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Abstract— New non-asymptotic upper bounds on the capacity
of non-coherent multiple-input multiple-output (MIMO) Gaus-
sian fading channels with memory are proposed. These upper
bounds are used to derive upper bounds on the fading number
of regular Gaussian fading channels and on the pre-log of non-
regular ones. The resulting bounds are tight in the multiple-input
single-output (MISO) spatially independent Gaussian case when
the entries in the fading vector are either zero-mean or possess
the same spectral distribution function.
A new approach is proposed for the derivation of lower bounds

on the fading number of MIMO channels. This approach is
applied to derive a lower bound on the fading number of spatially
IID zero-mean Gaussian fading channels.
The new upper and lower bounds on the fading number

demonstrate that when the number of receive antennas does not
exceed the number of transmit antennas, the fading number of
zero-mean spatially IID slowly varying Gaussian MIMO channels
is proportional to the number of degrees of freedom, i.e., to the
minimum of the number of transmit and receive antennas. We
conjecture that the same is true also when the number of receive
antennas exceeds the number of transmit antennas. The single-
input multiple-output case that was recently solved by Lapidoth
& Moser supports this conjecture.

I. INTRODUCTION

The subject of this paper is the capacity of multiple-input
multiple-output (MIMO) discrete-time flat fading channels
with memory. We present firm (non-asymptotic) upper bounds
on channel capacity and also study its high signal-to-noise
ratio (SNR) asymptotic behavior via new lower bounds on the
fading number. We shall see that the notions of the fading
number and the number of degrees of freedom are closely
tied.
We begin with a description of the channel and with some

definitions. We envision a channel with nT transmit antennas
and nR receive antennas. Its time-k (k ∈ Z) output Yk ∈ C

nR

corresponding to the time-k channel input xk ∈ CnT is an
nR-dimensional complex random vector that is given by

Yk = Hkxk + Zk (1)

where the random nR × nT complex matrix Hk ∈ C
nR×nT

denotes the time-k fading matrix and the random vector
Zk ∈ C

nR denotes the additive noise. Here Z denotes the
set of integers and C denotes the set of complex numbers.

These results were presented in part at the Winterschool on Coding and
Information Theory, Bratislava, February 20–25, 2005. They will appear in [7].

We assume throughout that the vectors {Zk} are independent
and identically distributed (IID) according to a circularly
symmetric complex multi-variate Gaussian law of zero mean
and of covariance matrix σ2 ·InR with σ > 0. Here, InR denotes
the nR × nR identity matrix.
The matrix valued fading process {Hk} is assumed to be

stationary & ergodic and to satisfy the finite expected squared
Frobenius norm condition

E
[‖Hk‖2

F

]
< ∞. (2)

The fading process {Hk} and the additive noise process {Zk}
are independent of each other and of a joint law that does not
depend on the channel inputs {xk}.
The above conditions will be assumed throughout. Some

theorems will require additional assumptions. These are de-
fined next. We shall say that the fading process {Hk} is regular
if it has a finite differential entropy rate, i.e., if

h({Hk}) � lim
n→∞

1
n

h(H1, . . . , Hn) > −∞. (3)

Otherwise, we shall say that it is non-regular. We say that
the fading process is Gaussian if {Hk} is a matrix-valued
Gaussian process, i.e., if for any finite number of deterministic
coefficients αr,t,k the sum

∑
αr,t,kHk(r, t) is a (complex)

Gaussian random variable. Here and throughout Hk(r, t) de-
notes the row-r column-t entry of the matrix Hk, and it is
implicitly assumed that 1 ≤ r ≤ nR and 1 ≤ t ≤ nT. We say
that the fading is spatially independent if the nR ·nT processes
{Hk(r, t)} are independent. We say that the fading is spatially
IID if they are additionally of the same law.
The capacity of this channel under an average power Es

constraint is

CAvg(SNR) = lim
n→∞

1
n

sup I (Xn
1 ;Yn

1 ) (4)

where Am
� stands for A�, . . . , Am and where the maximization

is over all joint distributions on Xn
1 that satisfy

1
n

n∑
k=1

E
[‖Xk‖2

] ≤ Es. (5)

