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Abstract. In this paper we address the problem of Least-Squares (LS)
optimal FIR inverse-filtering of an convolutive mixing system, given by
a set of acoustic impulse responses (AIRs). The optimal filter is given
by the LS-solution of a block-Toeplitz matrix equation, or equivalently
by the time-domain Multi-Channel Wiener Filter. A condition for the
minimum FIR filter length can be derived, depending on the number of
sensors and sources and the AIR length, such that an exact FIR inverse
exists, which perfectly separates and deconvolves all sources. In the gen-
eral case, where an exact FIR solution does not exist, we discuss how
SDR, SIR and SNR gains can be traded against each other. Results are
shown for a set of AIRs, measured in an typical office room. Furthermore
we present a method, which allows a time-domain shaping of the envelope
of the global transfer function, reducing pre-echoes and reverberation.

1 Introduction

Blind Source-Separation methods aim at inverting a convolutive mixing system,
using linear de-mixing filters. Examining the non-blind case, where the convolu-
tive system of AIRs is perfectly known and determining the optimal FIR inverse
(with respect to a quadratic cost function) demonstrates in principle the degree
of achievable separation and deconvolution. The optimal FIR inverse is given
by a block Toeplitz matrix equation. We derive a condition for the minimum
FIR filter length, such that an exact FIR inverse exists, and also conditions for
obtaining exact separation only, or exact deconvolution only. By appropriate
weighting of the sources, the space of possible solutions, favoring the SIR, the
SDR or SNR gain, can be sampled. Results are shown for a 4 × 4 set of AIRs,
measured in an typical office room. In order to reduce reverberation, it is desir-
able to have an influence on the shape of the time-domain envelope of the global
transfer function: we present a method using a weighting function.

1.1 Problem formulation

In a reverberant and noisy environment with M mutually uncorrelated point
sources sm the ith sensor of an array with K sensors receives the signal xi[k]

xi[k] =
∑M

m=1
(him ∗ sm)

∣∣∣
k

+ vi[k] i = 1...K, (1)



where him is the acoustic impulse response (AIR) from source sm, having nh

coefficients. The spatially incoherent sources and sensor noise appear as spatially
uncorrelated components vi[k] at the ith sensor and are refered to as noise in
the following.

We aim at finding a set of K FIR filters wmi, i = {1, ..., K} with nw coeffi-
cients, such that output ym[k] is an estimate ŝm[k−d] of the delayed source sm.

ym[k] = ŝm[k − d] =
∑K

i=1
(wmi ∗ xi)

∣∣∣
k
. (2)

Each output ym has its own set of filters wmi, extracting one of the sources sm,
and thus can be addressed separately. In the following we consider only one of
the outputs, extracting the target source sm̌ (m = m̌). Perfect deconvolution
of the target source sm̌ and separation from the other jammer sources sm is
obtained, if

∑K

i=1
(him ∗ wi)

∣∣∣
k

= tm[k] m = 1...M, k = 1...nh + nw − 1 (3)

where tm[k] is the total (global) response from the source sm to output y and
is chosen as tm̌[k] = δ[k − d] for the target source sm̌, and tm[k] = 0 for the
other sources sm. The minimum possible total delay d = dmin corresponds to
the propagation time from the source sm̌ to the sensors.

Since we are looking for a signal independent inverse of the AIR set, which
is not optimized on the individual source spectras, we assume all sources to
be white with equal power. The source powers are however weighted properly
according to the desired inversion task, e.g. according to their actual powers σ2

sm
.

2 Optimal FIR inverse filters

2.1 Exact FIR inverses

The equation system (3), defining the optimal FIR inverse filters wi is illustrated
in Fig. 1. Each source/sensor adds a row/column of Toeplitz blocks to the block
Toeplitz matrix H̄, which has dimension (M(nw + nh − 1) × Knw).

A plausible and common assumption [1],[2] for the AIR system is, that the
filters him mutually do not share common zeros in the frequency domain and
that the corresponding Matrix H̄ has full rank. Then there exists a set of FIR
filters wi, which fulfills (3) for the desired total transfer functions tm, if Matrix
H̄ is square or if dim(H̄) = (D1 × D2), D1 ≤ D2. This case applies if

M(nw + nh − 1) ≤ Knw. (4)

Solving (4) for nw gives a condition for the minimum number of filter coefficients
of wi,

nw ≥

⌈
(nh − 1)M

K − M

⌉
K > M. (5)

Thus, if there are less sources than sensors, there exist FIR filters wi which
achieve perfect separation and deconvolution of the sources. A proof for a similar
condition for the case of only one source (M = 1) can be found in [3].



