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ON FACTOR GRAPHS AND ELECTRICAL NETWORKS

PASCAL O. VONTOBEL AND HANS-ANDREA LOELIGER∗

Abstract. Factor graphs are graphical models with origins in coding theory. The
sum-product and the max-product algorithms, which operate by message passing in a
factor graph, subsume a great variety of algorithms in coding, signal processing, and
artificial intelligence. In this paper, factor graphs are used to express a one-to-one
correspondence (based on results by Dennis) between a class of static electrical circuits
and multi-variable probability distributions; these factor graphs may also be viewed as
variational representations of the electrical networks. For the classical linear state space
models, both the sum-product algorithm and the max-product algorithm coincide with
Kalman filtering. By the mentioned correspondence, these algorithms have a circuit
theory interpretation that was discovered by Carter.

Key words. Factor graphs, Kalman filter, electrical networks, variational repre-
sentations.

1. Introduction. Electrical engineers have always been using graph-
ical models such as circuit diagrams, signal flow graphs, and many kinds
of block diagrams. Other graphical models have developed in many other
disciplines. Prominent among them are Markov random fields (e.g., [11])
with origins in statistical physics, and Bayesian networks [17] [13] [9] with
origins in artificial intelligence.

The present paper is about factor graphs, a type of graphical model
with origins in the theory of error correcting codes. Coding theory has
been completely transformed during the last ten years as a consequence
of the invention of turbo coding and the rediscovery of low-density parity-
check codes [1]. With the recent refinements of these ideas, practical coding
schemes are now available that virtually achieve the information theoretic
capacity of many important communication channels. It is a common fea-
ture of all these new codes that they are naturally described by graphical
models such as factor graphs. Moreover, all these codes are decoded by
variations of a single algorithm, the sum(mary)-product algorithm, which
operates by passing “messages” along the edges of the graph [1].

Graphs were implicit already in Gallager’s work on low-density parity-
check codes [8], and they were made explicit by Tanner [20]. What we now
call a factor graph was essentially proposed by Wiberg et al. [24], [25]
together with the sum-product and the max-product algorithms. Factor
graphs were formally defined in [12]; it was recognized there that factor
graphs subsume both Bayesian networks and Markov random fields and
that the sum(mary)-product algorithm subsumes a wide variety of algo-
rithms including Kalman filtering and the FFT. (For Kalman filtering, only
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the scalar case was discussed in [12]; the vector/matrix case was worked
out in [15]. An earlier graphical-model interpretation of Kalman filtering
was given in [4] and [5]; see also [10].) Moreover, according to our grow-
ing experience, factor graphs are highly useful for the development of new
algorithms, or new variations and combinations of known algorithms, in
many detection and estimation problems.

In the present paper, however, we will say nothing about codes and
very little about algorithms. Instead, we will use factor graphs to describe
electrical networks. First, we will see how a static electrical network con-
sisting of resistors, voltage sources, and current sources can be viewed as
a factor graph. The basis for such an interpretation are results by Den-
nis [6], who showed that such electrical networks “solve” certain quadratic
optimization problems. Second, we will see how some factor graphs can
be translated into equivalent static electrical networks. This class of factor
graphs includes the classical linear state space models of control theory,
and the corresponding electrical networks are (discrete-time) Kalman fil-
ters and smoothers. We thus arrive at a circuit-theory interpretation of
Kalman filtering that had been discovered by Carter [3].

The results of this paper do not appear to be practical, nor do we offer
any really new mathematical theorem. Some insights have been gained,
however:

• Electrical networks are an archetypical example of behavioral mod-
elling in the sense of Willems [26]. Nevertheless, our factor graph
of such a network can be interpreted as a nontrivial probabilistic
model.
• Electrical networks operate not according to the sum-product al-

gorithm, but according to the max-product algorithm. (For linear
resistors, the two algorithms coincide.)
• Contrary to our expectation, Pontryagin duality (the Fourier trans-

form) does not always work. For electrical networks, we have to
use Lagrange duality.

Most known results on factor graphs and the sum(mary)-product al-
gorithm require that the factor graph has no cycles. In the present paper,
however, no such restriction applies anywhere.

We will, in fact, not use factor graphs as defined in [12], but a variation
introduced by Forney [7] (there called “normal graphs”). The advantages
of these Forney graphs were discussed in [7] and [15].

This paper is structured as follows. Section 2 is a self-contained in-
troduction to Forney-style factor graphs. In Section 3, we discuss the eli-
mination of “internal” variables, an important topic in system theory that
is central to the factor graph formalism. In Section 4, we show how the
results of [6] allow to view an electrical network as a factor graph. In Sec-
tion 5, we discuss the duality between “voltage mode” and “current mode”
factor graphs. In Section 6, we consider the translation of certain factor
graphs into electrical networks; in particular, we show how the classical
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linear state space models can be translated into electrical networks that
“solve” the corresponding least squares or Kalman filtering (or smoothing)
problem. It is then shown in Section 7 how the usual Kalman filtering and
smoothing algorithms—i.e., the sum-product or max-product algorithm on
Gaussian graphs—can be interpreted as manipulations of these electrical
networks. Some conclusions are offered in Section 8. Some background
material on normal distributions and on our use of the Dirac delta is given
in the Appendix.

