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Discrete-Time FadingiMemory Systems 
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Abstract- A fading-memory system is a system that tends 
to forget its input asymptotically over time. It has been shown 
that discrete-time fading-memory systems can be uniformly ap- 
proximated arbitrarily closely over a set of bounded input se- 
quences simply by uniformly approximating sufficiently closely 
either the external or internal representation of the system. 
In other words, the problem of uniformly approximating a 
fading-memory system reduces to the problem of uniformly 
approximating continuous real-valued functions on compact sets. 
The perceptron is a parametric model that realizes a set of 
continuous real-valued functions that is uniformly dense in the set 
of all continuous real-valued functions. Using the perceptron to 
uniformly approximate the external and internal representations 
of a discrete-time fading-memory system results, respectively, 
in simple finite-memory and infinite-memory parametric system 
models. Algorithms for estimating the model parameters that 
yield a best approximation to a given fading-memory system 
are discussed. An application to nonlinear noise cancellation in 
telephone systems is presented. 

I. INTRODUCTION 

S YSTEM identification is the process of constructing a 
mathematical model of a given system based on obser- 

vations of the system’s behavior in response to past inputs. 
The model predicts the behavior of the system in response to 
future inputs. The model may not be exact in the sense that 
it always predicts the exact behavior of the system. In other 
words, the model output may be only an approximation of 
the system output in response to the same input. In many 
applications, one requires a model whose output remains 
uniformly close to the output of the system over all time, 
i.e., one requires a model that uniformly approximates the 
system. [Hereafter, when we write “approximate” we will 
mean “uniformly approximate,” unless otherwise indicated.] 
For example, in the echo-cancellation application for telephone 
systems described in [l] and discussed in this paper, an 
accurate model of the near-end echo path enables one to 
accurately estimate and cancel over all time the near-end echo 
component in the incoming signal. Finally, the model should 
be such that the approximation can be made arbitrarily close 
simply by increasing the order of the model. 
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Not all systems can be approximated arbitrarily closely in 
the above sense. In feedback systems, for example, an inexact 
model produces errors that may manifest themselves in the 
state of the model; such errors can accumulate causing the 
model output to diverge from system output in response to 
the same input. As a specific example, consider a nonlinear 
autonomous system with multiple equilibrium states. An inex- 
act model of this system may have regions of convergence in 
the state space that do not coincide exactly with those of the 
original system. Hence, if the initial state is close to the border 
of these regions, it is possible that the model will converge to 
an equilibrium state different from that of the original system. 

One common class of systems that can in fact be approx- 
imated arbitrarily closely is the class of so-called fading- 
memory systems [4], [5], [20]. As their name implies, fading- 
memory systems are systems that “forget” their inputs asymp- 
totically over time in a well-defined manner to be discussed 
shortly. It was shown in [14], that such systems can be 
approximated arbitrarily closely on a set of bounded input 
signals simply by approximating sufficiently closely either 
the external or internal representation of the system. In other 
words, the problem of approximating fading-memory systems 
reduces to the problem of approximating continuous functions 
on compact sets’. 

Since the asymptotic behavior of a stable linear time- 
invariant system is independent of its initial state, such a 
system is a good example of a fading-memory system. A 
stable linear discrete-time time-invariant system, for example, 
can be approximated arbitrarily closely simply by approx- 
imating sufficiently closely either its unit-sample response 
(external representation) or its poles and residues (internal 
representation). By approximating the unit-sample response of 
a linear discrete-time system, we mean constructing a linear 
finite-memory model, i.e., an FIR filter, whose unit-sample 
response is close in some sense to that of the system. Similarly, 
by approximating the poles of a linear system, we mean 
constructing a linear infinite-memory model, i.e., an IIR filter, 
whose poles are close in some sense to the dominant poles of 
the linear system. Other examples of fading-memory systems 
include systems composed of the concatenation of linear time- 
invariant systems and zero-memory nonlinearities*, e.g. the 

‘A compact set of a finite-dimensional vector space is a set that is closed 
and bounded. 

2A zero-memory nonlinearity is a system whose output at any point in time 
is a function of the input only at that point in time. 

1057-7130/94$04.00 0 1994 IEEE 



MATTHEWS AND MOSCHYTZ: IDENTIFICATION OF NONLINEAR DISCRETE-TIME FADING-MEMORY SYSTEMS 741 

Wiener and Hammerstein models [19], [24]. Furthermore, any 
feedback system whose internal representation is characterized 
by a contraction mapping is also a fading-memory system [15]. 

In general, approximating the external representation of a 
fading-memory system results in a nonlinear finite-memory 
model, i.e., a model whose output at a particular point in 
time is a nonlinear function of a finite number of past in- 
puts. Similarly, approximating the internal representation of a 
fading-memory system results in a nonlinear infinite-memory 
model, i.e., a model whose state at any point in time is a 
nonlinear function of its initial state. In this paper, we examine 
two such models based on neural networks. 

The perceptron is a type of “neural network” composed 
of the linear combination of affinely-transformed saturating 
nonlinearities [17]. The perceptron is a parametric model 
that realizes a set of continuous real-valued functions that 
is uniformly dense in the set of all continuous real-valued 
functions [6]-[9]. In other words, every continuous function 
can be approximated arbitrarily closely on a compact set over 
the set of functions realized by the perceptron. This fact is 
not surprising; many parametric models (e.g., polynomials) 
realize dense sets of continuous functions. However, because 
of its saturating nature, using the perceptron to approximate 
the external and internal representations of a fading-memory 
system results in finite and infinite-memory parametric models, 
respectively, that possess attractive qualities in terms of ana- 
lytical tractability (e.g., stability analysis) and the simplicity 
of parameter estimation algorithms. 

