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ABSTRACT

The problem of separating superimposed action potentials in elec-
tromyographic (EMG) signals is considered. Based on a graphical
model (factor graph), a new EMG signal decomposition algorithm
that uses loopy belief propagation is presented. Results show that
the algorithm is capable of decomposing multiple superpositions
in simulated and measured EMG signals.

Keywords: EMG signals, factor graphs, loopy belief propaga-
tion, signal decomposition, superposition.

1. INTRODUCTION

Anatomy and physiology: A motor unit (MU) is the smallest
functional unit of the neuromuscular system. It consists of a mo-
toneuron and all the muscle fibers that are innervated by the mo-
toneuron. In this paper, we will sometimes refer to a MU as a
source. When a motoneuron fires, all its muscle fibers contract.
Motoneurons fire repeatedly over time.

EMG signals: Muscle contraction goes along with electrical ac-
tivity. The analysis of the resulting EMG signals yields valuable
information for clinicians and researchers. An EMG signal con-
sists of signal contribution from the muscle fibers that are within a
certain distance from the electrode. One activation of a MU results
in a wave that is called a motor unit action potential (MUAP). A
single MU generates a train of such similar waves, called a MUAP
train. MUAPs from different MUs can overlap.

EMG signal decomposition: The task of EMG signal decom-
position is to separate an EMG signal into its MUAP trains. As
the level of muscle force increases, the number of active MUs in-
creases as well as their activation rates. This leads to more overlap-
ping MUAPs from different MUs, which makes the signal decom-
position task harder. Many decomposition algorithms have been
proposed. However, many practical tools are limited to a few su-
perimposed MUAPs, e.g., only two in [1]. Refer to [2] [3] for a
good overview of EMG signal decomposition methods.

New EMG signal decomposition approach: In this paper, we
present a new EMG signal decomposition algorithm (outlined in
[4] [5]) that is based on a graphical model (factor graph). The al-
gorithm is capable of decomposing signals with many overlapping
MUAPs, i.e., signals that might be difficult to decompose with ex-
isting tools.
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Fig. 1. Model of EMG signal generation: here shown for only two
sources (MUs) and two channels (electrodes).

2. METHODOLOGY

Our EMG signal decomposition algorithm is developed by start-
ing with an EMG signal simulation model from which a factor
graph model is derived. A message passing algorithm runs on this
factor graph and calculates an approximation of the maximum a-
posteriori (MAP) estimate of the firing times of the MUs.

EMG signal simulation model: Fig. 1 shows a discrete-time model
of EMG signals. Source (MU) i emits a discrete-time binary sig-

nal Xi
�

= (Xi,1, Xi,2, Xi,3, . . .) with Xi,k ∈ {0, 1}. If Xi,k = 1,
we say that MU i “fires” at time k. The source model ensures that,
after sending a 1, there have to follow M zeros so that MUAPs
of the same source do not overlap. M is the maximal memory
of all finite impulse response (FIR) filters (see below). Each elec-
trode picks up a noisy and heavily filtered superposition of these

signals. For example, electrode j picks up the EMG signal Yj
�

=
(Yj,1, Yj,2, Yj,3, . . .) with

Yj,k =

Nsrc�

i=1

M�

�=0

Xi,k−� · hi,j,� + Wj,k, (1)

where hi,j,� ∈ R are the filter coefficients, Nsrc is the number

of sources, and Wj
�

= (Wj,1, Wj,2, Wj,3, . . .) is additive white
Gaussian noise (AWGN) for channel j. An example of such an
EMG signal is given in Fig. 3 (top).
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Fig. 2. Time-k section of a factor graph corresponding to Fig. 1.

EMG signal decomposition: To decompose an EMG signal into
its MUAP trains, the source signals Xi are estimated based on the
measured signals Yj . Although the MAP estimate of Xi is de-
sirable, its exact computation is very complex using any known
algorithm. In fact, we do not know any algorithm that can com-
pute the MAP estimate in a reasonable time in the case of many
overlapping MUAPs.

Factor graphs and the sum-product algorithm in general: Fac-
tor graphs [6] are graphical models that may be used to derive
various signal processing algorithms. The sum-product algorithm
[6] (or belief propagation or probability propagation) operates by
passing messages along the edges of the factor graph. If the factor
graph has no loops, then belief propagation will yield MAP esti-
mates. If the factor graph has loops (as it has in our case), then the
algorithm yields only an approximation of the MAP estimates and
may in fact fail to converge. However, loopy belief propagation
can handle very complex models (factor graphs) and is known to
give excellent results in some applications [4] [6].