We will use the following notation. If f is a function D → R with
D ⊂ R, we define ∫

x

f(x) �=
∑
x∈D

f(x) (1.1)

if D is a discrete set and ∫
x

f(x) �=
∫ ∞

−∞
f(x) dx (1.2)

if D = R. More generally, for D ⊂ Rn, we use this notation to integrate
(or to sum) over the whole domain D of f . Of course, this notation can
only be used in a context where this “definition” is not ambiguous.

The symbol ∝ will denote equality of functions up to a scale factor.
This scale factor may be infinite: e.g., if f : R2 → R : (x, y) �→ f(x, y) is
continuous in x around x = 0, we will freely use expressions in the spirit of

lim
x→0

xf(x, y) ∝ f(0, y) (1.3)

and

lim
x→0

1
x

f(x, y) ∝ f(0, y). (1.4)

2. Forney-Style Factor Graphs. Rather than the original factor
graphs of [12], we will use Forney-style factor graphs. (These graphs were
introduced in [7], where they were called “normal graphs”.) A Forney-
style factor graph (FFG) is a diagram as in Fig. 1 that represents the
factorization of a function of several variables. E.g., assume that some
function f(x1, . . . , x5) can be factored as

f(x1, x2, x3, x4, x5) = fA(x1, x2, x3)fB(x3, x4, x5)fC(x4). (2.1)

This factorization is expressed by the FFG shown in Fig. 1. In general, an
FFG consists of nodes, edges, and “half edges” (which are connected only
to one node), and there are the following rules:

• There is a node for every factor.
• There is an edge (or half edge) for every variable.
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Fig. 1. A Forney-style factor graph (FFG).

• The node representing some factor g is connected with the edge
(or half edge) representing some variable x if and only if x is an
argument of g.

Implicit in these rules is the assumption that no variable appears in
more than two factors; we will see below that this condition is far less
restrictive than might appear at first sight.

The factors of the factorization expressed by the FFG are also called
local functions; the overall function (i.e., the product of all local functions)
is called the global function.

A configuration is a particular assignment of values to all variables.
The configuration space Ω is the set of all configurations; it is the domain
of the global function f . A configuration ω ∈ Ω will be called valid if
f(ω) �= 0.

In every fixed configuration, every variable has some definite value.
We may therefore consider the variables in an FFG as functions of the
configuration ω. It is often practical to mimic the standard notation for
random variables and to denote such functions by capital letters. E.g., if x
takes values in some set X , we would write

X : Ω→ X : ω �→ x = X(ω). (2.2)

A main application of factor graphs are probabilistic models. (In this
case, the sample space can usually be identified with the configuration space
Ω.) E.g., let X , Y , and Z be random variables that form a Markov chain.
Then their joint probability mass function pXY Z(x, y, z) can be written as

pXY Z(x, y, z) = pX(x) pY |X(y|x) pZ|Y (z|y). (2.3)

This factorization is expressed by the graph of Fig. 2.
A block diagram (as in Fig. 3) may also be viewed as an FFG. Note

that we have adopted the notation (2.2) for the variables. A function block
X3 = g(X1, X2) in the block diagram is then interpreted as representing
the factor

fg(x1, x2, x3)
�= δ

(
x3 − g(x1, x2)

)
(2.4)
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pX

X

pY |X

Y

pZ|Y

Z

Fig. 2. FFG of a Markov chain.

�X1
�
X2

g(.) �X3
�
X4

h(.) �X5

Fig. 3. A block diagram.

where δ(.) is the Kronecker delta function if X3 is a discrete variable or the
Dirac delta if X3 is a continuous variable. The distinction between these
two cases is usually obvious in concrete examples.

The block diagram of Fig. 3 expresses both the equations

X3 = g(X1, X2) (2.5)
X5 = h(X3, X4), (2.6)

and simultaneously and equivalenty the global function

f(x1, . . . , x5) = δ
(
x3 − g(x1, x2)

) · δ(x5 − h(x3, x4)
)
. (2.7)

This function is nonzero if and only if the configuration is consistent with
(2.5) and (2.6). Note that the arrows in the block diagram may help to
define the factors, but are otherwise irrelevant for the interpretation as an
FFG.

A block diagram usually contains also branching points as shown in
Fig. 4 (left). In the corresponding FFG, such branching points become
factor nodes on their own, as is illustrated in Fig. 4 (right). In doing so,
there arise new variables (X ′ und X ′′ in Fig. 4) and a new factor

f=(x, x′, x′′) �= δ(x− x′)δ(x− x′′). (2.8)

Note that X = X ′ = X ′′ holds for every valid configuration. By this device
of variable “cloning”, it is always possible to enforce the condition that a
variable appears in at most two factors (local functions).