The concept of using neural network models for the identi- 
fication of nonlinear discrete-time dynamical systems has been 
studied by several investigators, most notably in the well- 
cited paper [18]. In that paper, however, the nonlinear system 
models were chosen ad hoc without reference to any practical 
systems. Furthermore, for the system models that were chosen, 
it is unclear how simply substituting a perceptron for the model 
nonlinearities results in a system approximation in any sense. 
Finally, no results regarding the stability of such models were 
provided. 

This paper attempts to provide a unified approach to the 
problem of identifying a broad class of nonlinear systems, 
in particular fading-memory systems, using the perceptron. 
It presents an example of the application of such perceptron 
system models to nonlinear echo-cancelling in telephone sys- 
tems. Because of the inherent nonlinearities in such systems 
in the form of data converters, amplifiers, and hybrid circuits, 
linear echo-cancellers of arbitrary order have an upper bound 
of echo rejection [l]. However, since telephone systems have 
inherent fading memory characteristics, they can in principle 
be approximated arbitrarily closely by the nonlinear models 
described herein, i.e. there is no upper bound on the echo 
rejection attainable with echo-cancellers based on such models. 

II. FADING-MEMORY SYSTEM APPROXIMATION 

We consider the class of discrete-time time-invariant sys- 
tems of the form 

for all Ic E N = (0, 1,2,. . .}, where the input u[IC], the state 
z[lc], and the output y[lC] at time k belong to finite-dimensional 
real vector spaces U, X, and Y, respectively, where the’state 
map f : X x U --+ X and the output map h : X --+ Y are 
continuous, and where the initial state is ~0, i.e., z[O] = 50. 
Let lJk = U x U x ... x U -(rF times) denote the product 
space of S-length sequences of elements of U, and let U* 
denote the set of all finite-length sequences of elements of 
U including the empty sequence A, i.e., U* b uk>o U”. 
Hereafter, all sequences in U* will be written in bold-face 
type, e.g., u E U*. For sequences U, v E U*, uv denotes the 
concatenation of the two sequences. It is convenient to extend 
the state map f to the reachability map f * : XX U* -+ X such 
that x0 = f*(xo, A) and z[lc+l] = f*(~u, u[O], ~[l], . . . , u[lc]) 
for all k E N. Similarly, we extend the output map h to the 
response map h* : X x U* + Y such that h* = h o j*, i.e., 
y[k+l] = h*(xO, u[O], u[l], . . . , u[k]) for all k E N. Hereafter, 
when we write “system,” we will mean a discrete-time system 
of the form in (1). 

Functions f and h in (1) describe the system from a state- 
variable or internal representation point of view. To create this 
representation, one requires a priori knowledge of the actual 
physical system, i.e., one requires knowledge of its physical 
states and access to these states. Alternatively, the response 
map h* provides an input-output or external representation of 
the system. To create an external representation, it suffices to 
make input-output measurements on the system. 

Intuitively, we would expect a model to be a “good” approx- 
imation of a system if, in response to the same input, the model 
output remains uniformly close to the system output over 
all time. Indeed, in many applications one requires a model 
whose output remains within a fixed envelope around the 
system output over all time. In the echo-canceller application 
described in Section V, for example, it is desirable to have an 
upper bound on the uncancelled echo component, i.e., on the 
system/model error, in the received signal. 

We say that a model uniformly approximates a system 
to within E > 0 on some subset K of the set of finite 
input sequences U* if, for every sequence in K applied 
simultaneously to both model and system, the output sequences 
remain close to within E over the entire length of the input 
sequence. More precisely, a model c with response map fi* 
uniformly approximates a system C with response map h* to 
within t on K c U” if 

where ]].]I denotes an arbitrary norm on the output space Y. 
In general, feedback systems cannot be uniformly approx- 

imated in the above sense. In many systems with certain 
memory characteristics, an inexact model will produce errors 
that may tend to accumulate in the state of the model so as to 
cause the model output to diverge from the system output. As 
suggested in the introduction, systems with unique asymptotic 
properties, i.e., systems with fading memory, can in fact be 
approximated arbitrarily closely in the above sense simply 
by approximating sufficiently closely either the internal or 
external representation. To see this, we need to define explic- 
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itly what we mean by “fading memory.” We will approach 
the definition of fading memory from the point of view of 
continuity of systems. 

A function is said to be continuous if elements in the domain 
that are close have images that are close. Similarly, a system 
is said to be continuous if input sequences that are close in 
some sense produce output sequences that are close in some 
sense. To be precise, a system C is said to be continuous on 
some subset K of U* if, for every 6 > 0 and ‘IL E K, there is a 
6 > 0 depending on both E and ti such that, for every v E K, 

11~ -VII* < 6 ==+ Ilh*(xo,U> - h*(xo,v)(I < t (3) 

where II. II * denotes an arbitrary norm on U* and where 11. II 
denotes an arbitrary norm on the output space Y. The distance 
measure between two sequences in U*, i.e., the norm ~~.~~*, can 
be defined in many ways. It is convenient to define a weighted 
norm ll.IIw on U* with respect to a nonnegative real sequence 
w in the manner that 

II4lw = ,EToyu, ] II44II 4 I4 - 4 (4) 

where 1~1 denotes the length of the sequence u and where 
II. II denotes an arbitrary norm on the input space U. A 

fading-memory system is a system that tends to ‘forget’ its 
input in a well-defined manner over time. In other words, a 
fading-memory system is one in which, at any given time, 
input sequences that are close in the recent past produce 
output sequences that are close at that time. The following 
definition of a fading-memory system is based on that in [4] 
for continuous-time systems. 

