not 0, 1, 2  as 

60ther simplifying transformations which consist in tying sink nodes 
to source nodes by permutation are also possible (Appendix A). 
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was done, for convenience, in the above theoretical con- 
siderations). In the SFG (Fig. 9(b)), the op amp is repre- 
sented by two subgraphs of the type in Fig. 3(a). They 
connect nodes I$‘) and ZJ3) with nodes 1/3(l), VJ3’, respec- 
tively. Node 1 is represented by only one node with the 
signal V, (‘I This is because the node 1 is disconnected . 
from the circuit in phases 2 and 3, and therefore, the 
signals V[“) and Vt”) are omitted from the SFG. On the 
other hand, each of the nodes 2 and 3 generates two 
nodes in the SFG, nodes 12(l), Zi3) and nodes 1/3(l), Vj3’, 
respectively. Nodes 2 and 3 are not represented in the 
SFG in phase 2 because they are short circuited by a 
switch in this phase; in other words, Vi2) = 0 and Z12) is 
arbitrary, and therefore, these signals are omitted. Capac- 
itor C, generates an SFG branch from node V$‘) to node 
Zi3) since C, is connected (i.e., charged) to the source 
node 1 in phase 1 and to the sink node 2 (i.e., discharged) 
in phase 3. The corresponding transmittance - C,Y2 is 
given by (3) with n=l, m=3, and ~=3-1=2.~ The 
SFG also contains three branches representing capacitor 
C,. Two of them, namely those from nodes Vi’) and I$‘) 
to nodes Ii’) and Zi3), respectively, have transmittances 
equal to C, (according to (1)). This is due to the fact that 
the capacitor C, is short circuited (discharged) in phase 2. 
The third branch, which also relates to capacitor C,, 
starts in node L’J3) and ends in node Ii’). Its transmittance 
- C,z-* follows from (3) for IZ = 3, m = 1, and p = (l- 
3)mod3 = 1. Capacitor C, generates no branch from 
phase 1 to phase 3 (i.e., from Vil) to Ii”)> because 
between these phases, i.e., in phase 2, C, is discharged. 
Finally, tying the sink nodes, which represent the signals 
ZJ’) and Zc3) 2 , to the corresponding source nodes (i.e., to 
those with the signals V$‘) and V$‘), respectively) results 
in the simplified SFG shown in Fig. 9(c). This SFG-which 
corresponds to a Coates graph-comprises only source 
nodes. Applying Mason’s rule, we obtain the three possi- 
ble transmittances of the network: 

v Cl -3 
H,=- 

J/p = c,” 

VQ) 
H,=~=o 

v{” 

vJ3’ c, _ 
2 

H3=v,“‘=c,= * 

III. ANALYSIS OF GENERAL SC NETWORKS 

In this section we generalize the method described in 
Section II by extending it to multiphase SC networks with 
arbirruly structure. Thus in addition to elements con- 
tained in SSN-type networks, general networks may 
contain: 

7Note that from here onwards the subperiod 7 has been normalized 
to unity. Thus the transmittances continue to relate voltage to current 
and not to charge. 

Se I,= -I, =j II G, (general node) 
0 

(b) 

, = 2 , (rinkzode) 

vk 

(4 
Fig. 10. SSN-network transformation. (a) Initial circuit. (b) Equivalent 

circuit with a dummy unity-gain amplifier. (c) Complementary trans- 
formed circuit. (d) Nullator-norator model of the final transformed 
circuit. (e) Final transformed circuit. 

i) general nodes, i.e., nodes which are neither source 
nor sink nodes; 

ii) differential input op amps; 
iii) finite-gain amplifiers (including unity-gain buffers). 

We shall now show that a general network can be 
converted into an equivalent SSN-type network by the 
so-called SSN-network transformation, which was intro- 
duced briefly in [17] and will be described in more detail 
below. Having carried out this transformation on a gen- 
eral network, the resulting equivalent SSN-type network 
can be treated as described in Section II. 

