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ABSTRACT

The classic problem of estimating the parameters of an
auto-regressive (AR) model is considered from a graphical-
model viewpoint. A number of practical parameter estima-
tion algorithms—some of them well known, others appar-
ently new—are derived as “summary propagation” in a fac-
tor graph. In particular, we demonstrate joint estimation of
AR coefficients, innovation variance, and noise variance.

1. INTRODUCTION

Factor graphs are graphical models with an origin in the the-
ory of error correcting codes. A wide variety of algorithms
in coding, signal processing, and artificial intelligence may
be viewed as “message passing” algorithms in graphical
models such as factor graphs [1, 2]. In this paper, we use
factor graphs to derive message passing algorithms for pa-
rameter estimation of Gaussian AR models. In particular,
we demonstrate joint estimation of the AR parameters, of
the innovation variance, and of the noise variance by al-
gorithms that may be viewed as combinations of Kalman
filters, LMS-type algorithms, and particle filters.

Specifically, we consider the following problem. Let
X1, X2, . . . be a random process defined by

Xn = a1Xn−1 + a2Xn−2 + · · · + aMXn−M + Un (1)

with unknown real parametersa1, . . . , aM and where
U1, U2, . . . is zero-mean white Gaussian noise with variance
σ2

U
. We observe

Yn = Xn + Wn, (2)

whereWn is zero-mean white Gaussian noise with variance
σ2

W
. For later reference, we write (1) and (2) in state-space

form as

Xn = AXn−1 + bUn (3)

Yn = c
T
Xn + Wn (4)
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with

Xn = [Xn, . . . , Xn−M+1]
T (5)

A =

[

a
T

I 0

]

(6)

b = c = [1, 0, . . . , 0]T (7)

a = [a1, . . . , aM ]T . (8)

From the observations[Y1, . . . , YN ] = [y1, . . . , yN ] we
wish to estimate the AR parametersa1, . . . , aM . In a first
problem, the variancesσ2

U
andσ2

W
are known; in a second

problem, these variances are unknown and need to be esti-
mated as well.

2. FACTOR GRAPH

The factor graph for our system model is depicted in Fig. 1.
The figure shows only one section (“time slice”) of the
graph; the total graph consists of many such sections, one
for each time indexn.

The basic state space model is represented by the part
consisting of solid lines in the middle. The (unknown) AR
coefficient vectora is represented by the dashed edges and
the dotted edges represent the variance of the innovationσ2

U

and the variance of the noiseσ2
W

, respectively.
In general, a Forney-style factor graph [2] represents a

factorisation of a function of several variables. It consists of
nodes, edges and half-edges, which are connected to only
one node, and there are the following rules:

• There is a node for every factor.
• There is an edge (or half-edge) for every variable.
• The node representing some factorg is connected

with the edge (or half-edge) representing some vari-
ablex if and only if x is an argument ofg.

The restriction that no variable appears in more than two
factors is easily circumvented by variable cloning. The sin-
gle factors of the factorisation are also calledlocal func-
tions, the overall function (i.e. the product of all local func-
tions) is called theglobal function. For our example, the
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Fig. 1. Factor graph corresponding to state space model.

global function is the likelihood function

p(x1, .., xN , y1, .., yN , u1, .., uN , w1, .., wN |a, σ2
U , σ2

W ).
(9)

An example of a local function isp(y1|x1, w1) for the addi-
tion node at the bottom.

Only the variables[Y1, . . . , YN ] = [y1, . . . , yN ] are ob-
served. Estimates are determined from the posterior distri-
butions of the parameters, which are obtained by marginal-
ising the function (9). Such marginals can be computed—
exactly or (if the graph has cycles) approximately—by mes-
sage passing in the factor graph [1, 2].

Each message is a summary of the graph “behind” it
and is a function of the variable that is represented by the
corresponding edge. These functions may be represented in
various ways, for example in parametric form for Gaussians
or as a list of samples in Monte Carlo methods.

3. MESSAGE COMPUTATION

We briefly outline the role of all the messages in Fig. 2, and
then we will describe their computation.

The computation of messages 1 to 5 amounts to stan-
dard Kalman filtering. Messages 6 and 7 arise in standard
Kalman smoothing. Messages 8 and 9 complete the es-
timate of the AR coefficients; we will give two versions
for these messages, one corresponding to an RLS (recur-
sive least squares) algorithm and the other corresponding to
an LMS (least mean square) algorithm. Messages 10 to 13
(and similarly 14 to 17) accomplish the variance estimation
and will be computed by Monte Carlo methods.
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Fig. 2. Messages as discussed in Section 3.

The messages will be denoted byµℓ(x), where the num-
ber ℓ identifies the message in Fig. 2. We will now sketch
the computation of these messages forℓ = 1, 2, . . . , 17. We
will often use the update formulas for the standard building
blocks listed in [3].