Factor graphs and the sum-product algorithm for EMG signal
decomposition: The diagram in Fig. 2 is a part of a factor graph,
which may be viewed as the simulation model in Fig. 1 “rolled-
out” in time. Fig. 2 shows only one section of the graph; the total
graph consists of many such sections, one for each time index.
The global function represented by this factor graph is the joint
probability mass function of all variables.

The factor graph of Fig. 2 explicitly uses a state space model

of the sources and the filters. In particular, the variable Si,k
�

=
(Xi,k, Xi,k−1, . . . , Xi,k−M ) is the state of the FIR filters fed by
source i. We assume that the vector Si,k can contain at most one
“1”, i.e., self-superpositions are not allowed. We currently do not
use the average firing rates. However, our model can easily be
modified to include firing statistics.

The boxes labeled �1 in Fig. 2 represent the state transition
probabilities p(si,k+1|si,k), which are defined in Table 1. The
boxes labeled �2 represent the deterministic functions

Zi,j,k
�

=

M�

�=0

Xi,k−� · hi,j,�, (2)

where Zi,j,k is the output of the FIR filters. The filter coeffi-
cients are assumed to be known. The boxes labeled �3 represent

Gaussian distributions according to our noise model. Node �4 is a
sum-constraint node, which is designed hierarchically in the case
of more than two sources. In the case of many sources, several
variable quantization and message approximation strategies were
explored for messages through this addition node.

By iterative sum-product probability propagation in the factor
graph of Fig. 2, we obtain an estimate of the variables Si,k for all
i and k. Estimates of Xi,k are then obtained by using the Viterbi
algorithm, which is equivalent to max-product message passing
(forward and backward sweep) over the source nodes �1 in the
factor graph. Although we used the standard sum-product algo-
rithm, much experimentation was necessary, e.g., to find a suitable
factor graph and a good message update schedule. We also exper-
imented with different message types, various variable quantiza-
tions and message approximations, different node functions, and
different noise models.

3. EXPERIMENTAL RESULTS

To test our decomposition algorithm, we started with simulated
EMG signals. In this way we could generate special signals to
test specific aspects of our algorithm, e.g., the decomposition of
difficult superpositions. Another advantage of simulated signals is
that the decomposition results are known. We have also begun to
decompose real (measured) signals.

Simulated EMG signals: The upper plot in Fig. 3 shows a single-
channel simulated EMG signal with a superposition of 4 MUAPs
and AWGN with zero mean and a standard deviation of 20. This
signal was correctly decomposed in about 30 seconds on a stan-
dard PC1. We simulated 1000 such EMG signals using the same
MUAPs but different firing times, which were chosen at random
for each signal. The decomposition results are given in Table 2.

Measured EMG signals: In measured EMG signals, the noise is
not AWGN, which can make the decomposition task harder. Fig. 4
shows an example of a single-channel measured EMG signal con-
taining a superposition of 4 MUAPs. The signal is annotated with
the “firing times” of the Nsrc = 9 active sources. Also shown is
the signal residual, i.e., the EMG signal minus the reconstructed
signal. The reconstructed signal created based on the detected fir-
ing times and the MUAPs. Note that the MUAPs have very dif-
ferent amplitudes, especially the MUAP of MU 8 has a very low
amplitude compared to the other MUAPs. All the 9 MUAPs (8 of
them shown at the bottom of Fig. 4) were given to our decompo-

1Pentium 4 CPU with 2.66 GHz, 1 GB RAM.

Table 1. State transition probabilities (nodes �1 in Fig. 2), ε ≈
10−3.

si,k si,k+1 p(si,k+1|si,k)

all zeros all zeros 1 − ε

all zeros (1, 0, . . . , 0) ε

“1” at position n “1” at position n + 1 1
(0, 0, . . . , 1) all zeros 1

everything else 0
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Fig. 3. Single-channel simulated EMG signal annotated with the
correctly detected “firing times” and durations of the Nsrc = 4
active sources as well as the signal reconstructed from the detected
firing times (top) and the corresponding MUAP trains with correct
(big marks) and detected (small marks) firing times (bottom).

sition algorithm, which found four firings in the given time frame.
We believe that this decomposition result is correct.