3.1. SSN-Network Transfonna tion 

Consider the simple network shown in Fig. 10(a). It 
consists of an impedance Zj connected between a source 
node S, (with the node voltage V,) and a general node G, 
(with the node voltage V[>. Our objective is to transform 
this network such that the general node G, is broken into 
two nodes: a source node S, with the same node voltage 
V, and a sink node sI supplying the same current Z, to the 
transformed network (Fig. 10(e)). The transformed (SSN- 
type) network is equivalent to the original, even though 
the current leaving the source node S, (i.e., Zk = - I, in 
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Cc) 

Fig. 11. Transformation of a general node Gj by the SSN-network 
transformation. (a) Initial circuit. (b) Circuit with a dummy unity-gain 
amplifier. (c) Final circuit. 

Fig. 10(a) and  1; in F ig. 10(e)) may be  different for the 
two networks (since Zk and Z,l are supplied from source 
nodes, they need not be  the same). 

To  transform the network of F ig. 10(a) into an  SSN-type 
network we connect a  series nullator-norator between 
the general  node G , and  ground (Fig. 10(b)). This does 
not affect the original circuit because a  nullator and  
norator in series corresponds to an  open circuit [21]. 
Nevertheless, it can be  interpreted as the insertion of a  
unity-gain amp lifier (gain p  = l), as shown in F ig. 10(b). 
In order to obtain a  source and sink node at G , we 
require a  grounded norator and  nullator. W e  can achieve 
this by applying the so-called complementary transforma- 
tion [18], [19] to the network of F ig. 10(b), as shown in 
F ig. 10(c). However, according to the -complementary 
transform we now have the new gain p  = /3/p - 1  = w 
instead of the unity gain we started out with and  now 
require. There is a  second condition for the general  node, 
however, that governs the current II, and  that must also 
be  satisfied, namely: 

Z&~. 
I I 

This is readily fulfilled by connecting an  additional branch 
with the impedance - Z j between the new source 
(grounded norator) and  sink (grounded nullator) node in 
F ig. 10(c), as shown in F ig. 10(d). This automatically 
restores our unity gain condition (see F ig. 10(d)) since 

v, - z i _--= v,- z j 1  (8) 

i.e., p  = 1; at the same time  it completes the SSN-network 
transformation for the simple network of F ig. 10(a). 

In what follows, it will be  shown that the same proce- 
dure can be  applied to any network incorporating general  
nodes. Consider, for example, branches with impedances 
z,, z,,* * *3 Z j incident to a  general  node G , as illustrated 
in F ig. 11(a). After the SSN-network transformation (Fig. 
11(c)), we obtain an  equivalent circuit containing two 

TABLE II 
SSN-NETWORK OF ABRANCH WITHIMPEDANCE Zj 

INCIDENT TO AT LEAST ONE GENERAL NODE 

G; 1, ‘J I, G! 

“i 1  -==-I 
VI 

- 

Sk I; zJ I, G, 
- -. 

GI rk zj - z, 
Vk 1  I -z---=- 

nodes: the source node S, and  the sink node s,, which 
replace the general  node G , of the original circuit. This 
observation is formulated by the following proposition. 

L 

Proposition 4: Using the SSN-network transformation, 
any general  node of an  arbitrary network can be  broken 
up  into a  source and sink node of an  equivalent SSN-type 
network. 

In Table II each possible configuration for a  branch 
with an  impedance Z j incident to at least one  general  
node is shown, together with the corresponding SSN-type 
counterpart. W e  conclude from Table II that the 
impedance Z j can occur at most four times in the equiva- 
lent SSN-type network: twice with positive sign and twice 
with negative sign. This is shown in the first case in Table 
II in which Z j is connected between two general  nodes 
G , and  G ,. Note that the nullators and  norators must be  
placed such that a  nullator and  a  norator occurs at each 
end of an  impedance Z j. Thus for example, the two 
norators cannot be  placed at the two upper  nodes, and  
two nullators at the two lower nodes in the right-hand 
side of the top row of Table II. 