If for instance there is one more sensor than sources (K = M + 1), then
choosing nw ≥ M(nh − 1) will allow perfect separation and deconvolution. If
K = aM , a ∈ Z

+, then nw ≥ (nh−1)/(a−1) coefficients are required, i.e. filters
wi may be even shorter than the AIRs in this case.
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Fig. 1. Equation system (3) defining the FIR inverse filters wi of an K × M AIR
system (him) for the given desired total transfer functions tm (⊙ denotes a scaling of
an equation by γ(m, k)); nw and nh: filter lengths; length of tm: nt = nh + nw − 1

2.2 Least squares optimal FIR inverses

If the number of sources is equal or larger than the number of sensors then the
optimal FIR inverse filters are given by the Least Squares solution of (3). This
case (K ≤ M) applies at any rate, if also the noise sources at the sensors are
included in the LS-optimization since noise at the ith sensor can be regarded as
a source ‘sitting’ at the sensor (with AIRs hii = 1 and hij = 0). Thus, when
considering noise, K additional noise sources have to be placed in (3).

In the LS case, maximal separation (SIR), deconvolution (SDR) and a max-
imal SNR gain (see 2.4) can not be achieved simultaneously. However the SIR,
SDR and SNR gains can be traded against each other. By weighting the sources
with appropriate factors γ(m, k)

γ(m, k) = γ◦
mγm(k) k = 1...nt = nh + nw − 1 m = 1...M, (6)

the space of possible solutions, favoring the SIR, SDR or SNR gain, can be
sampled. As shown in Fig. 1, both sides of equation (3) are scaled with γ(m, k).
While γ◦

m is constant for each source (e.g. the source power σ2
sm

), γm(k) allows
for a individual weighting of each equation. Choosing larger weights γ◦

m for the
noise sources will result in a solution favoring the SNR gain, larger weights for the
target source will increase the SDR, and larger weights for the jammer sources
will increase the SIR.



Maximal separation (best SIR) Maximal separation is achieved, if the jam-
mer sources receive dominant weights γ◦

m, and by choosing tm[k] = 0 for all
m 6= m̌. For the target source sm̌ a total response tm̌[k] will result, which will
introduce some additional distortion. A constraint, e.g. tm̌[d] = 1 is required to
avoid the all zero solution wi = 0. In the noiseless case perfect separation
(however with distortion) is possible, if

nw ≥

⌈
nh(M − 1) − M + 2

K − M + 1

⌉
K ≥ M, (7)

since dim(H̄) = (D1×D2), D1 ≤ D2 applies, if (7) holds. (Compared to (4) there
are nw+nh−2 fewer equations, since here γ◦

m̌/γ◦
m ≈ 0 and tm̌[d] = 1). If e.g. K =

aM (over-determined case), perfect separation is achieved with filters wi shorter
than the AIRs. In the square case (K = M) perfect separation is achievable, if

nw ≥ nh(M − 1) − M + 2. With the definition of Matrix ĤK×K = [him] and

since adj(Ĥ)Ĥ = det(Ĥ)I [4], it follows, that adj(Ĥ) is the perfect separating

solution for the K = M case. Filters wmi are then given by wmi = Ĥim, with
Ĥim being the cofactors of Ĥ. Thus wmi will be a sum of different combinations
of K − 1 convolutions of him (e.g. h12 ∗ h23 ∗ ...). The corresponding total target

transfer function is causal if desired and is given by tm̌ = det(Ĥ), which is a sum
of combinations of K convolutions of him. Since each convolution with an AIR
introduces additional reverberation, the resulting distortion can be significant.

Perfect separation is not possible in the under-determined case K < M . Also,
when including the noise sources in (3), the LS-solution will reduce the best
possible SIR gain, depending on the weighting of jammer and noise sources.

Maximal deconvolution (best SDR) If a maximal deconvolution (minimal
distortion, high SDR) of the target source is desired, all sources, except for
the target, have to receive small or even zero weighting γ◦

m. From (4) follows,
that when neglecting all unwanted sources (M = 1), perfect deconvolution
is in principal achievable, if at least two sensors are available K ≥ 2 (with
nw ≥ nh − 1). Complete deconvolution may however result in a large SNR and
SIR loss, especially if the delay d is chosen small [5]. Multi-channel deconvolution
is caused by two mechanisms: single-channel type inversion (in general IIR) and
elimination by addition of different sensor observations (possible with FIR). The
latter is mainly responsible for possible SNR and SIR losses.