Nodes that represent frequently occuring local functions are often de-
picted using special symbols. We have just seen the symbol of Fig. 4 (right),
which denotes an equality constraint as defined by (2.8). Another such
symbol is shown in Fig. 5 and denotes a sum constraint. The leftmost part
of Fig. 5 denotes the factor δ(x + y − z). Note that the arrows in Fig. 5
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X � X

X ′

= X ′′

Fig. 4. Branching point (left) becomes an equality constraint node (right).

+�X
�
Y

�Z +�X
�
Y

� Z +�X

�Y

�Z

Fig. 5. Sum constraint: X + Y = Z (left) and X + Y + Z = 0 (middle and right).

determine the sign of the variables. All combinations of directions of the
arrows are well defined; e.g., both the middle and the right parts of Fig. 5
denote the factor δ(x + y + z) = δ(−x− y − z).

The FFG in Fig. 6 with details as in Fig. 7 represents the classical
equations of a linear state space model

X [k] = AX [k − 1] + BU [k] (2.9)
Y [k] = CX [k] + W [k], (2.10)

with k ∈ Z, where U [k], W [k], X [k], and Y [k] are real vectors and where A,
B, and C are matrices of appropriate dimensions. In Kalman filtering, both
U [.] and W [.] are usually assumed to be white Gaussian (“noise”) processes;
the corresponding nodes in these figures then represent factors e−q(x) for
some quadratic form q(x) (see the Appendix). The overall function whose
factorization is expressed by Figs. 6 and 7 is the joint probability density
of all involved variables.

If the variables Y [k] are observed, say Y [k] = yk, then these variables
become constants; they may be absorbed into the involved factors and
the corresponding branches may be removed from the graph. The graph
then represents (the factorization of) the joint a posteriori density of all
involved variables, up to a scale factor. We will come back to these figures
in Section 6.

In most applications we are interested in the global function only up
to a scale factor. (This applies, in particular, if the global function is a
probability mass function.) We may then play freely with scale factors in
the local functions. Indeed, the local functions are often defined only up
to a scale factor. In this case, we would read Fig. 1 as expressing

f(x1, . . . , x5) ∝ fA(x1, x2, x3)fB(x3, x4, x5)fC(x4) (2.11)
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. . .
�X [k − 1] �

U [k]

�
Z[k]

�
Y [k]

�X [k] �
U [k + 1]
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�
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. . .

Fig. 6. State space model.
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�

U [k]

B

�
+ � =

�
C

�Z[k]

�X [k] �
W [k] �

Z[k]

+

�Y [k]

Fig. 7. Details of linear state space model.

instead of (2.1).
If all local functions are positive, it is natural to consider an FFG in

the logarithmic domain. E.g., the factorization (2.1) may then be written
as

− log f(x1, . . . , x5) = − log fA(x1, x2, x3)− log fB(x3, x4, x5)− log fC(x4).
(2.12)

In this way, the FFG may be viewed as an additive decomposition of the
global function.

We will often find it permissible and convenient to view Dirac deltas
as limits of normal distributions. (See the Appendix for details.) In this
way, it will often be possible to satisfy the condition that all local functions
are positive.

3. Composition of Systems and Elimination of Variables. As
emphasized by Forney [7], the variables represented by half-edges should
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be viewed as external variables and the variables represented by regular
edges should be viewed as internal variables; the latter may also be called
hidden variables, latent variables, or state variables.

The composition of two systems by indentification of variables corre-
sponds to connecting some of the half edges of their FFGs. The connected
edges are regular edges in the new FFG. Conversely, the decomposition of
a system into subsystems may be expressed in the FFG by “drawing a box”
around the internal variables of each subsystem, cf. Figs. 6, 7, and 8.

The operation of eliminating the internal variables of a subsystem
(“closing the box”) is of central interest in system theory. E.g., for a global
function f(x1, . . . , x5), we might be interested in

f(x1, x2, x3) =
∫

x4

∫
x5

f(x1, . . . , x5) (3.1)

or in

f(x1, x2, x3) = max
x4

max
x5

f(x1, . . . , x5). (3.2)

The general idea is to eliminate some of the variables by means of a “sum-
mary” operator, usually integration (or summation) or maximization (or
minimization). Integration corresponds to marginalization in probability
theory. Maximization, when applied to a {0, 1}-valued global function,
may be viewed as the projection (to the remaining variables) of a set mem-
bership indicator function; “summarization” by maximization will also be
crucial for the variational representation of electrical networks in Section 4.
Note that only the valid configurations contribute to a sum or integral as
in (3.1); if the global function is non-negative (e.g., a probability mass
function), only the valid configurations contribute to a maximization as in
(3.2).