1. State estimate at timen−1 (computed at the previ-
ous time step):

µ1(xn−1) = N (xn−1 | x̂n−1|n−1,Vn−1|n−1) (10)

whereN (x|m,V) denotes a Gaussian distribution
in x with mean vectorm and covariance matrixV.
The indexn−1|n−1 refers to an estimate at time
n−1 given all observations up to timen−1.

2. Forward matrix multiplication (with the coefficient
vectorân−1 from the previous time step):

N ( . | Ân−1x̂n−1|n−1, Ân−1Vn−1|n−1Â
T

n−1) (11)

3. Accounting for the innovation:

µ3(xn) = N (xn | x̂n|n−1,Vn|n−1) (12)

x̂n|n−1 = Ân−1x̂n−1|n−1 (13)

Vn|n−1 = Ân−1Vn−1|n−1Â
T

n−1 + bσ̂2
Un−1

b
T (14)

These are the classic Kalman filter equations for the
prediction step.

4. Observation afflicted by measurement noise:

N ( . | yn, σ̂2
Wn−1

) (15)
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5. Update with new information from observation (us-
ing the matrix inversion lemma):

µ5(xn) = N (xn | x̂n|n,Vn|n) (16)

x̂n|n = x̂n|n−1 +
Vn|n−1c (yn−c

T
x̂n|n−1)

σ̂2
Wn−1

+cTVn|n−1c

(17)

Vn|n = Vn|n−1 −
Vn|n−1c c

T
Vn|n−1

σ̂2
Wn−1

+ cTVn|n−1c
(18)

These are the classic Kalman filter equations for the
update step.

To update the estimate of the AR coefficientsa, information
from both the old state and the new observation has to be in-
tegrated. Messages 4 (already computed), 6 and 7 propagate
the observation back to the state transition nodeA. In the
first iteration, there is no information about some entries in
the state vector; this is reflected by theI∞ in the covariance
matrix, which has∞’s in its diagonal and is zero elsewhere.

6.
µ6(xn) = N (xn | m6,V6) (19)

m6 =

(

yn

0

)

V6 =

[

σ̂2
Wn−1

0

0 I∞

]

(20)

From the second iteration on, this result is modified
by the message arriving from the right side.

7. Accounting for the innovation:

µ7(.) = N ( . | m7,V7) (21)

m7 =

(

yn

0

)

V7 =

[

σ̂2
Wn−1

+σ̂2
Un−1

0

0 I∞

]

(22)

The exact form of message 8 is not Gaussian anymore but
too unwieldy to be processed further. Two remedies are pro-
posed: either applying a suitable approximation to the true
distribution (for example by moment matching as in [4]) or
resort to search methods such as gradient-based methods.

Ignoring the variance in the state estimatex̂n−1|n−1 leads
to a Gaussian message for 8. This message can be processed
by the usual building blocks.

8. (a) The mean and weight matrix for this message:

m8 =
yn

‖x̂n−1|n−1‖2
x̂n−1|n−1 (23)

W8 =
x̂n−1|n−1x̂

T

n−1|n−1

σ̂2
Wn−1

+ σ̂2
Un−1

(24)

9. (a) The update at the equality node propagating the
coefficient estimate is:

(Wa)n = (Wa)n−1 +
x̂n−1|n−1x̂

T

n−1|n−1

σ̂2
Wn−1

+ σ̂2
Un−1

(25)

ân = ân−1 +
(Wa)−1

n x̂n−1|n−1

σ̂2
Wn−1

+ σ̂2
Un−1

en (26)

en = yn−â
T

n−1x̂n−1|n−1 (27)

For σ2
W

= 0 this is the classic RLS formulation of
AR parameter estimation.

Instead of computing the message in closed form, one may
compute its gradient. The actual estimate of the coefficients
is improved by iterative updating [2].

8. (b) In deriving the gradient, approximations can be
made without considerably affecting the performance
of the resulting algorithm. In the simplest case this
leads to

∇a log µ8(a) ≈ 2x̂n−1|n−1(yn−a
T
x̂n−1|n−1) (28)

9. (b) The update of the coefficients is then

ân = ân−1 + s x̂n−1|n−1en (29)

with en given by (27) and stepsizes.
This resembles the classic LMS algorithm.

This completes the solution to our first problem, the estima-
tion of the AR coefficient vectora. In the second problem
the innovation and noise variances are unknown and have to
be estimated as well, which is carried out by messages 10
to 13 for the innovation variance and 14 to 17 for the noise
variance, respectively.

