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Abstract

This paper considers the security of iterated block ciphers against the di�erential crypt-

analysis introduced by Biham and Shamir. Di�erential cryptanalysis is a chosen-plaintext

attack on secret-key block ciphers that are based on iterating a cryptographically weak

function r times (e.g., the 16-round Data Encryption Standard (DES) ). It is shown that

the success of such attacks on an r-round cipher depends on the existence of (r-1)-round

di�erentials that have high probabilities, where an i-round di�erential is de�ned as a cou-

ple (�; �) such that a pair of distinct plaintexts with di�erence � can result in a pair of

i-th round outputs that have di�erence �, for an appropriate notion of \di�erence". The

probabilities of such di�erentials can be used to determine a lower bound on the com-

plexity of a di�erential cryptanalysis attack and to show when an r-round cipher is not

vulnerable to such attacks. The concept of \Markov ciphers" is introduced for iterated

ciphers because of its signi�cance in di�erential cryptanalysis. If an iterated cipher is

Markov and its round subkeys are independent, then the sequence of di�erences at each

round output forms a Markov chain. It follows from a result of Biham and Shamir that

DES is a Markov cipher. It is shown that, for the appropriate notion of \di�erence", the

Proposed Encryption Standard (PES) of Lai and Massey, which is an 8-round iterated

cipher, is a Markov cipher, as are also the mini-version of PES with block length 8, 16 and

32 bits. It is shown that PES(8) and PES(16) are immune to di�erential cryptanalysis

after su�ciently many rounds. A detailed cryptanalysis of the full-size PES is given and

shows that the very plausibly most probable 7-round di�erential has a probability about

2�58. A di�erential cryptanalysis attack of PES(64) based on this di�erential is shown to

1



require all 264 possible encryptions. This cryptanalysis of PES suggested a new design

principle for Markov ciphers, viz., that their transition probability matrices should not be

symmetric. A minor modi�cation of PES, consistent with all the original design principles,

is proposed that satis�es this new design criterion. This modi�ed cipher, called Improved

PES (IPES), is described and shown to be highly resistant to di�erential cryptanalysis.

1. Introduction

Many secret-key block ciphers are cryptosystems based on iterating a cryptographically

weak function several times. Each iteration is called a round. The output of each round

is a function of the output of the previous round and of a subkey derived from the full

secret key by a key-schedule algorithm. Such a secret-key block cipher with r-iterations is

called an r-round iterated cipher. For example, the well-known Data Encryption Standard

(DES) is a 16-round iterated cipher.

Di�erential cryptanalysis, introduced by Biham and Shamir in [1], is a chosen-plaintext

attack to �nd the secret key of an iterated ciphers. It analyzes the e�ect of the \di�erence"

of a pair of plaintexts on the \di�erence" of succeeding round outputs in an r-round

iterated cipher. In Section 2, we describe di�erential cryptanalysis of a general r-round

iterated cipher in terms of (r-1)-round \di�erentials" instead of in terms of the \i-round

characteristics" used in [1]. The hypothesis of stochastic equivalence, which has been

implicitly assumed in di�erential cryptanalysis, is explicitly formulated in Section 2. It

is pointed out that one of the two prerequisites for di�erential cryptanalysis to succeed

on an r-round cipher is the existence of an (r-1)-round di�erential with high probability,

and it is shown that a lower bound on the complexity of di�erential cryptanalysis can be

obtained from the maximum di�erential probability.

In Section 3, Markov ciphers are de�ned as iterated ciphers whose round functions

satisfy the condition that the di�erential probability is independent of the choice of one

of the component plaintexts under an appropriate de�nition of di�erence. It is shown

that, for a Markov cipher with independent subkeys, the sequence of round di�erences

forms a Markov chain. It follows from a result of Biham and Shamir [1] that DES is

a Markov cipher. The study of di�erential cryptanalysis for an r-round Markov cipher

is reduced to the study of the transition probabilities created by its round function. In

particular, Markov chain techniques can be used to show whether the cipher is secure

against di�erential cryptanalysis after su�ciently many rounds.

At Eurocrypt'90, a new iterated cipher, the Proposed Encryption Standard (PES) was

introduced by Lai and Massey [2]. The PES contains 8 rounds plus an output transfor-

mation. In Section 4, standard PES with block length 64 bits and mini-versions of PES

with block length 8, 16 and 32 are considered. These are all shown to be Markov ciphers.

The ciphers PES(8) and PES(16) are shown to be immune to di�erential cryptanalysis

after su�ciently many rounds. A detailed cryptanalysis of PES(64), given in the Ap-

pendix, shows that the very plausibly most likely one-round di�erential has probability
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Figure 1: Encrypting a pair of plaintexts with an r-round iterated cipher

about 2�9, which leads to a 7-round di�erential with probability about 2�58. Di�erential

cryptanalysis of PES(64) based on this di�erential requires the cryptanalyst to perform all

264 possible encryptions. The attacker thus obtains the secret key after 264 encryptions,

which is much less than the 2128 encryptions of an exhaustive key search; however, the 264

encryptions specify the entire mapping from plaintext to ciphertext determined by the

secret key and hence the attacker has no need to �nd the actual secret key.

