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Abstract—The capacity of additive white Gaussian noise relay
channels under Gaussian fading is investigated. The transmitter,
the relay, and the receiver are all considered to be ignorant of the
fading realizations. Capacity upper and lower bounds are derived
with focus on the capacity pre-log, i.e., the limiting ratio of the
capacity to the logarithm of the signal-to-noise ratio. Conditions
are presented under which the upper and lower bounds on the
capacity pre-log coincide.
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I. INTRODUCTION

Consider the relay channel depicted in Figure 1. To keep the
model simple, we assume that the system is synchronous in
the sense that the input and output symbols occur at the same
time, and there is a small delay before the output symbols are
forwarded to their terminals. We further assume that the input
symbol X2k is a function of Y k−1

2 , the input sequence Xn
1

is a function of the message W , and the estimate Ŵ of W
is a function of Y n

3 . Here, we use the notation Xn
1 to denote

the sequence (X11, . . . , X1n). Note that the relay can transmit
and receive at the same time.

Let C be the set of complex numbers, and suppose that
X1k ∈ C and X2k ∈ C are transmitted at time k. The time-k
channel outputs Y2k and Y3k are

Y2k = H12kX1k + Z2k (1)

Y3k = H13kX1k +H23kX2k + Z3k (2)

where the processes {H12k}k∈Z, {H13k}k∈Z, {H23k}k∈Z,
{Z2k}k∈Z, and {Z3k}k∈Z are statistically independent of each
other. Furthermore, the processes {H12k}k∈Z and {Z2k}k∈Z

are independent of {X1k}k∈Z, but they might be dependent
on {X2k}k∈Z, since the relay uses its past channel outputs to
choose each X2k. All other processes are independent of both
input sequences {X1k}k∈Z and {X2k}k∈Z.

The additive noise terms {Z2k}k∈Z and {Z3k}k∈Z are
sequences of independent and identically distributed (IID)
circularly-symmetric, complex Gaussian random variables of
zero mean and variance σ2 > 0. We write this as Z2k ∼
NC

(
0, σ2

)
and Z3k ∼ NC

(
0, σ2

)
, where the notation Z ∼

NC

(
0, σ2

)
indicates that the real and imaginary parts of Z

are independent and have a zero-mean Gaussian distribution
of variance σ2/2.

The fading processes {H12k}k∈Z, {H13k}k∈Z, and
{H23k}k∈Z are zero-mean, unit-variance, stationary, ergodic,

circularly-symmetric, complex Gaussian processes with the
respective spectral densities f12(λ), f13(λ), and f23(λ),
−1/2 ≤ λ ≤ 1/2. That is, for t = 1, 2, r = 2, 3, we have

E
[
Htr(k+m)H

∗
trk

]
=

∫ 1/2

−1/2

ej2πmλftr(λ) dλ, k,m ∈ Z, (3)

E
[|Htrk|2

]
= 1, k ∈ Z (4)

where H∗
trk denotes the complex conjugate of Htrk. We

further assume that the fading realizations are unknown to
the transmitter, relay, and receiver. This channel model is also
referred to as non-coherent.

We will study this channel under peak power constraints on
the inputs, i.e., with probability one we have

|X1k| ≤ A1, |X2k| ≤ A2, k ∈ Z. (5)

Additionally, we assume that, for some positive constant Υ,
we have

A2

A1
= Υ. (6)

Suppose that the message W is uniformly distributed on
the set W = {1, 2, . . . , enR}, and refer to R as the rate.
The rate R is said to be achievable if there exist sequences
{πn(·)}∞n=1, {ψn(·)}∞n=1 of mappings with Xn

1 = φn(W ) and

Ŵ = ψn(Y n
3 ) such that Pr

[
W �= Ŵ

]
tends to zero as n goes

to infinity. The capacity C is the supremum of all achievable
rates.