For example, for the FFG in Fig. 8 (left), elimination of the internal
variables by summation or integration yields

f(x) =
∫

x′

∫
x′′

g(x′)h(x′′)δ(x − x′)δ(x− x′′) (3.3)

= g(x)h(x), (3.4)

the product of g and h; for the FFG in Fig. 8 (right), we obtain

f(x) =
∫

x′

∫
x′′

g(x′)h(x′′)δ(x − x′ − x′′) (3.5)

=
∫

x′
g(x′)h(x− x′), (3.6)

the convolution of g and h.
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+
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Fig. 8. Summarized function as product (left) and convolution (right) of two local
functions.

The elimination of variables by maximization raises a technical prob-
lem when Dirac deltas are involved. In the spirit of (1.4), we write

max
x

f(x, y) δ(x− x0) ∝ f(x0, y) (3.7)

for any nonnegative function f(x, y) that is continuous in x at x0. Equation
(3.7) defines the “summarized” function f(x0, y) only up to a scale factor,
but as noted in Section 2, this suffices in most applications.

For the example in Fig. 8 (left), assuming that both g and h are
nonnegative, we obtain

f(x) ∝ max
x′

max
x′′

g(x′)h(x′′)δ(x − x′)δ(x− x′′) (3.8)

∝ g(x)h(x), (3.9)

the same as (3.4) except for a scale factor; for the FFG in Fig. 8 (right),
we obtain

f(x) ∝ max
x′

max
x′′

g(x′)h(x′′)δ(x − x′ − x′′) (3.10)

∝ max
x′

g(x′)h(x− x′). (3.11)

We will be particularly interested in the case where all local functions
are of the form

f(x1, . . . , xk) ∝ e−q(x1,...,xk) (3.12)

where q(.) is a nonnegative definite quadratic form (see Appendix). In
this case, the global function will also be of this form. In the logarithmic
interpretation (cf. (2.12)), the FFG may then be viewed as an additive
decomposition of a global quadratic cost function. Moreover, it follows
from (A.5) and (A.6) that elimination of variables by integration coincides
(up to a scale factor) with elimination of variables by maximization, which
in turn obviously coincides with elimination of variables by minimization
of the quadratic cost function.

For example, if both g and h in Fig. 8 (right) are normal distributions,
then (3.11) can be written as

f(x) ∝
∫

x′
g(x′)h(x − x′), (3.13)

the same as (3.6) except for a scale factor.
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Fig. 9. A resistor (left) and a DC transfomer (right).

4. Electrical Networks. We consider electrical networks as in
Fig. 10 consisting of resistors, voltage sources, and current sources. In
the example of Fig. 10, there are two resistors (R1 and R2), one voltage
source (which forces the voltage accross the corresponding branch to be
u0), and one current source (which forces the current through that branch
to be i0). We use the letter U for voltages and the letter I for currents.
The branches of such a network are directed, as indicated by the arrows in
Fig. 10; these directions may be chosen at will. The usual description of
such electrical networks uses two sets of variables: a current through each
branch and a potential at each node. For a branch that starts at some node
A and ends at some node B (see Fig. 9 left), we define the current through
that branch as the current from A to B, and we define the voltage across
that branch as the potential of A minus the potential of B.

These variables satisfy the following laws of physics:
Kirchhoff’s current law: The sum of all currents at each node (with

signs according to the arrows) is zero.
Kirchhoff’s voltage law: The voltages can be derived from a potential

(as defined above). Equivalently, the sum of all voltages along any
cycle in the network is zero.

Branch laws: The voltage U and the current I for each branch are re-
lated as follows. For a resistor, we have U = RI (Ohm’s law)
for some constant R. For a voltage source, we have U = u0 for
some constant u0. For a current source, we have I = i0 for some
constant i0.

We may allow also nonlinear resistors. The current I through, and
the voltage U across, such a device (with the sign conventions of Fig. 9,
left) satisfy U = ρ(I), and we require ρ to be continuous and strictly
monotonically increasing.

In Section 6, we will much use another circuit element, which (following
Dennis [6]) we will call a DC transformer. The symbol for this element
is shown in Fig. 9 (right), and its behavior is defined by the equations
U2 = aU1 and I2 = −I1/a. If not specifically indicated, the parameter a
equals one. In contrast to the other circuit elements, DC transformers do
not appear to be easily realizable in practical circuits.

We now wish to interprete an electrical network as in Fig. 10 as an
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FFG. If both voltages and currents are allowed to appear in the FFG,
this is an easy task: just draw the FFG corresponding to the three laws
(both Kirchhoff laws and the branch law for each branch). However, we are
interested in an FFG that uses either currents or voltages, but not both.