The  SSN-network transformation can readily be  ap- 
plied to any mu ltiphase SC network. This is achieved by 
converting each SC branch of the original SC network 
into its SSN-type counterpart for each switching phase 
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(4 (b) 
Fig. 12. SSN-network transformation of a capacitor Cj connected in 

the nth phase between two general nodes G  
circuit configuration in the nth phase. (b) Trans ormed 1 

and GI. (a) Initial 

uration in the nth phase. 
circuit config- 

(4 

Fig. 13. Transformation of a cascade of two multiphase SSN-type SC 
two-ports Mr and A. (a) Initial circuit. (b) Nullator-norator model 
of the SSN-type transformed circuit. (c) SSN-type transformed circuit. 

according to Table II. For instance, a capacitor Cj, con- 
nected in the nth switching phase between two general 
nodes G , and G , (Fig. 12(a)), results in four capacitors 
(two positive and two negative) in the transformed SC 
network. During this phase, they are connected as shown 
in Fig. 12(b). The transform can also be applied to a 
cascade of two-ports. Consider, for example, a cascade of 
two SC N-phase two-ports Jv, and J#$ as shown in Fig. 
13(a). We assume that each of the two-ports is an SSN-type 
network, but that the node G , in Fig. 13(a) is a general 
node. Each two-port can be described by its admittance 
matrix, i.e., Y, and Yz [15]. Note that voltages and cur- 
rents in an SC N-phase network are N-dimensional vec- 
tors with elements corresponding to the individual switch- 
ing phases (see expressions (B.2) and (B.3) in Appendix 
B) [15], [20]. The nullator-norator model of the trans- 
formed circuit is given in Fig. 13(b). Replacing the nulla- 
tor-norator pair by an infinite-gain inverting op amp, we 
obtain the configuration in Fig. 13(c). The networks of 
Fig. 13(b) and cc> are equivalent to that in Fig. 13(a) in 
the sense that the voltage vector V, = Vi = VF and the 
current vector ZJ = - Zf is the same for all these net- 
works. An exact proof of this equivalence is given in 

(b) 
Fig. 14. SSN-network transformation of a cascade of arbitrarily many 

multiphase SSN-type SC two-ports. (a) Initial circuit. (b) Transformed 
circuit. 

SSN-network transformation 

7--/1_7 
SFG representation 

A 7 
original SC 

network 
transformed 
SC network 

(b) 
Fig. 15. S litting of a general node G, to the corresponding SFG 

nodes. a) SSN-network transformation. (b) SFG representation. P 

Appendix B. Consider now a cascade connection of arbi- 
trarily many multiphase SSN-type SC two-ports (Fig. 
14(a)). This network is converted by the SSN-network 
transformation into that shown in Fig. 14(b). 

In the context of our SFG analysis method the concept 
of a transformed SSN-type SC network has primarily 
theoretical significance. The occurrence of negative corn- 
ponents (e.g., capacitors) is, therefore, of no concern. In a 
forthcoming publication, we shall demonstrate how the 
SSN-network transformation can be used to convert a 
parasitic-sensitive circuit into a parasitic-insensitive one. 
There, the fact that negative components (i.e., capacitors) 
occur in the SSN-transformed network is also of no con- 
cern; using SFG node-scaling techniques, the sign of 
negative components can generally be reversed. 

3.2. Represen,tation of Multiphase Switched Capacitors 

In our procedure, the SFG nodes represent the source 
nodes, sink nodes, and general nodes of the ‘SC network, 
where the general nodes are split into source and sink 
nodes as illustrated in Fig. 15. Note that a general node, 
which is transformed into a source-sink node pair, is 
treated the same as an op amp (see Fig. 3). Whereas 
subgraphs corresponding to active elements are derived 
by the rules given in Section 111-3.3 below, the branches 
modeling switched capacitors result from proposition 3 
(or Table I). 
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Fig. 16. A multiphase SC C, of an arbitrary SC net-work. 

P(:)‘) 

Fig. 17. Branches possibly generated in the SFG of an arbitrary SC 
network by a capacitor Ci charged in the nth phase. 