Definition: A system C = (U, X, Y, f, h, 20) has fading 
memory on a subset K of U* if there exists a nonincreasing 
positive sequence w with limk,, w[k] = 0 such that, for 
every E > 0 and every ‘11 E K, there exists a 6 = S(C,U) > 0 
such that, for all v E K with Iv1 = 1~1, 

11~ - vllw < 6 * llh*(xo,=) - h*(~o,v)II < t (5) 

where Il.IIw denotes the weighted norm on U* with respect to 
the sequence w . 0 

In other words, at some point in time lc, if the k-length input 
sequences ‘1~ and v remain within the envelope 6/w[k - n] 
for n E [0, k], then the outputs will be within E at time 
k + 1. According to Definition 1, a fading-memory system is 
a system whose response map h* is continuous with respect to 
a weighted norm I I (I W on U* where the sequence w is positive, 
nonincreasing, and converges to zero. 

From Definition 1, it is clear that a fading-memory sys- 
tem has the asymptotic property that, when the same input 
sequence is applied to the system at distinct initial states, the 
output trajectories of the system will converge. To be more 
precise, given a system C with fading memory on some subset 
K of U*, for every E > 0, there is a positive integer w 
such that for all ‘IL,V,S E K with IsI > n, it follows that 
llh*(~o,US)-h*(~o,vS)II < t. The proof of this result, which 
is similar to that in [4] for continuous-time systems, can be 
found in [15]. 

The above asymptotic property of fading-memory systems 
implies that if ~0 is an equilibrium state of system C, i.e., if 

f(zo,O) = ~0, then, for all sequences u E K 

II h*(xo, 401,411,. . . ,4W 
- h*(xO, 0,. . . ) 0, u[k - 7% + 11, . . .,u[W II < t. (6) 

Hence, any system C with an equilibrium state at 20 and 
with fading memory on a set of bounded input sequences 
can be approximated arbitrarily closely by a model 2 that 
realizes an arbitrary continuous function of a finite number of 
past input samples. A discrete-time system whose output is 
a function of a finite number of past input samples will be 
referred as aJinite-memory system. It is clear from Definition 
1 that such systems are fading-memory systems. Systems that 
are not finite-memory systems will be referred to as injinite- 
memory systems. The model c then consists of an nth-order 
“vector tapped-delay-line” (i.e., a linear system whose output 
in U” consists of the last n input samples) concatenated with 
a structure that realizes a continuous mapping 71 : U” + Y of 
the form h(u) = h*( ~0, u). In fact, it is neither practical nor 
necessary to realize 6 exactly; it suffices simply to approximate 
h arbitrarily closely on a compact subset of U”. Hence, the 
problem of approximating arbitrarily closely a fading-memory 
system reduces to the problem of approximating arbitrarily 
closely continuous real-valued functions on compact sets. 

The concept of fading memory is also closely related to 
that of a contraction mapping3 in the sense that if the internal 
representation of a system is defined by a contraction mapping 
on a subset of the input space, then the system has fading 
memory on sequences of elements in that subset. To be more 
precise, given a system C such that, for every u in a compact 
subset K of U, the state mapping f( . , U) : X -+ X is a 
contraction mapping, then C has fading memory on K*. This 
result, whose proof can again be found in [15], implies that we 
can approximate a fading-memory system arbitrarily closely 
on a set of bounded input sequences simply by approximating 
arbitrarily closely its state-space or internal representation. By 
this we mean that, a fading-memory system C defined in (1) 
by the state map f and the output map h can be approximated 
arbitrarily closely by a model 2 defined by the state map f and 
the output map 71, where J is an arbitrarily-close approximation 
of f on a compact subset of X x U, and where 6 is an 
arbitrarily-close approximation of h on a compact subset of 
X. A precise statement of this result can be found in [15]. 

III. THE PERCEPTRON AS A UNIVERSAL APPROXIMAT~R 

The important result in the previous section is that the 
problem of approximating a fading-memory system on a 
set of bounded input sequences reduces to the problem of 
approximating continuous real-valued functions on compact 
sets. We denote by C(U) the set of all continuous real- 
valued functions on U. Any subset of C(U) is said to be 
uniformly dense in C(U) if, for every element f in C(U) 
and every small t > 0, there is an element f in that subset 
that uniformly approximates f to within t on U, that is 
sup&U If(u) -JW < E. There are many parametric models’ 

3A contraction mapping is a mapping f : X ---f X such that there is an 
CI E (0,l) such that ~(f(z),f(~)) 5 cyp(z,Z) for all z,f E X, where p 
is a metric on X. 
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that realize sets of continuous real-valued functions that are 
uniformly dense in C(U). One common set is the set of 
polynomials P(U) of the form 

(7) 

where o = (oI, as,. , . , cr,) is a multiindex, where IQ] = cyl+ 
aa+...+a,, where a, E R and where u” = IL~‘u~’ . ’ . u,“- 
for n = dim U. That P(K) is uniformly dense in C(K) for any 
compact subset K of U, i.e., that any function in C(K) can be 
approximated arbitrarily closely over the set of polynomials, is 
the classic result from Weierstrass [ 11 J. In fact, for any finite- 
dimensional output space Y, we can approximate arbitrarily 
closely any continuous mapping f from U into Y simply by 
approximating sufficiently closely each component function fi 
of f by a polynomial vi, i = 1,2,. . . ,dimY. 

Approximating the external representation of a fading- 
memory system over the set of polynomials on Un, i.e., 
approximating the mapping fi(u) = ~*(z~,I(L) over P(F), 
results in a finite-memory polynomial system model called a 
polynomial jilter [14]. Such a system can also be arrived at 
in the context of truncated Volterra series representations of 
nonlinear systems [4]. The polynomial filter has the advantage 
of being linear in its parameters; hence, a parameter estimation 
algorithm based on a quadratic cost function will converge to 
a unique solution, provided that the stability of the algorithm 
is ensured. The disadvantage of the polynomial filter lies in 
the inordinate number of parameters required to specify a 
polynomial that well-approximates even the simplest fading- 
memory systems: an mth-degree polynomial on W” requires 

n 

CC 

m-i+1 
i 

i=o ) 

parameters. 
Aside from the inordinate number of parameters required to 

effect a good approximation of a given fading-memory system, 
the polynomial filter also exhibits a pathological behavior (the 
output increases without bound) for inputs outside the compact 
set on which the approximation is defined. In other words, 
outliers in the input signal are amplified exponentially and 
must therefore be clipped either at input or at the output. 