In this document we focus on the asymptotic capacity as
A1 (and hence also A2 = ΥA1) goes to infinity. In particular,
we consider the capacity pre-log Π defined as

Π � lim
A1→∞

C(A1)
logA2

1

(7)

where C(A1) denotes the capacity under the peak power
constraint A1. Here, log(·) is the natural logarithm function.
All rates specified in this document are in nats per channel
use. Lapidoth has shown [1] that the capacity pre-log of a
point-to-point channel is given by

Π = μ ({λ : f(λ) = 0}) (8)

where μ(·) denotes the Lebesgue measure on the interval
[−1/2, 1/2], and f(λ), −1/2 ≤ λ ≤ 1/2, is the spectral
density of the fading process. Note that the capacity pre-log of
a point-to-point channel cannot be larger than 1.1 Further note

1It is shown below that the same is true for relay channels.
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Fig. 1. The relay channel model.

that whenever the fading process is band-limited the pre-log
is strictly larger than zero.

As we shall see, the pre-log depends on the mean-square
error ε2tr(δ

2) in predicting Htr0 based on the variance-δ2 noisy
observation of the past Htr(−1) + W−1, Htr(−2) + W−2, . . .
where {Wk}k∈Z is a sequence of IID random variables with
Wk ∼ NC

(
0, δ2

)
, and where {Wk}k∈Z is independent of

{Htrk}k∈Z. That is, for t = 1, 2, r = 2, 3, we have (see
[1, Section III])

ε2tr(δ
2) = exp

{∫ 1/2

−1/2

log(ftr(λ) + δ2) dλ

}
− δ2. (9)

Notice that it was proved by Lapidoth and Moser [2] that if
the fading process of a point-to-point channel between two
terminals t and r has a spectral density such that

lim
δ2↓0

ε2tr(δ
2) > 0 (10)

then the corresponding capacity Ctr(A) of this point-to-point
channel grows only double-logarithmically in A2, i.e.,

lim
A→∞

{
Ctr(A) − log logA2

}
<∞ (11)

and hence the pre-log is zero. We refer to processes that fulfill
(10) as regular.

This paper is organized as follows. In the following two
sections we derive upper and lower bounds on the capacity of
the relay channel described above. In Section IV we use these
bounds to compute bounds on the capacity pre-log. Section V
addresses the asymptotic capacity when the fading processes
are regular.

II. AN UPPER BOUND

An upper bound on the capacity C(A1) is given by

C(A1) ≤ lim
n→∞

1
n

supmin {I(Xn
1 ;Y n

2 , Y
n
3 ),

I(Xn
1 , X

n
2 ;Y n

3 )} (12)

≤ min
{

lim
n→∞

1
n

sup I(Xn
1 ;Y n

2 , Y
n
3 ),

lim
n→∞

1
n

sup I(Xn
1 , X

n
2 ;Y n

3 )
}

(13)

where the maximizations are over all input distributions sat-
isfying the power constraints (5). Note that if the channel is
memoryless, then equation (12) is one of the first steps in
proving the max-flow min-cut upper bound (see [3, Theorem
14.7.1]).

Since X2k is a function of Y k−1
2 , one could use this

causality relation to reduce the number of possible input
distributions on (Xn

1 , X
n
2 ). However, we drop this restriction

to get a capacity upper bound based on the point-to-point
channels.

The first argument in the minimization in (13) can be upper
bounded by the capacity of a single-input multiple-output
fading channel with memory. Thus, we have (see [4, Theorem
5.14])

lim
n→∞

1
n

sup I(Xn
1 ;Y n

2 , Y
n
3 )

≤ log
1 + δ21

ε212(δ
2
1) + δ21

+ log
1 + δ21

ε213(δ
2
1) + δ21

+ log log
A2

1

σ2
+O(1)

(14)

where δ21 = σ2/A2
1 and where the O(1) term is bounded in A1.

An upper bound on the second argument in the minimization
in (13) is stated in the following theorem.

Theorem 1 For the relay channel described in Section I
the mutual information limn→∞ 1

n sup I(Xn
1 , X

n
2 ;Y n

3 ) can be
upper bounded as

lim
n→∞

1
n

sup I(Xn
1 , X

n
2 ;Y n

3 )

≤ log
1

ε2min(δ2∗)
+ log log

(
1 +

A2
1

σ2
+
A2

2

σ2

)
+O(1) (15)

where ε2min(δ
2
∗) = min{ε213(δ2∗), ε223(δ2∗)} and

δ2∗ = min{δ22 , δ23}, δ22 =
σ2

2A2
1

, δ23 =
σ2

2A2
2

. (16)

Proof: The proof is similar to the proof of the capacity
upper bound derived in [5].