Such FFGs do indeed exist. The voltages-only version is illustrated in
Fig. 11. Each node of the electrical network is translated into an equality
constraint. (Equality-constraint nodes of degree two may be omitted.) The
arrows in the FFG are chosen exactly opposite to those in the electrical
network. A resistor R between nodes A and B in the electrical network is
translated into a factor

fR(vA, vB, u) �= δ(vA − vB − u)e−
u2
2R (4.1)

where VA and VB denote the node potentials and where U = VA − VB is
the voltage accross the branch. Such a factor may also be written as∫

u

fR(vA, vB, u) = e−
(vA−vB)2

2R . (4.2)

Note that expressions such as (4.1) and (4.2) make sense only if we regard
all quantities as dimensionless—or, equivalently, as normalized.

A voltage source is translated into a factor δ (vA − vB − u0). A current
source is translated into a factor δ(vA − vB − u)e−ui0 . A DC transformer
as in Fig. 9 would result in a factor δ(u2−au1). A nonlinear resistor would
result in a factor

fρ(vA, vB, u) �= δ(vA − vB − u)e−φ(u) (4.3)

with

φ(u) �=
∫ u

0

ρ−1(s) ds. (4.4)

If all resistors are linear and if we view the Dirac deltas as limits of
normal distributions (see Appendix), the FFG thus obtained represents
a normal distribution, up to a scale factor. (In some degenerate cases,
the global function may not be integrable and is then not a probability
distribution.) In the additive (i.e., logarithmic) interpretation, the FFG
represents a quadratic function of all potentials.

Theorem 4.1. Assume that the electrical network has a unique solu-
tion (i.e., there is a unique assignment of currents and voltages that satisfies
all three stated laws). Then these voltages achieve the unique maximum of
the global function of the FFG.

In the additive (logarithmic) interpretation of the FFG, the voltages
achieve the unique minimum of the global quadratic function.

Proof. Consider the set of all configurations of voltages that
1. satisfy Kirchhoff’s voltage law,
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Fig. 10. A simple electrical network.
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Fig. 11. FFG (voltage version) corresponding to the electrical network of Fig. 10.
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Fig. 12. FFG (current version) corresponding to the electrical network of Fig. 10.
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2. comply with the specified voltage sources,
3. comply with the voltage ratios prescribed by the DC transformers.

Dennis [6, p. 35 ff.] proved that such a configuration of voltages gives rise
(by means of the branch laws) to currents that satisfy Kirchhoff’s current
law if and only if the voltages minimize

∑
k

u2
k

2Rk
+

∑
�

u�i� (4.5)

where the first sum runs over all resistors and the second sum runs over
all current sources (i.e., i� is prescribed). But (4.5) is exactly (the negative
logarithm of) the global function represented by the FFG, apart from all
the Dirac deltas that rule out the invalid configurations.

Can we also have an FFG for such a circuit that uses currents instead
of voltages?—The answer is “yes” and is illustrated in Fig. 12. We also
have a theorem analogous to Theorem 4.1 above:

Theorem 4.2. Assume that the electrical network has a unique so-
lution. Then these currents achieve the unique maximum of the global
function of the (current-mode) FFG.

Proof. Consider the set of all configurations of currents that
1. satisfy Kirchhoff’s current law,
2. comply with the specified current sources,
3. comply with the current ratios prescribed by the DC transformers.

Dennis [6, p. 35 ff.] proved that such a configuration of currents gives rise
(by means of the branch laws) to voltages that satisfy Kirchhoff’s voltage
law if and only if the currents minimize

∑
k

Rki2k
2

+
∑

�

u�i� (4.6)

where the first sum runs over all resistors and the second sum runs over all
voltage sources (i.e., u� is prescribed). But (4.6) is exactly (the negative
logarithm of) the global function represented by the FFG, apart from all
the Dirac deltas that rule out the invalid configurations.

Both theorems hold also for nonlinear resistors that satisfy the men-
tioned conditions. In this case, (4.5) should be changed into

∑
k

φk(uk) +
∑

�

u�i� (4.7)

(where the first sum still runs over all resistors, linear and nonlinear), and
(4.6) should be changed into

∑
k

φ̃k(ik) +
∑

�

u�i� (4.8)
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with

φ̃(i) �=
∫ i

0

ρ(t) dt. (4.9)

When we claim—as we do!—that an FFG as in Fig. 11 represents a
system as in Fig. 10, we implicitly assume a summary operator (in the
example: maximization). If all resistors are linear, we have seen that the
global function (if it is integrable) may be viewed as a normal probability
distribution. In this case, as we have seen in Section 3, maximization and
integration are equivalent as summary operators.

It is tempting to speculate that an FFG as in Fig. 11 can be given
a thermodynamic interpretation (cf. [3]), although no such thought was
involved in its derivation.

5. Duality. Figs. 11 and 12 are obviously dual in some sense. How-
ever, other than in [7], the Fourier transform (Pontryagin duality) does not
quite work here. What does work is a transformation of the global function
based on Lagrange duality.