Assume that a  capacitor Cj of an  arbitrary N-phase SC 
network is connected in the nth phase by at least one  of 
its plates (e.g., by the left plate) to a  general  node, say to 
the node G , (Fig. 16). In order for any kind of charging or 
discharging to take place, the right capacitor plate may 
not be  disconnected from the network in this phase. From 
F ig. 12  we conclude that in the transformed SSN-type SC 
circuit, apart from the capacitor Cj, also the capacitor 
- Cj is charged to the voltage &@I from the source node 
S,. Indeed, in the nth switching phase, - Cj is connected 
between the source node S, and  the sink node sk (Fig. 
16), and  therefore generates a  branch with transmittance 
g$,It) in the SFG between these two nodes, as shown in 
F ig. 17. Since by definition the capacitor - Cj has the 
negative charge of the capacitor Cj, the transmittance 
g[;,“) of this branch fulfills the following equat ion? 

glj 
(n,n) = - &A* (9) 

Note that ~$7~) is determined by expressions (1) or (2), 
depending on  the existence of a  discharging phase V. 

The  following two propositions can now be  formulated. 
They permit the direct derivation of the SFG from a  given 
general  SC network without actually invoking the SSN- 
network transformation. 

Proposition 5: Let G , be  any general  node of an  arbi- 
trary N-phase SC network. Then,  assuming that G , is 
treated simultaneously as a  source node S, and  a  sink 
node sk as illustrated in F ig. 15, transmittances of the 
SFG branches which start at the source node Sp), n  = 

‘Here we assume, of course, that the other plate of C, is connected to 
a sink node in the nth phase and not to a source node or to ground, in 
which case g$,“) would equal zero even though g$;,“’ # 0 (see Table I). 

0, 1, . * . ) N - 1, and  end in sink nodes other than sp), as 
well as transmittances of those branches which start in 
source nodes other than Sp) and  end in the sink node 
SF), are determined by proposition 3  (or equivalently by 
Table I). In addition, branches starting at the source node 
SF) and  ending in the sink node sp), n  = 0, 1,. . *, N - 1, 
must be  accounted for. These branches correspond to 
capacitors connected by one of their plates to the node 
G , in the nth phase, and  not disconnected from the 
network by the other plate in this phase. Let Cj be  one 
such capacitor. The  transmittance giy,“) between the 
nodes Sj$) and  s p) that is generated by Cj is given by (9). 

This brings us to our final, sixth proposition. 

Proposition 6: In the SFG of a  general  mu ltiphase SC 
network, at most four branches, corresponding to a  par- 
ticular capacitor, can leave a  source node (Fig. 17). 

From proposition 5  it follows that in a  general  mu lti- 
phase SC network, in addition to the three possible 
branches leaving a  source node in an  SSN-type network, 
as postulated by proposition 1  (Fig. B), a  fourth branch 
with the transmittance gi;,“) may exist from the source 
node SF) to the sink node sp) corresponding to the 
general  node G ,. 

3.3. Representation of Active Elements 

Although any general  SC circuit node should, in princi- 
ple, be  mode led by the subgraph of F ig. 15(b), simplifica- 
tions (analogous to Nathan’s rules in matrix analysis [21], 
[22]) can be  made,  which correspond to constraints im- 
posed by some of the active elements in certain switching 
phases (Table III). Note that the number  of SFG sink and 
independent source nodes are both reduced by the same 
amount  due  to these simplifications, thus the possibility of 
node pairing, necessary to connect SFG sink nodes to 
source nodes by subgraphs of the type in F ig. 3(a), is 
ma intained. Although, as shown in Appendix A, node 
pairing by any permutation is allowed, convenient pairing 
suggestions are illustrated in Table III. 

The  simplifications ment ioned above are as follows. 
i) The  two voltages at the input nodes of a  differen- 

tial-input op  amp will in general  be  equal (case 3  in Table 
III>. Both nodes are combined into a  single node whose 
voltage corresponds to the common input voltage. The  
currents must be  mode led separately, however (i.e., by 
two different sink nodes). The  fourth node, necessary for 
sink-source node pairing, corresponds to the op  amp 
output node. 

ii) The  voltages of some nodes can be  related to each 
other, e.g., by finite-gain amp lification. In this case only 
the amp lifier inputs are mode led as general  nodes; the 
outputs are represented in the SFG by additional (depen- 
dent) source nodes. These are connected by direct gain 
branches (gain A) with the SFG source nodes corre- 
sponding to the amp lifier inputs (cases 4  and  5  in Table 
III). 