Combining (14) and (15), we obtain the final upper bound

C(A1) ≤ min
{

log
1

ε2min(δ2∗)
+O(log logA2

1),

log
1 + δ21

ε212(δ21) + δ21
+ log

1 + δ21
ε213(δ21) + δ21

+O(log logA2
1)

}
(17)

where O(log logA2
1) grows at most double-logarithmically

in A2
1, and where δ21 and δ2∗ are given by (14) and (16),

respectively.

III. A LOWER BOUND

A lower bound on C(A1) can be found by turning the relay
off, i.e., set X2k = 0, k ∈ Z. In this case, we can achieve the
capacity of the point-to-point channel between the transmitter
and receiver. Thus, we have (see [1, Section V])

C(A1) ≥ log
1

ε213 (ξ21) + 2
5ξ

2
1

+O(1) (18)

with ξ21 = 4σ2/A2
1.

Another lower bound can be derived by using a decode-
and-forward (DF) strategy. One can show that if Xn

1 and Xn
2

are statistically independent, then DF yields

C(A1)

≥ lim
n→∞

1
n

sup min {I(Xn
1 ;Y n

2 |Xn
2 ), I(Xn

1 , X
n
2 ;Y n

3 )} (19)

= lim
n→∞

1
n

sup min {I(Xn
1 ;Y n

2 ), I(Xn
1 , X

n
2 ;Y n

3 )} (20)

where the maximizations are over all product input distri-
butions PXn

1
(·) · PXn

2
(·) on (Xn

1 , X
n
2 ) satisfying (5). The

equality in (20) follows because we choose Xn
1 and Xn

2 to
be independent, and because Y n

2 is a noisy function of Xn
1

only. Note that choosing Xn
1 and Xn

2 to be dependent, (19)
generalizes the DF rates of Cover and El Gamal [6, Theorem
1] to channels with memory.

The rate on the right-hand side of (19) can be achieved using
block Markov superposition encoding where transmission is
performed in B blocks of length n. Note that here we are
generating blocks of sequences Xn

2 by using only past blocks
of sequences Y n

2 . Thus, the coding strategy does not use
feedback immediately. This property lets us maximize the
minimum in (20) over all input distributions PXn

1
(·) · PXn

2
(·)

without considering a causality constraint.
The following theorem establishes a lower bound on (20).

Theorem 2 Let {X1k}k∈Z and {X2k}k∈Z be sequences of
IID random variables, independent of each other, and with

X1k ∼ U
({

x ∈ C :
Aα

1

2
≤ |x| ≤ Aα

1

})
, k ∈ Z, (21)

0 < α < 1,

X2k ∼ U
({

x ∈ C :
A2

2
≤ |x| ≤ A2

})
, k ∈ Z (22)

where U (S) denotes the uniform distribution over the set S.
Then, the right-hand side of (20) can be lower bounded by

lim
n→∞

1
n

sup min {I(Xn
1 ;Y n

2 ), I(Xn
1 , X

n
2 ;Y n

3 )}

≥ sup
0<α<1

min

⎧⎪⎪⎨
⎪⎪⎩

log
1

ε212 (ξ22) + 2
5ξ

2
2

+O(1),

log
1

ε223 (ξ23) + 2
5ξ

2
3

+O(1)

⎫⎪⎪⎬
⎪⎪⎭ (23)

with

ξ22 =
4σ2

A2α
1

, ξ23 =
4A2α

1

A2
2

+
4σ2

A2
2

. (24)

Proof: We omit the proof due to its length. The basic idea
is the following. The arguments in the minimization in (20)
can be viewed as the achievable rates of a single-input single-
output fading channel with memory, and of a multiple-input
single-output fading channel with memory, respectively. The
choice of (21) and (22) is motivated by the asymptotic analysis
of these two channels performed in [1] and [4]. Lapidoth has
shown [1] that the capacity pre-log of the former channel can
be achieved by inputs that are distributed according to (22).
It was proved in [4, Corollary 5.13] that the pre-log of the
latter channel can be achieved by transmitting from only one
antenna, namely the one that yields the largest pre-log. Thus,
one channel input is distributed according to (22) whereas the
other inputs remain silent. This corresponds to a switch-off
of either the relay or the transmitter. Since the former case is
already considered in (18), we focus on the latter. By turning
the transmitter off the rate (20) is zero. Instead, we choose
PXn