Alternatively, approximating the internal representation, 
i.e., the state and output mappings f and h, of a fading- 
memory system over the set of polynomials.on X x U and X, 
respectively, results in an infinite-memory polynomial system 
model [19], [22]. The algebraic properties of polynomial sys- 
tems were studied in [23]. Unfortunately, polynomial models 
are not inherently stable, and no general stability criterion 
exists. Even though such a model may be stable for inputs 
inside the compact set on which the approximation is defined, 
it may be unstable for inputs outside this set. Furthermore, as- 
suring the stability of a polynomial system model is necessary 
for implementing an on-line parameter-estimation algorithm. 
Because of the aforementioned problems with both finite- 
memory and infinite-memory polynomial system models, their 
practical application has been limited to well-behaved mildly 
nonlinear systems, [l], [3], [IO]. 

Consider instead the set of real-valued functions on U of 
the form 

m 

j=l 

where c.j E W, where 4 : W ---f R is a nonconstant Bore1 
measurable function4, and where crj is a real-valued affine 
mapping on U of the form crj(.l~) = Ajufbj with Aj : U -+ h’2’ 
a linear mapping and bj E W. That the set of functions of the 
form in (8), where #I is discriminatory, is uniformly dense in 
C(K) for any compact subset K of U was shown in [61. That 
every nonconstant Bore1 measurable function is discriminatory 
was shown in [8]. 

The power of the general model in (8) lies in our ability to 
choose virtually any nonconstant continuous function 4 that 
best facilitates the practical implementation of (8) in a system 
model. By this we mean choosing 4 for both its efficiency in 
terms of the number m of elements in (8) required to effect 
a good approximation of a given function, and for the utility 
of 4 in terms of making (8) both analytically tractable and 
well-behaved when used in a system model. 

Few physical systems are inherently “polynomial” in nature 
in the sense that the output of the system increases without 
bound as the input increases. Most physical systems are finite 
in the sense that they are composed of components whose 
outputs saturate as their inputs increase without bound. A 
multistage amplifier, for example, consists of several con- 
catenated amplifier stages each with a limited dynamic range. 
Furthermore, in many cases, it is this very saturating property 
that characterizes the nonlinear behavior of the system which 
we wish to approximate. Would it not be logical to choose for 
the general model in (8) a function 4 that saturates for large 
inputs? In this regard, we define a sigmoidfunction to be a real- 
valued strictly-increasing continuous function 4 : A -+ (0,l) 
with limZ+oo $(z) = 1 and limZ+--co 4(x) = 0. That such a 
function is discriminatory was shown in [6]. 

We define a perceptron to be a 6-tuple (U, X, Y, A, C, q!~), 
where U (input space), X (hidden-layer space) and 
Y (output space) are finite-dimensional real vector 
spaces, where A : U -+ X is an affine mapping, 
where C : X + Y is a linear mapping, and where 
q5 : x ---f X is a vector-valued sigmoid function, i.e., 
4(3a,~2,~..,&) = (~1(21),~2(22),...,~m(:m)) with 
each 4i, i = 1,2,. . . , m, m = dim X, a sigmoid function. 
We define the order of a perceptron to be the dimension of the 
hidden-layer space X. We interpret an mth-order perceptron 
as realizing a continuous function $ : U -+ Y of the form 
11, = C o 4 0 A, which is simply a multidimensional form of 
(8). In other words, for dimY = I, the component functions 
(~ji,$a,...,&) of + can be written as 

$J’i(u> = 2 cij &(q(u)) i F 1,2,. . ) 1 (9) 
j=l 

4A Bore1 measurable function is a function such that the inverse image 
of a Bore1 set, i.e., a set composed of the countable union and intersection 
of sets of the form {z : CC 2 CL}, is a Bore1 set. In practical terms, a Bore1 
measurable function is a nonpathological function. 
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I I 
Fig. 1. A (3,2)th-order perceptron filter. 

I 
Fig. 2. Recurrent network structure. 

with A = (QI,Q~, . . , am), where aj : U 4 R, j = 
1,2,. . . ) m, is an affine mapping. It follows from the result 
for the scalar-valued model in (8) that the set of continuous 
mappings + : U -+ Y realized by a perceptron is uniformly 
dense in the set of all continuous functions from U into Y. 
To be more precise, for every E > 0, for every function 
f : U + Y, and for every compact subset K of U, there is a 
positive integer m and an mth-order perceptron which realizes 
the mapping $ : U -+ Y such that supUEK l]f(~) -$(u)\] < E 
where I(. )I is an arbitrary norm on Y. 

Approximating the external representation of a fading- 
memory system over the set of continuous real-valued func- 
tions on Un realized by the perceptron, i.e., approximating 
the mapping h(u) = h*( 20,~) by the mapping 4, results in 
the finite-memory system shown in Fig. 1 which we call the 
perceptronjilter [13]. We define an (n, m)th-order perceptron 
filter to be a model consisting of an &h-order tapped-delay- 
line followed by an mth-order perceptron. Clearly, the per- 
ceptron filter realizes a set of finite-memory systems that is 
uniformly dense in the set of fading-memory systems. 

Approximating the internal representation of a fading- 
memory system, i.e., approximating the state and output 
mappings f and h over the set of continuous functions on 
X x U and X, respectively, realized by the perceptron, results 
in the infinite-memory model shown in Fig. 2 of the form 

~$4 + l] = 4(Az[k] + Bu[k]) 

YM = c@d (10) 

where the input u[L], the state ~[k], and the output y[lc] at 
time k belong to the finite-dimensional real spaces U, X, and 
Y, respectively, where A : X --f X is a linear mapping, 
where B : U + X and C : X --) Y are affine mappings, 
and where 4 : X --f X is a vector-valued sigmoid function, 
i.e., ~(Q,Q,. . . , Gz) = (h(n), 42(x2), . . . > bL(GL)), n = 
dim X. 