(Here ‖ · ‖ denotes the Euclidean norm.) For the peak power
A constrained capacity the maximization is over all joint
distributions under which with probability one

‖Xk‖ ≤ A, 1 ≤ k ≤ n. (6)



The SNR is defined depending on whether an average or peak
power constraint is imposed: SNR � Es/σ2 for an average
constraint and SNR � A2

/σ2 for a peak constraint.
For regular fading the fading number is defined by

χ({Hk}) � lim
SNR→∞

{C(SNR) − log log SNR} (7)

where, unless it is clear from the context or if the distinction
is immaterial, we add a subscript “Avg” to indicate that an
average power constraint is imposed and add the subscript
“PP” for peak power. Notice that for regular fading the fading
numbers corresponding to both a peak power constraint and
an average power constraint are finite [1]. Also, for any fading
law, χPP({Hk}) ≤ χAvg({Hk}).
The exact calculation of the fading number for (regular)

fading channels with memory is a difficult task. An exact
expression for the fading number for the single-input single-
output (SISO) case (nR = nT = 1) is given in [1]:

χ({Hk}) = log π + E
[
log |H1|2

] − h({Hk}). (8)

The single-input multiple-output (SIMO) (nT = 1) case was
recently solved in [2]. Here we shall present results for the
multiple-input single-output (MISO) (nR = 1) case when
the fading is spatially independent and Gaussian. Specifically,
Corollary 8 treats the case where the fading is spatially inde-
pendent Gaussian with a zero mean vector, and Corollary 9
treats the case where {Hk −E[Hk]} is Gaussian and spatially
IID. For MIMO channels we shall present lower bounds on
the fading number, see Theorem 4 & 5, and an upper bound
for Gaussian fading, see Theorem 6 & Corollary 7.
For non-regular fading capacity can grow with the SNR in

various ways [3], [4]. When it grows logarithmically in the
SNR we define the pre-log under a peak power constraint by

ΠPP � lim
SNR→∞

CPP(SNR)
log SNR

(9)

with an analogous definition for the pre-log ΠAvg under an
average power constraint.
The pre-log for general MIMO fading channels is unknown.

It was computed under a peak-power constraint for the SISO
Gaussian case in [3], [4] where it was shown that ΠPP is given
by the Lebesgue measure of the set of harmonics in the interval
[−1/2, 1/2] where the derivative of the spectral distribution
function (SDF) is zero:

ΠPP = μ ({λ : F ′(λ) = 0}) (10)

where μ denotes the Lebesgue measure and F ′ is the derivative
of the SDF of the fading process.
Here we shall present an upper bound on ΠPP for spatially

independent MIMO Gaussian fading in Corollaries 11 & 12
and an exact expression for ΠPP for spatially independent
MISO Gaussian fading in Corollary 13.
The rest of this paper is organized as follows. In Section II

we describe new upper bounds on channel capacity under peak
power constraints. In Section III we address the fading number.
We present the new lower bounds, the new upper bounds, and
the MISO cases where these bounds yield the exact fading

number. Section IV deals with non-regular fading and the pre-
log. It includes upper bounds on the pre-log for non-regular
MIMO fading and the expression for the MISO case when
the bounds are tight. In Section V we specialize our results to
slowly varying Gauss-Markov MIMO fading so as to be able
to relate our results to those of [5], [6]. We conclude with a
discussion of the relationship between the fading number and
degrees of freedom.

II. UPPER BOUNDS ON CHANNEL CAPACITY

In this section we extend the bounds of [4] and [3] to firm
upper bounds on the capacity of MIMO fading channels.