1
(·) · PXn

2
(·) such that limn→∞ 1

nI(X
n
1 ;Y n

2 ) is as large
as possible, but where the ratio X1k/X2k tends to zero as
A1 and A2 go to infinity. This will have a similar effect on
limn→∞ 1

nI(X
n
1 , X

n
2 ;Y n

3 ) as turning the transmitter off when
A1 becomes large. The proof of the lower bound (23) is then
similar to that in [1, Section V].

Combining (18) and (23), we obtain the final lower bound

C(A1)

≥ max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

log
1

ε213 (ξ21) + 2
5ξ

2
1

+O(1),

sup
0<α<1

min

⎧⎪⎪⎨
⎪⎪⎩

log
1

ε212 (ξ22) + 2
5ξ

2
2

+O(1),

log
1

ε223 (ξ23) + 2
5ξ

2
3

+O(1)

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(25)

where ξ21 , ξ22 , and ξ23 are given in (18) and (24), respectively.
Note that (25) aims at a good characterization of the capacity
pre-log and may be a poor lower bound on the capacity.
Indeed, if, for example, the fading processes are regular, i.e.,

lim
δ2↓0

ε2tr(δ
2) > 0, t = 1, 2, r = 2, 3, (26)

then the lower bound (25) is bounded in A1 even though
C(A1) is not.



IV. THE PRE-LOG

Let Πtr denote the capacity pre-log of the point-to-point
channel between the terminals t and r. With the aid of (17)
and (25), we obtain the following bounds on Π.

Corollary 3 The capacity pre-log of the channel described in
Section I is upper bounded by

Π ≤ min {Π12 + Π13,max{Π13,Π23}} (27)

and lower bounded by

Π ≥ max
{

Π13, sup
0<α<1

min{αΠ12, (1 − α)Π23}
}
. (28)

Proof: The bounds (27) and (28) follow by an asymptotic
analysis of the capacity upper (17) and lower bounds (25)
similar to that in [1, Section VIII].

If either Π12 = 0, or Π13 ≥ Π23,2 then the bounds (27) and
(28) coincide and yield

Π = Π13. (29)

This pre-log can be achieved without making use of the relay.
Note that the condition Π13 ≥ Π23 includes also the case
Π23 = 0 since the pre-log cannot be negative.

When the pre-logs Π12 and Π23 are strictly larger than zero,
then min{αΠ12, (1 − α)Π23} is maximized by

α =
Π23

Π12 + Π23
(30)

and (28) reduces to

Π ≥ max
{

Π13,
Π12Π23

Π12 + Π23

}
. (31)

For situations where the bounds (27) and (28) do not coincide,
i.e., when Π12 > 0, Π23 > 0, and Π13 < Π23, the difference
Δ between the upper (27) and lower bounds (28) is

Δ = min {Π12 + Π13,Π23} − max
{

Π13,
Π12Π23

Π12 + Π23

}

= min
{

Π12,Π23 − Π13,Π13 +
Π2

12

Π12 + Π23
,

Π2
23

Π12 + Π23

}
.

(32)

It can be shown numerically that Δ is at most 0.6173. This
difference arises when Π12 = 0.62, Π13 = 0.38, and Π23 = 1.