We call such a model a recurrent network and define it 
by the 8-tuple (U, X, Y, A, B, C, 4, ~0) where za E X is the 
initial state. We define the order of a recurrent network to be 
the dimension of the state space X. That the form in Fig. 2 

results from the approximation of f and h by a herceptron is 
shown in the Appendix. That the recurrent network realizes a 
set of infinite-memory systems that is uniformly dense in the 
set of fading-memory systems is discussed in [15]. 

The recurrent network has a very simple structure in that 
the sigmoid function Q’is “decoupled,” i.e., each component 
function & of f#~ is a function only of its respective component 
2; for i = 1,2,. . . , dim X. Because of this unique decoupled 
structure, the recurrent network has a simple stability criterion 
related to its underlying linear system. To be precise, an nth- 
order recurrenf network is globally asymptotically stable at an 
equilibrium state if 

where & denotes the derivative of 4; [14]. In other words, 
if the eigenvalue of A with the largest magnitude is less that 
the maximum value of derivative of the sigmoid functions, 
then, for any initial state ~0, the state of the recurrent network 
will, for zero input, converge to an equilibrium state. The key 
to this result is the fact that the recurrent network belongs 
to the well-studied class of so-called sector-nonlinear systems 
[2], [16], [21], [25], and [26]. Finally, we note that the linear 
stability criterion in (11) is only a sufficient condition for 
global asymptotic stability of the recurrent network. 

IV. STATE AND PARAMETER ESTIMATION 

In the preceding section, we introduced two system models, 
the perceptron filter and the recurrent network, that realize sets 
of finite-memory and infinite-memory systems, respectively, 
that are uniformly dense in the set of fading-memory systems. 
Furthermore, for every positive integer 72, and every sigmoid 
function 4 = (f$l,&,. . . , @,), there is a (not necessarily 
unique) best approximation for every fading-memory system C 
out of each set of finite-memory and infinite-memory systems 
realized by the nth-order perceptron and recurrent network, 
respectively, over the set of bounded mappings A, B, and C. 

Let C be a system with fading memory on a subset K of 
U*. We will consider the problem of determining the set of 
mappings {A, B, C} that specify a recurrent network that is a 
best approximation to C. A similar treatment of the perceptron 
filter can be found in [ 141. We will consider the mappings 
{A, B, C} to be parametric functions on a real parameter space 
0 of dimension p = n2 +nm+Zn+n+ 1, where n = dimX, 
m = dim U, and 1 = dim Y. We will denote this by the 
notation {A(B), B(O),C(B)} with 0 E 0. In other words, for 
given bases for U,X, and Y, the parameter vector 0 consists 
of the elements of the corresponding matrices A, B, and C. 

Let E(e) be a nth-order recurrent network, specified by 
the parameter vector @ E 0, such that C(g) approximates 
C to within e on K c U*, and such that E(e) is a best 
approximation of C out of the set of systems realized by 
the nth-order recurrent network. We will make the hypothesis 
that, for any input random process u with realizations in K 
applied to both C and E(e), the difference in their .outputs 
e = y - 0 is a zero-mean i.i.d. random process whose 
distribution has support on a subset of the output space Y 
given by {y : y E Y , Iy;] < c, i = 1,2, . . . ,1} and which 



, av!s+1 
II 

where vk+i = 7 and vk+i = a2vk$1. If we neglect the 
higher-order term o,+,(6), e[k]), we cgdifferentiate (13) with 
respect to 0, set the result equal to zero, and solve for an 
approximate minimum for vk+r (6). We  may take this value 
to be the estimate of # at time Ic + 1, i.e. 

e[k + l] = @k] - [tik+&[k])]-’ ri,+,(8[k])T . (14) 

The expression in (14) is consistent since vk+i(e) is an 
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Fig. 3. The parameter estimation problem 

is independent of the input process u. This hypothesis, which 
ensemble average of the a priori output squared error 

we will call the “sufficient approximation hypothesis,” is most 
e[k + llTRe[lc + 11. We  proceed to derive the recursive 

likely untrue in a strict sense; however, it is useful insofar as it 
parameter estimation algorithm for the recurrent network in 
a manner similar to the Recursive Prediction Error (RPE) 

allows us to conceptually recast the problem of identifying C 
into one of estimating the parameter and state vectors of Z(e) 

Algorithm discussed in [12] for linear state-space systems. 

given “noisy” observations y = jj + e as illustrated in Fig. 3. 
This involves approximating jn a recursive manner the 

Referring to the form in (lo), let vk+i(e) be a conditional 
expectation in the quantities vk+i and vk+i by the time 

mean-square cost function of the form 
average. This results in the following algorithm [14]. 
Algorithm 1 (Recurrent Network RPE Algorithm): 

&+1(d) = aE{e[k + lITA e[k f l] 1 y[k], u[k] > (12) 
2[k + l] = A(&]) d(z[k]) + B@[k]) u[k] (15) 

where A is an 1 x 1 diagonal weighting matrix, where e[k + 11 = y[t + l] - C(J[k]) 4(5[lc + 11) (16) 

Y[kl = (YPI, Y[ll> . . . 7  YW) I’[k + l] = A(&]) J(z[S]) 

is the observed sequence, where [ I- K@[W C@[W JW)] W I + Wd  
(17) 

+I = (~[01,411,~ . . ,4w N[k] = A(&]) J(z[~]) 
is the input sequence, and where 

e[k + l] = y[rC + l] - $[k + 11 

with 4Y (18) 

&k + l] = C(Q?[lc + l] 7y[k + l] = C(B[lc]) J($C + 11) r$C + l] 

where $[k + l] is the a priori estimate of ~[k + 11, i.e., + acce> 
ijrc + l] = E{z[lc + l] ] y[lc], ‘z1[Ic] } 