A common criterion used by BSS source separation algorithms is the Min-
imal Distortion Principle [6], where separation of the sources is aimed for,
with the constraint, that no additional distortion (on top of the distortion/re-
verberation caused by the AIRs) should be introduced: the target source at the
output is ought to be identical or close to its observation in one of the sensors, i.e.
ysm̌

≈ sm̌ ∗ him̌. The corresponding solution is obtained by setting tm̌ = him̌ as
desired total response in (3). Note that the source is not completely deconvolved
in this case.

The Minimum Variance Distortionless Response Beamformer (MVDR-
BF) [7] aims at complete deconvolution of the target source (tm̌[k] = δ[k − d]),
while minimizing the variance of all undesired sources. Generalized from a model



with simple propagation delays to general AIRs, the MVDR-BF filters wi are
calculated in the frequency domain [5] and are typically IIR. The MVDR-BF
solution is obtained from (3) (approximately) by using a large nw and dominant
weights γ◦

m̌ for the target source.

Maximal SNR gain (best SNR) The solution leading to a maximal SNR
gain is obtained by setting the weights γ◦

m of all sources, except for the noise
sources to small values or zero. A constraint, e.g. tm̌[d] = 1 is required to avoid
the all zero solution wi = 0. The maximal SNR achieving solution is given by
wi[.] = him̌[−.], which follows from the Wiener solution (9) and (13), setting
Rxx = I. If the AIRs are simple delays, wi[.] will reduce to the well known
Delay-and-Sum Beamformer, which is the BF producing the highest white noise
SNR gain [7].

2.3 Time-Domain Multi-Channel Wiener Filter (MCWF)

If all sources are white and are given the weighting γ(m, k) = γ◦
m, the least

squares solution of (3) coincides with the time-domain FIR Multi-Channel Wiener
Filter MCWF, which is the MMSE solution. Defining the stacked data and filter
vectors

xi[k] = [xi[k] xi[k − 1] · · ·xi[k − nw + 1]]T (8)

x[k] = [xT
1 xT

2 · · ·xT
K ]T

wi = [wi[0] wi[1] · · ·wi[nw − 1]]T

w = [wT
1 wT

2 · · ·wT
K ]T ,

the Multi-Channel Wiener Filter (with K inputs and one output) is given by

wMCWF = Rxx

−1rxsm̌
, (9)

where Rxx

(Knw×Knw) is the autocorrelation matrix of the sensor signals

Rxx = E
{
x[k]x[k]T

}
=
∑M

m=1
γ◦

m
2Rxsmxsm

+ γ◦
v
2Rvv, (10)

and r
(Knw×1)
xsm̌

is the cross-correlation vector of x and sm̌

rxsm̌
= γ◦

m̌
2E{x[k]sm̌[k − d]} . (11)

For a given set of AIRs him, element
(
Rxixj

)
a,b

amounts to
(
Rxixj

)
a,b

= rxixj
[a − b] =

=
∑M

m=1
γ◦

m
2(him[−.] ∗ hjm[.] ∗ rsm

[.])
∣∣∣
k′=a−b

+ γ◦
v
2 (Rvivj

)
a,b

, (12)

where him[−.] denotes time reversion. Element rxism̌
(a) is given by

rxism̌
(a) = rxism̌

[a − 1 − d] = γ◦
m

2(him̌[−.] ∗ rsm̌
[.])
∣∣∣
k′=a−1−d

. (13)

With (12) and (13), the MCWF (9) can be determined. Rxx

(Knw×Knw) and H̄
are matrices of Toeplitz blocks of typically very large dimension (e.g. 40000 ×
40000). An algorithm, utilizing the block-Toeplitz structure can be used to solve
(9) or (3) efficiently (Schur alg.).



2.4 SDR gain, SIR gain and SNR gain

The realized degree of deconvolution, separation and noise reduction is measured
by the Signal-to-Distortion Ratio SDR, the Signal-to-Interference Ratio SIR and
the SNR, respectively. Since we assume sources and the noise to be white, the
SDR of source sm̌ at sensor 1 is calculated from h1m̌ as

SDRx1
:= 10 log10

(
max(|h1m̌[k]|2)∑

k |h1m̌[k]|2 − max(|h1m̌[k]|2)

)
, (14)

i.e. the SDR is the ratio of the power of the main peak to the reverberation part
in the AIR h1m̌. The SDR at the output y we obtain from the total response
tm̌[k]:

SDRy := 10 log10

(
max(|tm̌[k]|2)∑

k |tm̌[k]|2 − max(|tm̌[k]|2)

)
. (15)

The reduction of distortion or reverberation is then SDRgain = SDRy − SDRx1
.