iii) The  node voltages at the input and  output of a  
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TABLE III 
REPRESENTATION OFGENERAL NODESANDACTIVE ELEMENTS: PAIRING SUGGESTIONS ANDTYING RULES 

FOR SFG NODES - - 

ase I i - 

1 

- 

2 

- 

3 

L - 

4 

I L - 

5 

1 
- 

G 

- 

Element 

gcncrd 
node 

udy-gdin 
bullcr 

ampmcr 

Original 
-V-phase 

SC network 

SW- type 
transform 

SFG 
representation 

unity-gain buffer amplifier are equal; the two nodes are 
modeled by a single source node representing the com- 
mon (input/output) voltage and by a single sink node 
corresponding to the buffer input current (case 6 in Table 
III). 

3.4, Further Illustrative Examples 

We shall now provide two illustrative examples that 
demonstrate our by-inspection procedure for the deriva- 
tion of SFG’s for general multiphase SC networks. In 
both examples the switching phases are numbered from 1 
to N, as customary in the literature, and not from 0 to 
N - 1, as was done, for convenience, in the theoretical 
presentation above. 

Note that on the basis of proposition 5, general nodes 
are treated simultaneously as source and sink nodes. The 
method of dealing with them can be summarized as 
follows. 

i) For any capacitor charged in a particular switching 
phase from a particular source (or general node), all other 
general nodes are treated as sink nodes; the correspond- 
ing SFG branch transmittances follow from the theory for 
SSN-type networks (Section II). 

ii) Each capacitor charged in a particular switching 
phase n from a particular general node G, generates an 
SFG branch starting at the source node Sp) and ending 
in the sink node sr) associated with that general node. 
The transmittance of this branch is determined by propo- 
sition 5 (see also Table I). 
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Example 2: Consider the 3-phase SC network [61 shown 
in F ig. 18(a). Note that the original single switch between 
capacitors C, and  C, at node 2  has been split into two 
equivalent switches in series. This helps to visualize and 
localize the general  node 2  (in practice this step may be  
left out). Beside the general  node 2, the circuit contains 
two source nodes, 1  and  4, and  one sink node, 3. The  
general  node 2  is connected to the circuit only in phase 2  
and need be  represented in the SFG only in this phase, 
namely by the sink node 14”’ and the source node V$“. 
The  corresponding SFG is shown in F ig. 18(b). Note that 
as a  consequence of proposition 5, nodes I’$“) and  Z i”) are 
connected by branches with transmittances -C, and  
- C,(l- zP3) (see Table I). The  transmittance - C, fol- 
lows from (1) and  (9), since the capacitor C, is discharged 
in phase 1. No such discharging phase exists for the 
capacitor C,, and  therefore, the respective transmittance, 
- C,(l- zW3), is obtained from (2) and  (9) with N = 3. 
F ig. 18(c) shows the simplified SFG, i.e., that obtained 
after tying the sink nodes (representing the signals 
Z j2’, Ii’), Z i2’, Z i3)) to the corresponding source nodes (i.e., 
to Vi2’, VJ”, VJ2’, and  VJ3), respectively). Substituting 
.z3 + z, this SFG agrees with that published in [6]. Using 
Mason’s formula we obtain any desired transfer quantity 
such as the voltage transfer function 

H43 = 
Vk’4’ c2 - = -z-5 = H21. 
v$“’ c, + c, 

Thus for the overall transfer function H we obtain 

H = vj2’ + Lq4’ c, c2 = -z-3 + -z -5 
vp + v/“’ Cl + c2 c, + c, . 

As expected, this equation describes an  FIR filter with 
two taps. Clearly, extending the SC structure of F ig. 19(a) 
by further taps results in an  FIR filter of a  higher order. 