- I(k14w + 11) de (19) 

R[k + l] = X[k] R[lc] + P[k] $J[rc + 11 A$+ + 1lT (20) 
Here e[lc + llT denotes the transpose of e[lc + 11. Because the i&k + 11 = 8[k] + ,B[k] R[k + 11-l $[lc + l] A e[k + 11 (21) 
recurrent network is nonlinear in its state, we will choose for 
the a priori estimate ?[/c + l] the first order approximation of 

[k + l] = y[k + l] - C(@ + 11) 4(Z[k + 11) (22) 

the optimal mean-square estimate in the usual manner [14], %[k + l] = k[Ic + l] + K&k + 11) [k + 11. (23) 

O[k + l] = d(A(@[k] + B(Qu[k]) 
The quantity J(Z) is the n x n diagonal Jacobian ma- 

where ~[k] = .?[k] + K(B)(y[k] - C(B)Z[k]) is the aposteriori trix corresponding to c$(zK), of the form J(zl, 22,. . . , 2,) = , 
estimate of z[lc]. Here we include the linear “gain” operator diag{$l(d, h44,. . . , &(z,)}. The quantities I’[lc] and 
K(0) : Y -+ X among the parametric functions in the N[k] are both n x p matrices, and $[lc + l] and R[k] are 
parameter space 0. p x I and p x p matrices, respectively. The sequence {p[rC]} is 

Based on the “sufficient approximation hypothesis,” it is a decreasing weighting sequence and X[lC] is a number close 
clear that mingEg vk+i(e) = vk+l($). Let Q[/c] denote the to one; a possibility is /3[rC] = /?[k - l](l + p[lc - l])-’ and 
parameter estimate of # at time k and expand &+1(e) in a X[/C] = 1 - p[lc] for all Ic > 0 with p[O] = 1. 
Taylor series about 8[/~], In a similar approach, also based on the “sufficient ap- 

vk+l(@ = vk+;(&+]) + Qk+l(@d) (0 - ‘@I) 

proximation hypothesis,” to the problem of estimating the 
parameter vector e which specifies a best approximation to a 

,I ^ A  

+ - (0 - e[k])T vk+l(e[k]) (0 - e[k]> 
fading-memory system C out of the set of systems realized by 

2 the (n, m)th-order perceptron filter, we derived the following 
+ Ok+1 (0, &d> (13) Least-Mean-Squares (LMS) algorithm [ 141. 
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-0.6 - 

time Fig. 6. Sth-order recurrent network performance during learning of a 
Fig. 4. Sth-order recurrent network fading-memory system response to a Sth-order recurrent network using Algorithm 1. 
triangular wave. 

i. 

-0.8 0 20 40 60 80 100 120 140 160 180 200 

time 

Fig. 5. S&order recurrent network fading-memory system response to a 
random step sequence. 

Algorithm 2 (Perceptron Filter LMS Algorithm): 

B[k + l] = e[rc] 

- p[k] q+[k] ; &t]) A--l 

. Mkl - dJ(44 ; @I>) 
ti(4kl; @I) = C(@l) 0 4 0 4@l)Wl) 

Example 1 (Recurrent Network Identification): In this ex- 
ample, a Sth-order scalar-input, scalar-output recurrent net- 
work is identified by a second, randomly-initialized recurrent 
network of the same order using Algorithm 1. The system 
exhibits severe nonlinear input-output distortion as shown 
in Fig. 4, as well as an amplitude-dependent underdamped 
low-pass characteristic as shown in Fig. 5. Each sigmoid 
function C$J~ in 4 was chosen to be the same with a maximum 
derivative of one. The eigenvalues of the A matrix were 

0 

Fig. 7. Sth-order recurrent network single-ensemble squared-error learning 
curve for the fading-memory system. 

chosen close to unity. Algorithm 1 was used to adapt the 
parameters of a second W-order recurrent network for a 
500-sample zero-mean i.i.d. unity-variance Gaussian random 
input sequence. Fig. 6 shows performance of the Sth-order 
randomly-initialized recurrent network during learning of the 
fading-memory system; the first trace represents the random 
input sequence; the second trace represents the output of the 
test recurrent network; the third trace represents the output 
of the second recurrent network, and the fourth trace is 
the system-model output error. The corresponding single- 
ensemble squared-error learning curve is shown in Fig. 7. 

V. A NONLINEAR ECHO-CANCELLATION APPLICATION 

An example of the application of both the perceptron filter 
and the recurrent network is in near-end echo cancellation in 
telephone systems of the type shown in Fig. 8. 

The near-end digital signal r[/~] is converted to analog by 
the digital-to-analog converter fi and shaped by the linear 
low-pass transmit filter Hi to produce signal T”(t). The hy- 
brid circuit separates P(t) from the received far-end signal 
s(t), placing T”(t) on the transmission-line, while routing s(t) 
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Fig. 8. Echo-cancelling example in telephone systems. 

Fig. 10. Hybrid nonlinearity f2. 

Fig. 9. DAC nonlinearity fi. 

through the linear receive filter HZ and the sample-and-hold 
device (S/H). We will assume that the sample-and-hold device 
is ideal. Because of “leakage” in the hybrid circuit, the near- 
end output 2((t) contains contributions from both s(t) and an 
attenuated ‘echo’ term from F(t). The echo path through the 
hybrid is denoted by fa. The far-end path through the hybrid 
is denoted by fs. We will assume that fl , f~, fs, and f4 are all 
“zero-memory” nonlinearities, i.e., systems whose outputs at a 
point in time are nonlinear functions of the inputs at that point 
in time. We will also assume that fl, fa, fs, and j’4 exhibit 
no hysteresis. 