Theorem 1 Consider a mean-D spatially independent Gaus-
sian MIMO fading {Hk} such that the random process
{Hk(r, t) − d(r, t)} is a zero-mean unit-variance circularly
symmetric complex Gaussian process with SDF Fr,t(·). Then
CPP(SNR)

≤ CPP,IID(SNR) + max
‖x̂‖=1

nR∑
r=1

log
1 + δ2∑nT

t=1 |x̂(t)|2ε2r,t(δ2) + δ2

(11)

where δ2 = 1/SNR and where CPP,IID(SNR) denotes the
capacity in the memoryless fading case. Here, ε2r,t(δ2) denotes
the error in predicting the (r, t)-th component of the fading
matrix from a noisy observation of its past, i.e.,

ε2r,t(δ
2) = exp

{∫ 1/2

−1/2

log
(
F ′

r,t(λ) + δ2
)
dλ

}
− δ2. (12)

When the fading process {Hk −E[Hk]} is spatially IID, we
obtain from Theorem 1 the following corollary.

Corollary 2 Let the mean-D Gaussian MIMO fading {Hk}
be such that the process {Hk − D} is spatially IID with
each component being a zero-mean unit-variance circularly
symmetric complex Gaussian process of SDF F (·). Then,
defining ε2(δ2) = ε2r,t(δ2), (11) becomes

CPP(SNR) ≤ CPP,IID(SNR) + nR log
1 + 1/SNR

ε2(1/SNR) + 1/SNR
.

(13)

An upper bound on the capacity of spatially independent
MISO fading channels can be found by using Theorem 1 with
nR = 1. The following theorem provides an upper bound that
generalizes this bound to channels where the fading is not
spatially independent.
For convenience we shall write the MISO fading process

as a column vector and not as a row vector. Thus, the time-k
channel output Yk is given by

Yk = HT
kxk + Zk (14)

where HT
k denotes the transpose of Hk.



Theorem 3 Consider a mean-d Gaussian MISO fading chan-
nel where {Hk − d} is a zero-mean circularly symmetric
complex Gaussian process with matrix-valued SDF F(·), i.e.,

E
[
(Hk+m − d)(Hk − d)†

]
=

∫ 1/2

−1/2

ei2πmλ dF(λ) (15)

where (·)† denotes Hermitian conjugation. Assume further that
the covariance matrix K = E

[
(Hk − d)(Hk − d)†

]
is non-

singular. Then, the capacity is upper bounded by

CPP(SNR) ≤ CPP,IID(SNR) + log
‖K‖

λmin(1/SNR)
(16)

where λmin(δ2) denotes the smallest eigenvalue of the error
covariance matrix Σ(δ2) in predicting the present fading from
a noisy observation of its past; and ‖·‖ denotes the Euclidean
operator norm of matrices, i.e., the largest singular value.

An upper bound on the capacity of Gaussian SISO fading
channels with memory can be found by using Theorem 1 with
nR = 1. For the case where the fading is additionally of zero
mean, a non-asymptotic lower bound is given in [7].
Note that the results presented in this section hold for both

regular and non-regular processes. For a detailed proof see [8].

III. THE FADING NUMBER

In this section we present upper and lower bounds on the
fading number (7) of MIMO fading channels. We will assume
throughout this section that all channels considered here satisfy
the finite differential entropy rate condition (3).

A. Lower Bounds

Theorem 4 Consider a general (not necessarily Gaussian)
stationary and ergodic fading process {Hk} satisfying the
conditions (2) and (3). Let {Hk} be independent of the IID
random vectors {Xk} taking value in C

nT and satisfying

E
[‖Xk‖2

]
< ∞ and E

[
log ‖Xk‖2

]
> −∞. (17)

Then the fading number χAvg({Hk}) is lower bounded by
χAvg({Hk})
≥ χ({HkXk}) + lim

n→∞
1
n

I({Xk}n
k=1; {HkXk}n

k=1) (18)

where χ({HkXk}) is the fading number of a SIMO channel
with fading process {HkXk}. (For SIMO fading, peak-power
and average power constraints yield the same fading number
[2].)
Moreover, if the random variables {Xk} are bounded,

then the lower bound (18) holds also for the fading number
χPP({Hk}) of the fading process {Hk} under a peak-power
constraint.