IV. CONCLUSIONS 

A general by-inspection method for the closed-form 
analysis of arbitrary mu ltiphase SC networks using 
signal-flow graph techniques has been presented. The  
derivation of the SFG is based on  simple rules which are 
convenient not only for hand analysis but also for com- 
puter symbolic analysis and  for the synthesis of SC net- 
works. To  obtain any desired transfer function, the well- 
known Mason’s formula can be  used. 

Although our procedure for the SFG derivation of a  
general  SC network is direct, it can be  interpreted as 

VJ2’ 
H,, = - = 

C,C,( c3 - 1)2-3 
v/2’ c,c3z-6 -+ [c,(c, - c,) -2c,c,]z-3 + c,(c, + c,) * 

Example 3: Consider next the FIR SC filter proposed 
in [23]. The  first two filter taps are shown in F ig. 19(a). In 
order to derive the SFG we. note that the inputs of 
unity-gain buffer amp lifiers 2, 4, and  k - 1  are general  
nodes and have the same node voltages as the output 
source nodes 3, 5, and  k, respectively, i.e., Vin) = Vjn), 
VJ”’ = V$‘“), and Vk(!!)l = Vin), IZ = 1,2,. . a, 4. Because of 
these voltage equalities each node pair, i.e., (2,3), (4,5), 
and  (k - 1, k), can be  represented by a  single source 
node. Moreover, the first two pairs are connected to the 
network in phases 1  and  3, and  the last pair only in 
phases 2  and  4. The  SFG also contains the sink nodes 
ZJ”, 43’, p, z4’3’, 1’2, k-l, and  Z j?, associated with the 
general  network nodes 2, 4, and  k - 1. The  SFG and its 
simplified version are shown in F ig. 19(b) and  cc), respec- 
tively. From the simplified SFG (Fig. 19(c)> we readily 
obtain the following transmittances: 

H2, = 
V/J2 ’ C2 -5 
$iy=-z 

Cl + c2 

VJ4’ Cl -3 Ha, = - = -z 
V/l’ c, + c2 

H23 = 
V/J2 ’ Cl - = -2-3 = H4, 
V/“’ c, + c2 

composed of two steps. In the first, a  given SC network is 
replaced by a  transformed one in which all critical nodes 
are either source or sink nodes (an SSN-type network). 
The  second step permits the analysis of the network as an  
SSN-type network which allows straightforward use of the 
method presented in [l] and  recapitulated in Section II. 
Due to the SSN-network transformation, SFG representa- 
tions of different circuit elements (general nodes, active 
elements, etc.) are unified: the representation of inverting 
op  amps, unity-gain buffers, and  general  nodes are identi- 
cal (cf., Table III). 

The  same rules, which serve for the SFG derivation, 
can also be  used to synthesize an  SC network from a  
given SFG corresponding to a  given transfer function. 
Freedom in pairing of SFG nodes (Appendix A) can be  
effectively exploited for the synthesis in order to obtain 
different SC realizations of the synthesized transfer func- 
tion. Although from the mathematical point of view all 
possible pairing permutations are allowed, only some of 
them have an  SC network interpretation. These are the 
ones in which pairs of SFG sink and source nodes corre- 
sponding to the same switching phase occur. The  pairing 
possibility shown in an  example of Appendix A is, there- 
fore, not realizable. 

The  SSN-network transformation introduced in [17] 
and  elaborated on  in this paper  is also useful for direct 
network synthesis. By this transformation, SSN-type (or 
even stray-insensitive) SC realizations of a  given transfer 
function can be  obtained on  the basis of an  arbitrary 
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i 
(a) 

(b) 

(4 
Fig. 18. SC circuit analyzed in [6]. (a) 3-phase SC circuit. (b) Corre- 

sponding SFG. (c) Simplified SFG. 

realization. More on this feature of the transformation 
will be published shortly. 

An additional interesting feature of our SFG derivation 
is that for a general SC network (i.e., with general nodes) 
there are at most four branches corresponding to a given 
capacitor; for an SSN-type SC network there are at most 
three branches; and for a stray-insensitive SC network, 
only two branches starting at a particular SFG source 
node (cf., propositions, 1, 2, and 6). This observation 
simplifies both circuit analysis and synthesis. 