The task of the echo canceller + is to estimate the echo 
component in d[k] and cancel it in the analog domain. While 
it is possible to do the cancellation in the digital domain, 
nonlinearity in the required analog-to-digital converter at the 
signal d[k] would create a nonlinear function of the sum of 
two signals, resulting in an intermodulation term that could 
not be cancelled. 

A problem arises with such a system in that the attenuation 
of the near-end signal T(t) through the hybrid path fz can be 
as low as 10 dB, while the transmission-line attenuation of 
the far-end signal s(t) can be as high as 40 dB. Therefore, 
a canceller that achieves at least 60 dB near-end rejection is 
required. The nonlinearities in the data converters fi and f4 
and the nonlinearities fa and fs in the hybrid itself limit the 
performance of a linear echo canceller to about 60 dB with 1% 
differential nonlinearity [l]. Neglecting the effect of the far- 
end signal, the task of a nonlinear echo canceller 11 would be 

-2' J 
0 20 40 60 80 100 120 140 160 180 200 

time 

Fig. 11. Echo path model response to a triangular wave input. 

to realize the system fyl o p, where f” is the cascade of linear 
and nonlinear systems fi, Hi, fz, and Ha. In the absence of 
hysteresis, it is clear that such a system has fading memory 
on any set of input sequences. In the following examples, we 
use both the perceptron filter and the recurrent network to 
approximate the system fL1 0 f. 
Example 2 (Perceptron Filter-jnite-memory echo-path 
model): In this example, we demonstrate the performance 
of the perceptron filter using Algorithm 2 in identifying a 
finite-memory echo-path model given by the concatenation 
of systems fi, HI, f2, and Hz shown in Fig. 8. The DAC 
transfer function fi was modeled as a third-degree polynomial 
zero-memory nonlinearity of the form fi (x) = x3 as shown in 
Fig. 9. The hybrid transfer function fa was modeled as a zero- 
memory nonlinearity of the form fa(~) = 2 tan-l(5z)+0.25% 
as shown in Fig. 10. The linear transmit and receive filters HI 
and Hz were modeled as finite-memory linear systems with 
finite unit-sample responses hl[n] = hs[n] = 0.7(n + 1)-l, 
n = O,l,... ,9. The response of this system to a low- 
frequency triangular wave is shown in Fig. 11. The response 
of the system to a random step sequence is shown in Fig. 
12. In the following experiments using Algorithm 2, both the 
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time 

Fig. 12. Echo path model response to a random step input. 

plant output 

Fig. 13. (lO,lO)th-order perceptron filier performance for the echo-path 
model showing approximately 15 dB noise rejection. 

system and the perceptron filter were fed a zero-mean i.i.d. 
random sequence uniformly distributed on the interval [ - 1, 11. 
The sequence of learning constants {/3[lc]} was chosen to be 
/3[k] = 0.025(0.1) k/5000 for all Ic > 0. 

Fig. 13 shows the performance of the (10, lO)th-order 
randomly-initialized perceptron filter after 5000 iterations. 
The uppermost trace is the input signal, the second trace 
is the output of the echo-path model, the third trace is the 
output of the perceptron filter, and the fouth trace is the 
output error between the echo-path model and the perceptron 
filter. This example shows approximately 15 dB of noise 
rejection. Figs. 14 and 15 show the performance of a (20,5O)th- 
order perceptron filter and its single-ensemble squared error 
learning curve, respectively, with approximately 21 dB of 
noise rejection. 

of systems fl, HI, fz, and Hz shown in Fig. 8. The DAC 
transfer function fl was modeled as a third-degree polynomial 
zero-memory nonlinearity of the form fi (x) = x3 as shown in 
Fig. 9. The hybrid transfer function fz is modeled as a zero- 
memory nonlinearity of the form fz(~) = 2 tanV1(5z)+0.25x 
as shown in Fig. 10. The linear transmit and receive 
filters H1 and Hz are modeled as infinite-memory linear 
systems with transfer functions HI(S) = (s + 0.75)-l and 
Hz(s) = 0.2(s + 0.75)-l. The response of this system to 
a low-frequency triangular wave is shown in Fig. 16. The 
response of the system to a random step sequence is shown in 
Fig. 17. Algorithm 1 was used to adapt a recurrent network 
using a zero-mean i.i.d. uniformly distributed random input 
sequence on the interval [-1, 11. 

Example 3 (Recurrent Network-injnite-memory echo-path Fig. 18 shows the performance of a 3rd-order randomly- 
model): In this example, we demonstrate the performance initialized recurrent network during learning of the infinite- 
of the recurrent network using Algorithm 1 in identifying an memory echo-path model; it shows approximately 29 dB of 
infinite-memory echo-path model given by the concatenation noise rejection. Fig. 19 shows the performance of a Sth-order 

Fig. 14. (20,50)th-order perceptron filter performance for the echo-path 
model showing approximately 21 dB noise rejection. 
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Fig. 15. (20,50)th-order perceptron filter single-ensenble squared-error learn- 
ing curve. 
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Fig. 16. (20,50)th-order perceptron filter single-ensemble squared-error 
learning curve. 
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Fig. 17. Echo path model response to a triangular wave input. 
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recurrent network during learning of the echo-path model 
with approximately 36 dB of noise rejection. Fig. 20 shows 
the Sth-order recurrent network single-ensemble squared-error 
learning curve. 

VI. CONCLUSION 

In this paper, we have considered the problem of identi- 
fying nonlinear systems. We defined “identification” as the 
process of creating a mathematical model of a system based 
on observation of the system’s behavior in response to an 
input. An exact model of a physical system is often both 
impractical and unnecessary; an inexact model that uniformly 
approximates the system arbitrarily closely over a set of 
bounded inputs suffices in many practical applications. In this 
regard, it is convenient to choose a parametric model that 
realizes a set of systems that is uniformly dense in the set 
of systems to be modeled. A parametric model of a given 
order realizes over a bounded subset of the parameter space, a 
closed set of systems that has the best approximation property 
in the sense that there is a system in this set that is a best 

I 
Fig. 18. Echo path model response to a random step input. 