The cryptanalysis of PES shows that the symmetry of transition probability matrix of

its Markov chain is responsible for the \undesirably large" probability of its most probable

7-round di�erential. This suggests a new design principle for Markov ciphers, viz., that

their transition probability matrices should not be symmetric. A minor modi�cation of

PES, called Improved PES (IPES), was suggested by this new design principle and is

described in Section 5. It is shown that this modi�cation substantially improves the

security of PES without violating any of the earlier design principles used for PES.

2. Di�erential Cryptanalysis of Iterated Ciphers

Throughout this paper, we consider the encryption of a pair of distinct plaintexts by an

r-round iterated cipher as shown schematically in Fig.1. In this �gure, the round function

Y = f(X;Z) is such that, for every round subkey Z, f(�; Z) establishes a one-to-one

correspondence between the round input X and the round output Y . Let the \di�erence"

�X between two plaintexts (or two ciphertexts) X and X� be de�ned as

�X = X 
X��1;

where
N

denotes a speci�ed group operation on the set of plaintexts (= set of ciphertexts)

and X��1 denotes the inverse of the element X� in the group. The round function Y =

f(X;Z) is said to be cryptographically weak if, given a few triples (�X;Y; Y �), it is feasible

(in most cases) to determine the subkey Z.

From the pair of encryptions, one obtains the sequence of di�erences �Y (0), �Y (1); :::,

�Y (r) where Y (0) = X and Y �(0) = X� denote the plaintext pair [so that �Y (0) = �X]
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and where Y (i) and Y �(i) for (0 < i < r) are the outputs of the i-th round, which are

also the inputs to the (i+1)-th round. The subkey for the i-th round is denoted as Z(i).

In the following discussion, we always assume that X 6= X� because, when X = X�, all

�Y (i) would equal the neutral element e of the group, which case is of no interest for

di�erential cryptanalysis.

Di�erential cryptanalysis exploits the fact that the round function f in an iterated

cipher is usually cryptographically weak. Thus, if the ciphertext pair is known and the

di�erence of the pair of inputs to the last round can somehow be obtained, then it is

possible to determine (some substantial part of) the subkey of the last round. In di�er-

ential cryptanalysis, this is achieved by choosing plaintext pairs (X;X�) with a speci�ed

di�erence � such that the di�erence �Y (r � 1) of the pair of inputs to the last round

will take on a particular value � with high probability. Based on this idea, we make the

following de�nition.

De�nition. An i-round di�erential is a couple (�; �), where � is the di�erence of a

pair of distinct plaintexts X and X� and where � is a possible di�erence for the resulting

i-th round outputs Y (i) and Y �(i). The probability of an i-round di�erential (�; �) is

the conditional probability that � is the di�erence �Y (i) of the ciphertext pair after i

rounds given that the plaintext pair (X;X�) has di�erence �X = � when the plaintext

X and the subkeys Z(1); :::; Z(i) are independent and uniformly random. We denote this

di�erential probability by P (�Y (i) = �j�X = �).

The basic procedure of a di�erential cryptanalysis attack on an r-round iterated cipher

can be summarized as follows:

1) Find an (r-1)-round di�erential (�; �) such that P (�Y (r � 1) = �j�X = �) has

maximum, or nearly maximum, probability.

2) Choose a plaintext X uniformly at random and compute X� so that the di�erence

�X between X and X� is �. Submit X and X� for encryption under the actual

key Z. From the resultant ciphertexts Y (r) and Y �(r), �nd every possible value (if

any) of the subkey Z(r) of the last round corresponding to the anticipated di�erence

�Y (r � 1) = �. Add one to the count of the number of appearances of each such

value of the subkey Z(r).

3) Repeat 2) until one or more values of the subkey Z(r) are counted signi�cantly more

often than the others. Take this most-often-counted subkey, or this small set of such

subkeys, as the cryptanalyst's decision for the actual subkey Z(r).

Note that, in a di�erential cryptanalysis attack, all the subkeys are �xed and only the

plaintext can be randomly chosen. In the computation of a di�erential probability, how-

ever, the plaintext and all subkeys are independent and uniformly random. In preparing

a di�erential cryptanalysis attack, one uses the computed di�erential probabilities to de-

termine which di�erential to use in the attack; hence, one is tacitly making the following

hypothesis.
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Hypothesis of Stochastic Equivalence. For an (r-1)-round di�erential (�; �),

P (�Y (r � 1) = �j�X = �) � P (�Y (r � 1) = �j�X = �;Z(1) = !1; :::; Z
(r�1) = !r�1)

for almost all subkey values (!1; :::; !r�1):

From the above description of a di�erential cryptanalysis attack and from the fact

that there are 2m � 1 possible values of �Y (r � 1), one deduces the following result.