APPENDIX A 
Generally, an arbitrary N-phase SC network may be 

completely described by Kirchhoff’s voltage law (KVL) 
and current (or charge) law (KCL). The corresponding 
equations are thereby written separately for each switch- 
ing phase. KVL may be implemented simply by choosing 
node voltages of all critical nodes as primary variables. In 
order to fulfil KCL for any node, say for the kth node, we 
define the signal Zk = 0 as shown in the first row of Table 
III. The kth node is then described by the signals V, and 
Zk = 0 which are split in the corresponding SFG into the 
signals Vk(‘), VJ”, . * *, l$“- I) and 

p, zp . . . z’N-1’ = () 
7 ,k (A.1) 

k 
- out 

(4 

(c) w-c2 

Fig. 19. FIR SC filter described in [23]. (a) FIR SC filter cut to two 
taps. (b) Corresponding SFG. (c) Simplified SFG. 

where the superscripts in parentheses correspond to indi- 
vidual switching phases. 

Some nodes may be at virtual ground. These so-called 
sink nodes are described only by their currents. Some 
other nodes (the source nodes) are described only by their 
node voltages. General nodes, i.e., those described by 
both their node voltages and their currents, can then be 
interpreted as source and sink nodes simultaneously (cf., 
a concept of the SSN-type equivalent SC network pre- 
sented in Section 111-3.1). In fact, in general, the following 
situations may occur: 

i) 

ii) 

iii) 

one or more source nodes are input nodes to the 
system; 
some source nodes can be at the outputs of finite- 
gain amplifiers; thus their node voltages depend 
directly on node voltages of other nodes, namely, of 
those at the amplifier inputs; 
the node voltages of the rest of the nodes follow 
from the equilibrium in the network such that (A.11 
is fulfilled. 

The source nodes belonging to the first two groups are 
called the dependent source nodes, while those from the 
third group are called independent source nodes. Source 
nodes associated with general nodes are clearly indepen- 
dent in the above sense. Active elements reduce the 
number of sink nodes and the number of independent 
source nodes but, as shown in Table III, both these 
numbers always remain equal. 
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w 

Fig. 20. Alternative SFG for the SC delay element of Fig. 9(a). 

In order to represent sink nodes in the SFG, (A.l) must 
be  fulfilled for all sink nodes in all switching phases. This 
has been done by pairing sink nodes with source nodes 
and by connecting each pair with a  subgraph of the type 
shown in F ig. 3(a). Clearly, if we exclude ill-conditioned 
SC networks (i.e., those in which some source nodes can 
have arbitrary node voltages), all possible pairing permu- 
tations are allowed. Those given in Table III should, 
therefore, be  understood merely as useful suggestions. 

Example: Another pairing possibility for the nodes of 
the SFG in F ig. 9(b) is illustrated in F ig. 20. Naturally, we 
obtain, for this new SFG, the same transmittances as 
those given in Example 1. Note, however, that this pairing 
would not lead to a  physically realizable network because 
the source and sink nodes representing an  op  amp are 
interconnected in different phases. 

APPENDIX B 
In this appendix, we prove that the N-phase SC net- 

works of F ig. 13(b) and  (c) are equivalent to that in F ig. 
13(a) in the sense that the signals 5  = Vzi = Viz and  Z i = 
- Zf are mode led accurately between all these networks. 
To  this end  we use the four-port matrix theory introduced 
in [20]. 

Assume that each of the two-ports M1  and MZ  is an  
SSN-type network, but that the node G , in F ig. 13(a) is a  
general  node. Each two-port can be  described by its 
admittance matrix, i.e., Yi and  Y2. Thus we have 

where 5  refers to the network M i and  Jy2; 

1; = [ p, p, . . . ) p- “1  T  

v; = [ v-m, qu, . . . ) qw- “1  T, 

c,17=1,2 
and 

(B.2) 

(B.3) 

(B.4) 

(b) 
Fig. 21. SSN-network transformation of a cascade of two multiphase 

SSN-type SC two-ports MI and M*. (a) Transformed circuit. (b) 
Nullator-norator model of the SSN-type transformed circuit. 

n = 2  to the output. The  submatrices in (B.4) are given by 

c 
Lw~O) YSll HO,l) YC, . . . HO,N-1) YL, 1 $w>O) ev,l) . . . cV,N- 1) 

5  = Yl, 1  I 
YSll Yt, YL, 

I * I 

1 
5(N- l,O) YOJ yf#+l,l) . . . .$(N-l,N-I) 

YC?l 1  

(B.5) 
Currents Ijcrn), voltages V:cn), and  admittances y551jrnsn) 
correspond to the m th and/or to the nth switching phase. 