Note that this theorem can be extended with some care to
the case where the inputs {Xk} are block-wise IID, e.g., if
{(X2k,X2k+1)} are IID.
An exact expression for the fading number χ({HkXk})

of the SIMO fading {HkXk} is given in [2]. However, this
expression is not easy to evaluate. It can always be lower

bounded by considering linear combining at the receiver which
reduces the SIMO channel to a SISO channel for which
the fading number is easier to compute (8): χ({HkXk}) ≥
χ({αT

HkXk}) (α ∈ C
nR deterministic), or by ignoring the

memory in {HkXk}, i.e., χ({HkXk}) ≥ χIID(H1X1), or
by applying both reductions χ({HkXk}) ≥ χIID(αT

H1X1)
where the subscript “IID” denotes the fading number in the
memoryless case with equal marginals. The advantage of the
latter is that it only depends on the marginal law of {Hk}.
A particular choice for {Xk} which we shall find useful is

the zero-mean multi-variate isotropic Gaussian law. It greatly
simplifies the analysis of the second term on the RHS of
(18). With this choice, we can use Theorem 4 to establish the
following result on slowly varying Gaussian fading channels.

Theorem 5 Let the MIMO fading {Hk} be spatially IID with
each component of {Hk} being a circularly symmetric zero-
mean unit-variance complex Gaussian process of temporal au-
tocorrelation function K[ν] = E

[
H∗

k+ν(r, t)Hk(r, t)
]
, ν ∈

Z, where H∗ denotes the complex conjugate of H . Let nmin �
min{nR, nT} and let

ε2max � max
1≤ν≤nmin+2

E
[|Hν(r, t) − H0(r, t)|2

]
= 2 · max

1≤ν≤nmin+2
(1 − Re{K[ν]}) (19)

where Re{K[ν]} denotes the real part of K[ν]. Then

χAvg({Hk}) ≥ nmin log
1

ε2max
+ Const(nmin) (20)

where the correction term Const(nmin) depends only on nmin
and not on the autocorrelation K[·].
Note that by using Theorem 5 with ever more slightly

truncated Gaussian laws one can show that the lower bound
(20) also holds for a peak-power constraint. Further note that
in the above theorem we can replace ε2max with

ε̃2max = 2 · max
1≤ν≤nmin+2

(1 − Re{K[π(ν)]}) (21)

where π(·) is any permutation of the natural numbers N.

B. Upper Bounds

Theorem 6 Consider a mean-D spatially independent Gaus-
sian MIMO fading {Hk} such that the random process
{Hk(r, t) − d(r, t)} is a zero-mean unit-variance circularly
symmetric complex Gaussian process with SDF Fr,t(·). Then

χAvg({Hk}) ≤ χAvg,IID(H1) + max
‖x̂‖=1

nR∑
r=1

log
1∑nT

t=1 |x̂(t)|2ε2r,t
(22)

where ε2r,t is ε2r,t(δ
2) of (12) evaluated at δ2 = 0.

From this theorem, we can derive an upper bound on the
fading number when the fading process {Hk − E[Hk]} is
spatially IID.

Corollary 7 Let the mean-D Gaussian MIMO fading {Hk}
be such that the process {Hk − D} is spatially IID with



each component being a zero-mean unit-variance circularly
symmetric complex Gaussian process of SDF F (·). Then,
defining ε2 = ε2r,t, the bound (22) reads

χAvg({Hk}) ≤ χAvg,IID(H1) + nR log
1
ε2

. (23)

Note that χAvg,IID(H1) is unknown for general fading matri-
ces H1. However, χAvg,IID(H1) is known in the case where H1

is rotation commutative, and an upper bound on χIID(H1) is
known when the nR×nT matrixH1 is of the formH1 = D+H̃1

where D is deterministic and H̃1 is spatially IID with each
component of H̃1 being a zero-mean unit-variance circularly
symmetric complex Gaussian random variable (see [1]).