We describe this transformation by means of Fig. 13. We begin with
the FFG in the top left of Fig. 13; its global function is

f(x1, . . . , x5) = e−φA(x1,x2,x3)e−φB(x3,x4,x5)e−φC(x4). (5.1)

The variables x1,. . . , x5 are real. The functions φA, φB, and φC are assumed
to be real-valued, strictly convex (convex-∪), and to have a continuous
gradient. The global function (5.1) is transformed into

e−φ∗
A(y1,y2,y3)e−φ∗

B(y′
3,y4,y5)e−φ∗

C(y′
4)δ(y3 + y′

3)δ(y4 + y′
4) (5.2)

where φ∗(.) denotes the conjugate function of φ(.), which we will discuss
below. This transformation from (5.1) to (5.2) is illustrated in Fig. 13:

1. Top left to bottom left: each variable/edge in the original FFG is
split into two variables/edges which are connected by an equality
constraint.

2. Bottom left to bottom right: each factor e−φ(.) is replaced by
e−φ∗(.), and all the auxiliary equality constraints are replaced by
sum constraints.

3. Bottom right to top right: the new sum constraints may be ab-
sorbed as sign reversals into one of the adjacent factors.

It is obvious that this transformation of the FFG is analogous to the trans-
formation corresponding to the Fourier transform [7].

We now come back to the conjugate function [2], [18], [6]. If φ : Rn →
R is convex with a continuous gradient, then its conjugate function (or
Legendre transform) is the function φ∗ : Rn → R with

φ∗(y) �= max
x

(
xTy − φ(x)

)
. (5.3)
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The function φ∗(y) is also convex-∪ and

φ(x) = max
y

(
xTy − φ∗(y)

)
. (5.4)

In the special case where

φ(x) = (x−m)T W (x−m) + c (5.5)
= xT Wx− 2xT Wm + mT Wm + c, (5.6)

a quadratic form with a real positive definite matrix W , a straightforward
calculation yields

φ∗(y) =
(
xTy − φ(x)

)∣∣
x= 1

2 W−1y+m
(5.7)

=
1
4
yT W−1y + mT y − c. (5.8)

From (5.8), it is straightforward to give the transformation for each of
the elements in Figs. 11 and 12. Linear resistors transform according to

e−
x2
2R ←→ e−

y2

2/R . (5.9)

Voltage sources and current sources transform according to

δ(x − x0) ∝ lim
β→∞

e−β(x−x0)
2 ←→ lim

β→∞
e−

y2
4β −x0y = e−yx0. (5.10)

For any positive integer n, if V is any k-dimensional subspace of Rn

with orthogonal complement V ⊥, we can use (A.12) to write

δ(x ∈ V ) ∝ lim
β→∞

e−xT Wx (5.11)

for some positive definite matrix W that depends on β. It then follows
from (A.15) that

δ(y ∈ V ⊥) ∝ lim
β→∞

e−yT W−1y (5.12)

∝ lim
β→∞

e−
1
4 yT W−1y. (5.13)

It is thus clear from (5.8) that the negative logarithms of (5.11) and of
(5.13) are conjugate functions, i.e.,

δ(x ∈ V ) ∝ lim
β→∞

e−xT Wx ←→ lim
β→∞

e−
1
4 yT W−1y ∝ δ(y ∈ V ⊥). (5.14)

(This relation was already shown by Forney [7] for Pontryagin duality.) In
particular, equality constraints and sum constraints transform into each
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X1

e−φA(x1,x2,x3)

X2

X3

e−φB(x3,x4,x5)

e−φC(x4)

X4

X5

←→
Y1

e−φ∗
A(y1,y2,y3)

Y2

Y3

e−φ∗
B(−y3,−y4,y5)

e−φ∗
C(y4)

Y4

Y5

	 	

X1

e−φA(.)

X2

X3

=

X ′
3

e−φB(.)

X4
=

X ′
4

e−φC(.)

X5

←→
Y1

e−φ∗
A(.)

Y2

�
Y3

+�
Y ′

3

e−φ∗
B(.)

�Y4
+

�Y ′
4

e−φ∗
C(.)

Y5

Fig. 13. Dualization of an FFG (top left) using “mirror” variables.

other: the set V
�= {(x1, . . . , xn) ∈ Rn : x1 + . . . + xn = 0} is an n − 1-

dimensional subspace of Rn and its orthogonal complement is the one-
dimensional space V ⊥ = {(y1, . . . , yn) ∈ Rn : y1 = . . . = yn}. The duality
of the DC transformer

δ(x2 − ax1)←→ δ(ay2 + y1) (5.15)

follows also from (5.14) since V
�= {(x1, x2) ∈ R2 : −ax1 + x2 = 0} and

V ⊥ = {(y1, y2) ∈ R2 : y1 + ay2 = 0} are orthogonal complements of each
other.

The transform of nonlinear resistors as in (4.3) is straightforward: by
definition, we have

e−φ(x) ←→ e−φ∗(y). (5.16)

In fact, it is not difficult to show that

e−φ∗(y) ∝ e−φ̃(y). (5.17)

with φ̃ as in (4.9).