Similarly the SIRgain = SIRy −SIRx1
of the power of the target source sm̌ to all

jammer sources sm is given by:

SIRgain := 10 log10

(∑
k |tm̌[k]|2 ·

∑
k,m6=m̌ |h1m[k]|2

∑
k,m6=m̌ |tm[k]|2 ·

∑
k |h1m̌[k]|2

)
. (16)

Finally, the white noise gain SNRgain = SNRy − SNRx1
is obtained by:

SNRgain := 10 log10

( ∑
k |tm̌[k]|2∑

i,k |wi[k]|2 ·
∑

k |h1m̌[k]|2

)
. (17)

3 Shaping the envelope of the total response

The LS-solution of (3) will result in some signal distortion, appearing in tm̌.
AIRs and filters wi typically have several thousands of coefficients and thus will
produce a long, noncausal global response tm̌ with its main power concentrated at
k = d and slow decaying tails. These tails cause audible undesired artifacts: pre-
echoes and (late) reverberation. It is therefore desirable to shape the envelope of
tm̌, such that the tails decay faster. We propose a method to shape the envelope
of the total response tm̌ by incorporating an appropriate weighting function
γm̌(k) in (3), scaling the equations associated with the target source:

γm̌(k) = (1 + ǫ) − exp(−τ [k − d]2) + βδ[k − d] ǫ, τ ≈ 0, β ≈ 1. (18)

This will cause the LS-solution to drive the tails of tm̌[.] to zero, while permitting
a degree of freedom for ‘k around d’, which is favorable for the LS-optimization.
The effect of the total response shaping is shown in Fig. 2 f).

4 SDR, SIR and SNR gains for a typical office size room

We have measured a K × M = 4 × 4 set of AIRs (nh = 3600) in an office room
(5m × 3.5m × 2.5m, T60 ≈ 400 ms, fs = 8 kHz), with a speaker microphone
distance range of [1m-3m] and a sensor array spacing of [4cm 14cm 4cm]. Results
of the inversion are shown in Fig. 2. The total transfer function tm̌ of the target
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Fig. 2. FIR LS-inverse of an K × M = 4 × 4 AIR set (nh = 3600, T60 ≈ 400ms) of an
office room: total transfer functions of target tm̌, and tm of one of the jammers; a) AIR
h11; b) perfect separation and deconvolution for the 4×3 case; c)-e) solutions favoring
the SDR, SIR or SNR gain, obtained by different weighting γ◦

m of the sources; f) effect
of introducing the weighting function γm̌(k): tails of tm̌ are suppressed, reducing late
reverberation (a simulated AIR set with nh = 500 was used for case f))



source, and exemplarily tm of one of the jammers – the other jammers are
comparable – are depicted. By applying a different weights γ◦

m to the sources,
the LS-solution of (3) favors the SDR, SIR or SNR gain. The achievable gains are
indicated. Case b): K×M = 4×3: in accordance with (5), which here demands
nw ≥ 10797, (nearly) perfect deconvolution and separation is accomplished, since
nw = 12000 was chosen. The sensor noise sources were neglected here. Case c)-
e): K × M = 4 × 4, and noise being also considered (i.e. M is in fact increased
by K = 4 noise sources to a total of M=8): now the Least Squares optimization
applies, and the SDR, SIR, and SNR can be traded against each other, with
maximal values of the SDR/SIR/SNR gainmax = 37/30/10dB. Plot f) shows
the effect of shaping tm̌ by incorporating the weighting function γm̌(k) given by
(18). It can be observed, that the tails of tm̌[k] vanish, at the cost of increased
values ‘around k = d’. The weighting function γm̌(k) drives the tails of tm̌[k]
to zero, reducing late reverberation and also the artifacts due to the non-causal
side tail.

5 Conclusion

AIRs are typically non-minimum phase, having non-causal and very long-tailed
IIR inverses. Nevertheless, under certain conditions, there exist causal FIR in-
verses which perfectly invert the AIR mixing system. If K > M , perfect sepa-
ration and deconvolution is achievable, while separation only requires K ≥ M .
Deconvolution only, demands K ≥ 2. We derived conditions for the correspond-
ing minimum FIR filter lengths nw. For the most common case (K ≤ M), the
LS-optimization will give a tradeoff between the SDR, SIR and SNR gains, which
can be controlled by appropriate weighting of the sources. Confirmative results
are shown for a 4×4 set of AIRs, measured in a typical office room. Finding the
LS-optimal filters for the non-blind case demonstrates what one can expect from
a BSS-algorithm in a similar acoustical setup. In order to additionally reduce
reverberation and artifacts we proposed a method using a weighting function
γm(k), which allows a time-domain shaping of the envelope of the global trans-
fer function tm, driving the undesired long tails to zero.
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