Complexity of computation: The complexity of the computation
of one iteration is linear in the length of the EMG signal, the num-
ber of MUs, the length of the MUAPs, and the number of channels.
This is due to the fact that the number of messages to be calculated
grows linearly with these parameters.

Superpositions consisting of many MUAPs: As a final note, we
were able to decompose superpositions consisting of 16 different
given MUAPs if no noise was added. In general, this is a trivial
problem when the MUAPs are known: one can simply peel-off the
MUAPs one after the other. However, it is still important to note
that our algorithm is able to deal with this problem without explic-
itly programming such a peel-off approach. If noise is introduced
to such difficult superpositions the decomposition fails.

4. DISCUSSION

Estimation and tracking of MUAP shapes: In this paper, the
number of MUs as well as the corresponding MUAPs are assumed
to be initially known and constant over time. We plan to extend
our model and algorithm to estimate the number of MUs as well as
the shapes with our message passing approach. In the case where
MUAPs do not change much over time, e.g., in some short term
recordings, the slight variations of the MUAPs from one MU can
be viewed as noise. However, if long-term recordings are to be
decomposed, the MUAPs from one MU might change substan-
tially over time. In this case it is necessary to track the MUAP
changes. We have already implemented such an adaptive algo-
rithm. It works good for simple simulated signals but needs to be
improved for more complex or measured signals.

Firing statistics: Superimposed MUAPs can be resolved either by
using waveform information only or by additionally using firing
statistics. In its current version, the only a-priori information to
decompose EMG signals is that MUAPs from the same source do
not overlap and the state transition probabilities as described in
Section 2. Besides that, the decomposition is based on the EMG
signals and the MUAP waveforms only; average firing frequencies
are currently not used since they can be misleading, e.g., in the
case of repetitive discharges (doublets or multiplets), which often
occur in dynamic contractions. However, in other cases, e.g., when
there are high levels of noise and many active MUs with similar
waveforms, the use of average firing frequencies might be useful or
even necessary. Our model and algorithm can easily be extended
to incorporate firing statistics.

Noise and noise models: Although the noise in measured signals
is not AWGN, we mostly used an AWGN model. This corresponds
to a least-squares fit of the estimated signal to the measured signal.
However, we have experimented with other noise models, e.g., lo-
gistic distributions. So far we found that the AWGN model works
best. But further research has still to be done.

MSE minimizing algorithm: Our decomposition algorithm tries
to minimize the MSE between the EMG signal and the recon-
structed signal. However, the “optimal” solution based on the MSE
(the decomposition that yields the smallest MSE) may not be the
correct one. One reason for this is that noise or artifacts might be
identified as parts of MUAPs. Using average firing frequencies and

Table 2. Decomposition results for 1000 signals. One signal is
shown in Fig. 3. A MUAP is “correct”, if it is detected and classi-
fied correctly.

Number of signals 1000

Number of completely correct decomposed signals 942
Correct-signal rate 94.2%

Number of simulated firings 4000
Number of correct MUAPs 3875

Correct-MUAP rate 96.9%
Number of missed MUAPs 125

Missed-MUAP rate 3.13%
Number of false (additional) MUAPs 83

False-MUAP rate 2.08%
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Fig. 4. Single-channel measured EMG signal annotated with the “firing times” and durations of the Nsrc = 9 active sources (only 4 in this
time frame) as well as the residual (top) and the MUAPs of 8 of the 9 sources (bottom). Source of the EMG signal: Kevin McGill.

other knowledge about the nature of EMG signals might be help-
ful to restrict the search space to the most probable decomposition
results.

Multi-channel EMG signals: Multiple electrodes measure EMG
signals at slightly different locations at the same time. Combin-
ing information from multiple channels can improve the decom-
position result. Our algorithm is capable of dealing with multiple
channels in a natural way. Fig. 2 shows how the equal nodes inte-
grate the information coming from two channels.

5. CONCLUSIONS

In this paper, we presented a new EMG signal decomposition ap-
proach based on a graphical model (factor graph) and a loopy mes-
sage passing algorithm (sum-product algorithm). We have demon-
strated that the new decomposition algorithm works even for many
overlapping action potentials. However, to use the algorithm in
a clinical environment, the factor graph model and the algorithm
have to be further extended. At this stage, our algorithm might al-
ready be used as a plug-in for an existing decomposition algorithm
to deal with difficult superpositions.
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