To illustrate the above results, the capacity upper (17) and
lower bounds (25) for two relay channels with different fading
processes are depicted in Figures 2 and 3. Note that, for
sufficiently large A1, all bounds grow logarithmically in A2

1

with slopes given by (27) and (31), respectively.
The upper and lower bounds plotted in Figure 2 correspond

to a channel where the fading processes are such that Π12 =
0.9, Π13 = 0.7, and Π23 = 0.5. One can see that in this case
the slopes of the upper and lower bounds are equal, and that

2This occurs when the fading realizations between the transmitter and
receiver can be estimated more precisely than the fading realizations between
the relay and receiver.
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Fig. 2. Capacity upper (17) and lower bound (25) for Υ = 1 and σ2 = 1.
The fading processes have Π12 = 0.9, Π13 = 0.7, and Π23 = 0.5.
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Fig. 3. Capacity upper (17) and lower bound (25) for Υ = 1 and σ2 = 1.
The fading processes have Π12 = 0.8, Π13 = 0.2, and Π23 = 0.9.

the lower bound coincides with the curve corresponding to the
rates achievable over the point-to-point channel between the
transmitter and receiver. Thus, the capacity pre-log of the relay
channel can be achieved without making use of the relay. This
is in agreement with (29).

The upper and lower bounds plotted in Figure 3 correspond
to a channel where Π12 = 0.8, Π13 = 0.2, and Π23 = 0.9. It
can be seen that here the slopes of the upper and lower bound
differ from each other. We also observe that the slope of the
curve corresponding to the rates that can be achieved without
using the relay is smaller than the slope of the capacity lower
bound. Thus, the relay helps to improve the pre-log.

Finally, we remark that the gaps between the capacity upper
and lower bounds in Figures 2 and 3 are substantial. This
suggests that much better bounds on the capacity can yet be
found.



V. ADDITIONAL RESULTS

For non-coherent point-to-point fading channels, it was
shown by Lapidoth and Moser that when the fading process is
regular in the sense that the present fading realization cannot
be predicted precisely from its past, then the capacity grows
double-logarithmically in the signal-to-noise ratio [2]. The
same is true for relay channels. Thus, for these channels the
capacity pre-log is always zero and it is more interesting
to study the fading number introduced in [2]. For the relay
channel depicted in Figure 1, the fading number is defined as

χ � lim
P1→∞

{C(P1) − log logP1} (33)

where C(P1) denotes the capacity under the average block
power constraint P1. That is,

1
n

n∑
k=1

E
[|X1k|2

] ≤ P1, (34)

1
n

n∑
k=1

E
[|X2k|2

] ≤ P2 (35)

where we assume that, for some positive constant Υ, we have

P2

P1
= Υ. (36)

We prove the following result.

Theorem 4 Consider the relay channel described in Section I
under the average block power constraints (34) and (35).
Furthermore, let the fading processes {H12k}k∈Z, {H13k}k∈Z,
and {H23k}k∈Z be regular, i.e., the prediction errors ε212(0),
ε213(0), and ε223(0) are positive. Then, we have the following
bounds on the fading number:

χ ≤

min

⎧⎪⎪⎨
⎪⎪⎩

−2γ + log
1

ε212(0)
+ log

1
ε213(0)

,

max
{
−1 − γ + log

1
ε213(0)

,−1 − γ + log
1

ε223(0)

}
⎫⎪⎪⎬
⎪⎪⎭

(37)

and

χ ≥

max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 − γ + log
1

ε213(0)
,

sup
0<α<β
α<β<1

min

⎧⎪⎪⎨
⎪⎪⎩

−1 − γ + log
1

ε212(0)
+ logα,

−1 − γ + log
1

ε223(0)
+ log(1 − β)

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(38)

where γ ≈ 0.577 denotes Euler’s constant.

Proof: The upper bound is proved in [5]. The proof of
the lower bound is similar to the proof of the capacity lower
bound (25).

If ε213(0) ≤ ε223(0), then the bounds (37) and (38) coincide
and yield an exact expression of the fading number. In this
case the fading number is

χ = −1 − γ + log
1

ε213(0)
(39)

and can be achieved without making use of the relay. Note
that the relay can be beneficial, i.e., the fading number of the
relay channel can be higher than the fading number of the
point-to-point channel between the transmitter and receiver.
For example, consider the situation where ε213(0) = 1 and
ε212(0) = ε223(0) = 1/8. In this case, the bounds (37) and (38)
yield the respective

χ ≤ −1 − γ + log 8 (40)

and

χ ≥ −1 − γ + log 8 + log
1
2

= −1 − γ + log 4 (41)

where we used the fact that in our example the supremum in
(38) is achieved by α = β = 1/2. The point-to-point channel
between the transmitter and the receiver provides only a fading
number of −1 − γ.
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