6. From an FFG to an Electrical Network. We have seen how
an electrical network can be interpreted as an FFG. We now consider the
converse: the translation of an FFG into an electrical network. We consider
FFGs consisting of the elements in Figs. 6 and 7: addition and equality
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voltage mode FFG current mode
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��
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�
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�
��
��
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�

1 : a�

��
X

�

��
Y

Y = aX

a�X �Y �
��
��
�

�
��
��
�

a : 1�

�

�
X

�

�

�
Y

4 �
m

+
−

σ2

�

��
X

e−
(x−m)2

2σ2

X

�
m

�
� σ−2

� �

�

�
X

Table 1
Correspondence between the nodes in the FFG and the components of the electrical

network.

of real vectors, the multiplication of such vectors by a real matrix, and
normal probability distributions. More general probability distributions
that correspond to nonlinear resistors (see (4.3)) can also be used.

We first consider the case where all variables are scalars. The trans-
lation from the FFG to an electrical network is given in Table 1. Each
variable is represented by two wires. There are two versions, which are
dual to each other. In the voltage version, a variable is represented as the
voltage between the two wires. In the current version, a variable is repre-
sented as the current through one of the wires. (The current through the
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other wire will be the same, but in the opposite direction).
A circuit constructed according to Table 1 can often be simplified by

the elimination of transformers as shown in Fig. 14. For example, if either of
the FFGs of Figs. 11 or 12 is translated into a circuit according to Table 1,
all transformers can be eliminated and the original circuit of Fig. 10 results.

A vector variable X = (X1, . . . , Xn)T with real X1,. . . ,Xn is repre-
sented by n + 1 wires. The extra wire is the reference potential for all
voltages. The circuits for vector addition are given in Fig. 15. These
two circuits operate also as vector-equality constraints: the current-mode
adder (Fig. 15 (right)) is also a voltage-mode equality constraint and the
voltage-mode adder (Fig. 15 (left)) is a current-mode equality constraint.

Fig. 16 shows a voltage-mode circuit for the multiplication
(

Y1

Y2

)
=

(
a b
c d

)
·
(

X1

X2

)
. (6.1)

In the reverse direction, this same circuit works as a matrix-times-vector
multiplier in current mode. The generalization of this circuit to arbitrary
n× n matrices is obvious.

An FFG from these elements will usually describe a global function
with a unique global maximum. (It is easy to construct an FFG that has
no valid configuration, but such cases are usually easily excluded.) In this
case, as we have seen in Section 4, the electrical network will settle in the
(unique) global maximum of the global function. For example, if the FFG
represents a Kalman filtering (or smoothing) problem, then the electrical
network will settle in the desired Bayesian (or least squares) solution.

7. Circuit-Theory Interpretation of Message Passing. It is well
known that (discrete-time) Kalman filtering and smoothing may be viewed
as “message passing” algorithms in a graphical model [4] [5] [10] [14]. In
particular, it was pointed out in [12], and worked out in more detail in [15],
that Kalman filtering and smoothing are instances of the sum-product al-
gorithm, which operates by passing messages along the edges of the factor
graph. The messages consist of mean vectors and covariance matrices (or
inverses of covariance matrices) that are computed according to the rules
of the sum-product algorithm. In its most narrow sense, Kalman filtering
is only the forward sum-product recursion through the graph of Fig. 6 and
yields the a posteriori probability distribution of the state X [k] given the
observation sequence Y [.] up to time k. By computing also the backward
messages, the a posteriori probability of all quantities given the whole ob-
servation sequence Y [.] may be obtained. More generally, Kalman filtering
amounts to the sum-product algorithm on any FFG (or part of an FFG)
that consists of (the vector/matrix versions of) the linear building blocks
listed in Table 1 (middle column).

As shown in Section 6, the Kalman filtering problem may be trans-
lated into a static electrical network. The Kalman filtering and smoothing
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Fig. 14. Elimination of a transformer.
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Fig. 15. Vector addition Z = X + Y : voltages (left) and currents (right).
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Table 2
Circuit interpretation of message computation.

algorithm (i.e., sum-product message passing through the FFG) may then
be interpreted as manipulations of the electrical network. Each message
represents a Gaussian distribution and may thus be represented by a cor-
responding electrical network, as shown (for the scalar case) in the bottom
row of Table 1. As illustrated in Table 2, the computation of messages out
of the other node types in Table 1 then amounts to connecting the incom-
ing messages/circuits to the node circuit and reducing the resulting circuit
to its Thévenin equivalent circuit (i.e., a voltage source in series with a
resistor) or its Norton equivalent circuit. This interpretation of Kalman
filtering was discovered by Carter [3].

As is obvious from Theorems 4.1 and 4.2, electrical networks “run”
by the max-product algorithm rather than by the sum-product algorithm.
If all resistors are linear, the corresponding FFG is a Gaussian network,
in which case the max-product algorithm coincides with the sum-product
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algorithm (cf. [15]).
If the max-product message passing algorithm converges, then the

unique maximum of the global function is reached [23] and [19]. However,
the message passing algorithm may fail to converge, while the electrical
network will always settle in the maximum of the global function.