C. MISO Fading

An upper bound on the fading number of spatially inde-
pendent Gaussian MISO channels follows from Theorem 6 by
using that [1, Corollary 4.28]

χAvg,IID(H1) = χPP,IID(H1) = −1 + log d2
∗ − Ei(−d2

∗) (24)

where Ei(−·) denotes the exponential integral function and

d∗ = max
‖x̂‖=1

|E[HT
k] x̂|√

Var(HT
kx̂)

. (25)

In the following results for MISO fading channels are given.

Corollary 8 Consider a regular zero-mean spatially indepen-
dent Gaussian MISO flat fading channel where the SDF of
the unit-variance process {Hk(t)} is given by Ft(·). Then,
irrespective of whether a peak or an average power constraint
is imposed,

χ({Hk}) = −1 − γ + log
1

ε2min
(26)

where γ ≈ 0.577 denotes Euler’s constant and

ε2min = min
1≤t≤nT

exp

{∫ 1/2

−1/2

log F ′
t(λ) dλ

}
. (27)

Moreover, this fading number can be achieved with beam
selection, i.e., by transmitting from the antenna that yields
the smallest prediction error.

Corollary 9 Let the regular mean-d Gaussian MISO fading
{Hk} be such that the process {Hk −d} is spatially IID with
each component being a zero-mean unit-variance circularly
symmetric complex Gaussian process of SDF F (·). Then for
both an average power constraint and a peak power constraint
the fading number is

χ({Hk}) = −1 + log ‖d‖2 − Ei(−‖d‖2) + log
1
ε2

. (28)

Moreover, the fading number is achievable with beam forming.

The following theorem generalizes Theorem 6 to channels
that are not spatially independent.

Theorem 10 Let the mean-d MISO fading process be such
that the process {Hk−d} is a zero-mean circularly symmetric
complex Gaussian process with matrix-valued SDF F(·), and
with covariance matrix K. Furthermore, assume that the
prediction error covariance matrix Σ is non-singular. Then,

χAvg({Hk}) ≤ −1 + log d2
∗ − Ei(−d2

∗) + log
‖K‖
λmin

(29)

with d∗ as in (25) and where λmin is λmin(δ2) of (16) evaluated
at δ2 = 0.

IV. THE PRE-LOG

In this section we shall extend the SISO results on the pre-
log [3], [4] to the multi-antenna case.

Corollary 11 Consider a mean-D spatially independent
MIMO fading {Hk} where the random process {Hk(r, t) −
d(r, t)} is a zero-mean unit-variance circularly symmetric
complex Gaussian process with SDF Fr,t(·). Then

ΠPP ≤ max
1≤t≤nT

nR∑
r=1

μ
({

λ : F ′
r,t(λ) = 0

})
. (30)

Corollary 12 Consider a mean-D Gaussian MIMO fading
{Hk} where {Hk − D} is spatially IID with each component
being a zero-mean unit-variance circularly symmetric complex
Gaussian process of SDF F (·). Then

ΠPP ≤ nR · μ ({λ : F ′(λ) = 0}) . (31)

For spatially independent Gaussian MISO channels, the
upper bound provided in Corollary 11 is tight.

Corollary 13 Consider a mean-d spatially independent
Gaussian MISO fading {Hk} such that the process {Hk(t)−
d(t)} is a zero-mean unit-variance circularly symmetric com-
plex Gaussian process of SDF Ft(·). Then, the pre-log is

ΠPP = max
1≤t≤nT

μ ({λ : F ′
t (λ) = 0}) . (32)

Moreover, this pre-log can be achieved with beam selection.