10. The difference of forward and backward estimates:

µ10(.) = N ( . | m10,V10) (30)

m10 = m6−Ân−1x̂n−1|n−1 (31)

V10 = Ân−1Vn−1|n−1Â
T

n−1+V6 (32)

11. The estimate of the input:

µ11(un) = N (un | m11, V11) (33)

m11 = yn−â
T

n−1x̂n−1|n−1. (34)

whereV11 is the variance as the result of the back-
ward matrix multiplication, which reduces to the el-
ement in the first row and first column of the covari-
ance matrix in (32).

The next step—computing message 12—involves again a
message which is non-Gaussian:

µ12(σ
2) =

1
√

2π(σ2+V11)
exp

(

−
m2

11

2(σ2+V11)

)

∝ Ig

(

σ2+V11

∣

∣

∣
−

1

2
,
m2

11

2

)

(35)

where Ig(.|α, β) denotes an inverted gamma distribution
with parametersα andβ, but shifted by the amount ofV11.
Again, since this distribution cannot be processed furtherin
a practical way (it is not closed under multiplication), we
have to resort to different methods such as gradient based
methods shown above or Monte Carlo simulation methods,
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especially particle methods. The general idea behind par-
ticle methods is to represent a probability distribution bya
list of samples. Either the messages itself are such lists and
are weighted/resampled by the nodes [5] or the messages
are approximated by Gaussians and particles are only used
to compute the update equations inside each node.

12. & 13. Use one of the above mentioned methods to
generate either an assumed Gaussian message

µ13(σ
2
Un

) = N
(

σ2
Un

∣

∣ σ̂2
Un

, V13

)

(36)

or a list of samples representing the true distribution.
14. Predicted clean output:

N
(

.
∣

∣ â
T

n−1x̂n−1|n−1, c
T
Vn|n−1c + σ̂2

Un−1

)

(37)

15. The estimate of the noise:

µ15(wn) = N (wn | m15, V15) (38)

m15 = yn−â
T

n−1x̂n−1|n−1 (39)

Messages 16 and 17 may be computed in the same way as
messages 12 and 13.

4. MESSAGE UPDATE SCHEDULE

In the case whenσ2
W

= 0 andσ2
U

is fixed and known, a
forward-only (left-to-right) message update schedule works
fine. In this case, the proposed message passing algorithm
reduces either to the standard RLS algorithm (when (25)–
(27) are used) or to the LMS algorithm (when (27)–(29)
are used). In the more interesting cases (σ2

W
6= 0, known

or unknown), however, forward-only message propagation
performs poorly. We then use iterative message updating,
with several rounds of computing, first, the messages 1, 2,
3, 4, 5, 14, 15, 16, 17, 6, 10, 11, 12, 13, 7, 8, 9 from left to
right and then the messages 4, 6, 7, 8 from right to left.

5. SIMULATION RESULTS

As a demonstration, we show the estimation errors for an
8th order AR model with the following parameters:σ2

U
=

0.1, σ2
W

= 0.01/0.001, a = [1.51, -1.08, 0.47, -0.23, 0.91,
-1.30, 0.86, -0.32]T , N = 104.

Fig. 3(a) shows relative errors of the forward estimates
vs. slice indexk for both the new iterative estimator (af-
ter 3 iterations) and the classical LPC using the RLS algo-
rithm. The standard RLS estimator with no measurement
noise yields an error that goes to zero as1/k. It is well
known that the RLS algorithm, when used with noise cor-
rupted observations, produces biased estimates, as can be
seen in Fig. 3(a) (dashed lines). The new estimator is seen
to produce coefficient error levels that decrease as1/k also
in the noisy case.
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Fig. 3. Averaged relative errors of (a) coefficients for the new
iterative estimator (solid) and classical RLS-LPC (dashed) with
σ2

U = 0.1 and σ2

W = 0.01/0.001 (upper/lower curve) and of
(b) coefficients (solid), innovation variance (dash-dot) and noise
variance (dashed) for the joint estimation problem vs. slicek.

Estimation errors for the joint estimation problem are
shown in Fig. 3(b) after the fifth iteration. The flattening
of the variance estimates at6 · 10−2 is due to the limited
resolution of the particle filter; methods to overcome this
limitation will be discussed elsewhere.

6. CONCLUSIONS

We have shown how estimation algorithms for the parame-
ters of an AR model can be derived from a factor graph. In
particular, we have demonstrated joint estimation of the AR
parameters, the innovation variance, and the noise variance.
Some noteworthy features of the graphical-model approach
to such problems are the following:

• Different signal processing techniques such as Kalman
filtering, gradient methods, and particle filters can
easily be combined.

• An essential complexity reduction is achieved by fac-
tored representations of the overall state space, which
amounts to factor graphs with cycles.

• Extensions from simple models to more complex mod-
els are often easily achieved. For example, it is not
difficult to extend the estimation algorithms of this
paper to time-varying models.
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