8. Conclusions. We have seen that any static electrical network con-
sisting of linear (or monotonically nonlinear) resistors, voltage sources, and
current sources can be viewed as a Forney-style factor graph (FFG) in ei-
ther currents or voltages alone. This representation of an electrical network
seems to suggest a thermodynamic interpretation. We have also seen that
any FFG composed of the building blocks of the classical linear state space
models can be translated into an equivalent electrical network. The elec-
trical network “solves” the Kalman filtering (and smoothing) problem on
a general graph. Carter’s circuit-theory interpretation of Kalman filtering
also fits nicely into this framework.

Some further relations between probabilistic models and electrical net-
works are discussed in [22]. For example, a probabilistic interpretation can
be given to Tellegen’s Theorem, to Green’s reciprocity theorem, and to
some electrical networks proposed in [16] for signal processing tasks.
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APPENDIX

Gaussian Distributions and Quadratic Forms. In this appendix,
we briefly review two issues related to normal distributions: first, elimina-
tion of variables from an n-dimensional normal distribution by integration
or maximization; second, the representation of the Dirac delta as a limit of
normal distributions.

Let AH denote Hermitian matrix transposition (i.e., transposition fol-
lowed by elementwise complex conjugation). We will consider functions of
the form

f(x) = e−q(x) (A.1)
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with

q(x) �= (x−m)HW (x−m) + c (A.2)
= xHWx− 2Re

(
xHWm

)
+ mHWm + c, (A.3)

where x is a real or complex vector, where W is a nonnegative definite
n × n matrix, and where the constant c ∈ R amounts to a scale factor in
(A.1) which can often be ignored. The case where all quantities in (A.2)
are real-valued and q(.) is a function Rn → R will be referred to as “the
real case”; the case where q(.) is a function C

n → R will be referred to as
“the complex case”. If W is positive definite, (A.1) may be viewed as a
multi-dimensional normal probability density with mean vector m.

Integration and Maximization. (See for example [15]). Let

q(x, y) �=
(
(x−mX)H, (y−mY )H

) (
W1,1 W1,2

W2,1 W2,2

) (
x−mX

y −mY

)
, (A.4)

where x and y are real or complex vectors and where the block matrix
on the right-hand side of (A.4) is nonnegative definite with W1,1 positive
definite. Then ∫

x

e−q(x,y) ∝ max
x

e−q(x,y) (A.5)

= e−minx q(x,y). (A.6)

Dirac Delta as Limit of Gaussians. An n-dimensional Dirac delta
can be obtained as a limit of normal distributions:

δ(x) = lim
β→∞

{
γ(β)e−β‖x‖2

, if ‖x‖2 < 1/
√

β
0, else

(A.7)

with γ(β) = (β/π)n/2 in the real case and γ(β) = (β/π)n in the complex
case. It is often convenient and permissible to simplify (A.7) to

δ(x) = lim
β→∞

γ(β)e−β‖x‖2
. (A.8)

In this paper, as in [15], we have freely used this simplified version. How-
ever, a detailed discussion of its validity is outside the scope of this paper.

Note that, if (A.8) is valid, it is consistent with our use of “∝” to write

δ(x) ∝ lim
β→∞

e−β‖x‖2
. (A.9)

In this paper, we have also used the following generalization of (A.7).
We only state the sloppy version corresponding to (A.8). If V is a k-
dimensional subspace of Rn, we define

δ(x ∈ V ) �= lim
β→∞

(β/π)(n−k)/2
e−β‖AT

1 x‖2
, (A.10)
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where A1 is an n × (n − k) matrix whose columns form an orthonormal
basis of V ⊥, the orthogonal complement of V in Rn. (This implies that
‖AT

1 x‖ is the norm of the projection of x into V ⊥ and that AT
1 A1 is an

identity matrix.) Now let A0 be an n× k matrix whose columns form an
orthonormal basis of V and let A = (A0, A1). (This implies AT

0 A1 = 0 and
A−1 = AT .) We then can write

δ(x ∈ V ) = lim
β→∞

(β/π)(n−k)/2 e−
1
β ‖AT

0 x‖2−β‖AT
1 x‖2

(A.11)

= lim
β→∞

(β/π)(n−k)/2
e−xTADAT x (A.12)

with

D
�= diag

(
1/β, . . . , 1/β,︸ ︷︷ ︸

k times

β, . . . , β︸ ︷︷ ︸
n − k times

)
. (A.13)

From (A.11) and (A.12), it is easy to see that

δ(x ∈ V ⊥) = lim
β→∞

(β/π)k/2
e−xTAD−1AT x (A.14)

= lim
β→∞

(β/π)k/2
e−xT (ADAT )−1

x. (A.15)
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