Notice that (B.l) can also be  written in the form: arbitrary vf 
arbitrary I[ 1  0 

+ 
arbitrary [y&l o 

arbitrary [y&l I[ 1  v; * 03.6) 

6 = 1,2. 
Equation (B.6) can be  used to convert the SC network of 
F ig. 13(a) into that shown in F ig. 21(a). W ith a  little 
thought it is clear that the SSN-network transformation of 
the network in F ig. 13(a) results in a  particular version of 
the network in F ig. 21(a), namely that shown in F ig. 13(c) 
(its nullator-norator mode l is given in F ig. 13b  and F ig. 
21(b)). 

Describe now the two-ports Jv, and  J& by their 
chain matrices: 

[ ;:I; ;:I’, J and  [ ;:I; $‘,] 

respectively. From F ig. 21(b) the following expressions 
can be  derived: 

for network SJi’: [Al]r( -[B’]z;* = 0  (B.7) 

for network M ,: v,’ = - [ B’]z;, 03.8) 

for network sJ2’: v, = [ B2]Zx (B.9) 

z,2, = [ o*]z, (B.lO) Note that t, 7  = 1  refers to the two-port input and  t, 
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and for network Jy;: 

[A2]v~-[z32]z;l=0 

Zf’ = [ c2]vZ - [ 02]z,:. 

From (B.ll) and (B.12) we obtain 

z:l=([C2]-[D2][B2]-1[A2])V;. 

Moreover, from (B.9) and (B.lO) we have 

If, =[D2][B2]-1v,. 

Thus from (B.7) and (B.14) we obtain 

[A’]-‘[B’]z;2=[B2][D2]-1z~2. 

(B.ll) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

Using equality Zi = - Z: we obtain from (B.8) and (B.13) 

z;2-[B’]-1v”=([D*][B2]-1[A2]-[C2])v~-z~2. 
(B.16) 

Now from (B.15) and (B.16) we compute 

z~~=([o’][~2]-‘[A’]-‘[B’]+1)-1 

$B1]-1V;+([D2][Z32]-1[A2]-[C2])}V;. (B.17) 

Finally, from (B.8) and (B.17) we obtain 

zf = - z; = - I;’ - z;, 

= ([A’]-1[zP]+[Bqz12]-1)-1 

.([A~]-~V:+([B~][D~]-~[C~]-[A~])~~), (~.18) 

Similarly, we can show that 

v,= ([8’]-‘[A’]+[02][82]-1)-1 

+?1]-1V;+([D2][B2]-1[A2]-[C2])V;). (B.19) 

On the other hand, from the circuit of Fig. 13(a) we can 
immediately write 

fornetworkMr: Vrr=[A1]y+[B1]Z: (B.20) 

and for network Jy 2: 
v,=[A2]V$[[B2]z; (B.21) 

zf = [ c”]v,’ - [ D’]Z,“. (B.22) 

From (B.21) and (B.22) we obtain 

[B2]-1~-[02]-1z:=([B2]-1[A2]-[D2]-1[C2])~~. 
(B.23) 

Equations (B.20) and (B.23) can be transformed into the 
following expressions 

[B’]-‘[A’]V,+z:=[B’]-lvl (B.24) 

[D’][B2]-+z:=([D2][l?~]-‘[A2]-[C2])v~ 
(B.25) 
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or 

From (B.24) and (B.25) we again obtain (B.19), and 
similarly, from (B.26) and (B.27) we obtain (B.18). Hence, 
we have proven that the signals V, and Zf in Fig. 13(a) are 
equal to V, and Zf, respectively, in Fig. 13(b) and Cc>. 
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