Fig. 19. Third-order recurrent network performance during learning of the 
echo-path model. 

approximation to the system to be modeled. The identification 
problem becomes one of finding the parameter vector that 
specifies a best approximation. The “sufficient approximation 
hypothesis” states that, for a sufficiently-close approximation, 
the model-system output error is a zero-mean i.i.d. process 
uncorrelated with the input. Based on this hypothesis, we may 
recast the identification problem into one of estimating the 
parameter vector of the model based on “noisy” observations 
of the model output. 

In general, feedback systems cannot be approximated in the 
above sense. One common class of systems that can indeed be 
approximated is the class of fading-memory systems. Fading- 
memory systems are systems that “forget” their inputs in 
a well-defined manner over time. It was shown that such 
systems can be approximated arbitrarily closely simply by ap- 
proximating sufficiently closely either the external or internal 
representation of the system. In other words, approximat- 
ing fading-memory systems is tantamount to approximating 
continuous functions. 

In this regard, the perceptron is a parametric model that 
realizes a set of continuous functions that is uniformly dense in 
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Fig. 20. Fifth-order recurrent’ network performance during learning of the 
echo-path model. 

the set of all continuous functions. The perceptron is preferable 
to other parametric models such as the polynomial model, in 
that it is composed of saturating nonlinearities which more 
closely resemble the physical processes in most real systems. 
Approximating the external and internal representations of a 
fading-memory system over the set of continuous functions 
realized by the perceptron results in finite and infinite-memory 
models, respectively, called the perceptron filter and the re- 
current network, respectively. These models possess attractive 
qualities in terms of analytical tractability, and simplicity. We 
envision the perceptron filter and the recurrent network being 
used for approximating fading-memory systems in a manner 
similar to the use of FIR and IIR filters to approximate linear 
systems: For systems with finite or rapidly-fading memory, 
a perceptron filter may suffice as a good approximation; for 
systems with slowly-fading memory, a recurrent network may 
be more efficient in terms of the order of the model required 
to effect a sufficient approximation. 

We have suggested a recursive parameter-estimation algo- 
rithm for the perceptron filter and for the recurrent network 
based on a conditional mean-square cost function, and we 
have shown an application for echo-cancellation in telephone 
systems. The echo-path model, composed of the concatenation 
of linear systems and zero-memory nonlinearities, is a good 
example of a nonlinear fading-memory system. As expected, 
the perceptron filter, being a finite-memory model, performs 
well in approximating an echo-path model with rapidly-fading 
memory or finite memory; however, as the length the memory 
increases, the order of perceptron filter needed to effect a 
good approximation increases rapidly. Furthermore, also as 
expected the recurrent network performs well in approximating 
echo-path models with infinite memory. 

APPENDIX 

In this appendix, we show how the recurrent network of the 
form in (10) results by approximating with a perceptron the 
continuous mappings f : X x U -+ X and h : X -+ Y in 
the system C = (U, X, Y, f, h, ~0) whose behavior is given 

by the equations z[O] = 20 and 

for all 5 E N, and where the input space U, the state space X, 
and the output space Y are real vector spaces. Assume that the 
system C has fading memory on a subset Kz of U* for some 
compact subset Ku of U. Let K, be the set of reachable 
states for sequences in Kz, i.e., K, = f* (x0, Kz). Since 
f*(xO, .) is continuous, K, is compact. We wish to uniformly 
approximate system C by uniformly approximating both f and 
h on K, x Ku and K,, respectively, using the perceptron. 

First, let us consider the case where the output function 
h is the identity map, i.e., h(x) = x for all x E X. Let 
(X x u,V,X,~,C,$) b e a perceptron, with hidden-layer 
space V, that realizes the function f : X x U + X where 
f = C, o 4 o D is such that f uniformly approximates f 
sufficiently closely on K, x Ku. Assume that dim V > dim X. 
Let 2 = (U, X, Y, f, h, x0) be the system associated with the 
mapping $. 

Consider the affine operator D : X x U + V. Clearly, there 
exists an affine operator E : U --f V and a linear operator 
F:X+VsuchthatD(z,~)=F~+E~forall3:~Xand 
u E U. System c has dynamics x[O] = 20 and 

x[k + l] = Ctj(Fx[k] + Eu[k]) 

YFI = 44 (24) 

for all k E N. Now consider the afhne operator C : V + 
X; assume that C is surjective. Then there exists an affine 
mapping C* : X + V such that CC*x = x, for all x E X. 
The range of C* is an affine subspace V* of V, where 
dim V* = dim X. With the aid of the mapping C*, we may 
extend the state space X of system % to the entire hidden-layer 
space V such that w[O] = C*Z[O] and 

w[k + l] = C*C#(FCw[k] + Eu[k]) 

dkl = Cd4 (25) 

for all k E RI. Note that C*C is a projection operator (not 
necessarily orthogonal) onto the subspace V*. Note also that 
ker C*C = ker C. Since V = V* $ ker C, every p E V can 
be uniquely represented as p = w + z for some 21 E V* and 
z E ker C. Hence, from (25) it follows that 

w[k + l] + z[k + l] = 4(FC(w[k] + z[k]) + Eu[k]) , 

for z[k + l],z[k] 
B:U--+Vbe 
such that FCw + 
u E U. Therefore, 
CWO = x0, where 

ykl = C(4kl+ dW (26) 

E ker C. Finally, let A : V + V and 
linear and affine operators, respectively, 
Eu = Aw + Bu for all w E V and 
$e system 2 = (U, V, Y, f, fi2 WO), where 

J(w,u) = #(Aw + Bu) and h(w) = Cw, 
with dynamics w[O] = wc and 

w[k + l] = 4(Aw[k] + Bu[k]) , y[k] = Cw[k] (27) 

for all k E , has a response map identical to that of system E. 
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