V. A GAUSS-MARKOV FADING PROCESS

A very simple model for a slowly varying channel is the
Gauss-Markov fading model [9], [5]. Here

Hk =
√

1 − ε2Hk−1 + εWk (33)

where {Wk} is spatially IID with {Wk(r, t)} consisting of
IID zero-mean unit-variance circularly symmetric complex
Gaussians. In the above ε2 is the mean squared error of the
one-step predictor of H0(r, t) from its infinite past.
In the following, we consider a MIMO Gauss-Markov

fading channel with n = nR = nT transmit and receive
antennas. With the aid of Corollary 7 one can upper bound
the fading number χAvg({Hk}) as

χAvg({Hk}) ≤ n log
1
ε2

+ K1(n) (34)



where the correction term K1(n) is a function of n and not
of ε2. Similarly, we can use Theorem 5 to lower bound the
fading number as

χAvg({Hk}) ≥ n log
1
ε2

+ K2(n) + o(ε2) (35)

where the o(ε2) term tends to zero as ε2 → 0.

VI. THE FADING NUMBER AND DEGREES OF FREEDOM

The “number of degrees of freedom” nmin of a system
employing nT transmit antennas and nR receive antennas is
defined by nmin � min{nT, nR}. It plays an important role in
the high-SNR asymptotic analysis of coherent MIMO fading
channels [10] as well as in the asymptotic analysis of the
block-constant fading model [11], [12].
The role of degrees of freedom in non-coherent communi-

cation is more subtle. Indeed, if the limit in (7) exists then the
asymptotic expansion

C(SNR) = log(1 + log(1 + SNR)) + χ + o(1) (36)

indicates that at very high SNR, when the log log SNR term
dominates the fading number χ, capacity grows double-
logarithmically in the SNR and the number of transmit and
receive antennas hardly influences capacity.
Great care, however, must be exercised when applying this

argument. For this argument to demonstrate the irrelevance
of the degrees of freedom in determining channel capacity,
the SNR must not only be large enough so that (36) be a
good approximation, but it must also be large enough so that
the log log SNR term dominate the fading number χ. While,
as we shall argue, the approximation (36) begins to hold at
reasonable SNRs, for the log log SNR term to dominate the
fading number χ the SNR must be larger than the double
exponentiation of the fading number. When the fading number
is large, as in slowly varying channels, this latter condition
only begins to hold at extremely high SNRs (even though (36)
begins to hold at relatively moderate SNRs).
What then is the role of degrees of freedom in slowly

varying non-coherent communication? For slowly varying
channels, degrees of freedom play a key role in determining the
fading number! Indeed—at least when nR ≤ nT—Theorem 5
& Corollary 7 combine to prove that for very slowly varying
fading channels the fading number is roughly proportional to
nmin.
The picture that emerges is thus the following. The ap-

proximation (36) is quite reasonable as of relatively mod-
erate signal-to-noise ratios. For slowly varying channels the
log log SNR dominates the fading number only at extremely
high SNRs. At these extremely high SNRs, degrees of free-
dom, indeed, hardly influence capacity. However, increasing
the number of degrees of freedom increases the fading number
χ and hence pushes this extremely high SNR regime further
and further away. If we think of the fading number as
an indication of the maximal rate at which power efficient
communication is achievable on the channel, then we can say
that for slowly varying spatially independent Gaussian fading

this rate is roughly proportional to the number of degrees of
freedom. Thus, increasing the number of degrees of freedom
increases the practical limit on power-efficient communication
over the channel.
The results of [5], [6] on slowly-varying Gauss-Markov

channels are, in fact, in agreement with this picture. It is just
critical to understand that when they write [5] “However, when
the SNR gets much larger, the Lapidoth-Moser regime kicks
in . . . ” they mean that it is only at much larger SNRs that the
log log SNR term in (36) dominates the fading number χ. The
applicability of (36) begins at far lower SNRs.
Note that our results on the fading number and degrees of

freedom are not specific to Gauss-Markov fading. It suffices
that the auto-correlation decay slowly and that the difference
between the present fading and any fading in the past nmin+2
symbols be of expected squared error that is not much larger
than the prediction error based on the infinite past. That is, we
require that

log
ε2max
ε2

be roughly a constant. (Here εmax is defined in (19) and ε2

is the prediction error in predicting the present value of the
process Hk(r, t) from its infinite past.) This is certainly the
case for Gauss-Markov processes.
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