Suppose the hypothesis of stochastic equivalence is true, then an r-round cipher with

independent subkeys is vulnerable to di�erential cryptanalysis if and only if the round

function is weak and there exists an (r-1)-round di�erential (�; �) such that P (�Y (r�1) =

�j�X = �)� 2�m; where m is the block length of the cipher.

Let Comp(r) denote the complexity of di�erential cryptanalysis of an r-round cipher

which, following [1], is de�ned as the number of encryptions used.

Theorem 1 ( Lower bound on the complexity of a di�erential cryptanalysis attack on

an r-round iterated cipher.)

Suppose the hypothesis of stochastic equivalence is true, then, in an attack by di�er-

ential cryptanalysis,

Comp(r) � 2=(pmax �
1

2m � 1
) where pmax = max

�
max
�

P (�Y (r � 1) = �j�X = �);

and where m is the block length of the plaintext In particular, if pmax �
1

2m�1
, then a

di�erential cryptanalysis attack will not succeed.

Proof. Note that the anticipated value � of the di�erence �Y (r�1) must certainly be

taken on at least once more on the average than a randomly chosen value �0 if di�erential

cryptanalysis is to succeed. Thus, Tpmax �
T

2m�1 + 1 is a necessary condition for success

in T trials, where each trial consists in choosing a pair of plaintexts with the speci�ed

di�erence �.

Remark. In [1], di�erential cryptanalysis of DES was described in terms of \i-round

characteristics". In our notation, an i-round characteristic as de�ned in [1] is an (i+ 1)-

tuple (�; �1; :::; �i) considered as a possible value of (�X;�Y (1); :::;�Y (i)). Thus, a one-

round characteristic coincides with a one-round di�erential and an i-round characteristic

determines a sequence of i di�erentials, (�X;�Y (j)) = (�; �j): The probability of an

i-round characteristic is de�ned in [1] as

P (�Y (1) = �1;�Y (2) = �2; ::;�Y (i) = �ij�X = �)

where the plaintext X and the subkeys Z(1); :::; Z(i) are independent and uniformly ran-

dom. We use the notion of di�erentials rather than characteristics because, in the dif-

ferential cryptanalysis of an r-round cipher, only the knowledge of �Y (r � 1) is re-

quired for determining the subkey Z(r), no matter what the intermediate di�erences
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�Y (j); 1 � j < r � 1; may be. The most probable di�erential will have in general a

probability greater than that of the most probable characteristic ( although for DES with

a small number of rounds, the two probabilities are roughly the same). Thus, by using

di�erential probabilities rather than characteristic probabilities, we consider in fact the

true probability that di�erential cryptanalysis will succeed, not just a lower bound on

this probability. This is why we were able to derive a lower bound on the complexity of a

di�erential cryptanalysis attack from the probability of di�erentials.

3. Markov Ciphers

In this section, a class of iterated ciphers that are especially interesting for di�erential

cryptanalysis will be considered. For such a cipher, the sequence �Y (0);�Y (1); :::;�Y (r)

forms a Markov chain. Recall that a sequence of discrete random variables v0; v1; :::; vr is

a Markov chain if, for 0 � i < r (where r =1 is allowed),

P (vi+1 = �i+1jvi = �i; vi�1 = �i�1; :::; v0 = �0) = P (vi+1 = �i+1jvi = �i):

A Markov chain is called homogeneous if P (vi+1 = �jvi = �) is independent of i for all

� and �. [In what follows, we always assume that the plaintext X is independent of the

subkeys Z(1); :::; Z(r):]

De�nition. An iterated cipher with round function Y = f(X;Z) is a Markov cipher if

there is a group operation
N

for de�ning di�erences such that, for all choices of � (� 6= e)

and � (� 6= e),

P (�Y = �j�X = �;X = 
)

is independent of 
 when the subkey Z is uniformly random, or, equivalently, if

P (�Y = �j�X = �;X = 
) = P (�Y (1) = �1j�X = �)

for all choices of 
 when the subkey Z is uniformly random.

The following crucial theorem explains the terminology \Markov cipher".

Theorem 2 If an r-round iterated cipher is a Markov cipher and the r round keys are

independent and uniformly random, then the sequence of di�erences �X = �Y (0);

�Y (1); :::; �Y (r) is a homogeneous Markov chain. Moreover, this Markov chain is sta-

tionary if �X is uniformly distributed over the non-neutral elements of the group.

Proof. To show that the sequence �X; �Y (1); :::; �Y (r) is a Markov chain, it is

su�cient to show for the second round that

P (�Y (2) = �2j�Y (1) = �1;�X = �) = P (�Y (2) = �2j�Y (1) = �1):
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To show this, we note that

P (�Y (2) = �2j�Y (1) = �1;�X = �)

=
X



P (Y (1) = 
;�Y (2) = �2j�Y (1) = �1;�X = �)

=
X



P (Y (1)= 
j�Y (1)= �1;�X=�)P (�Y (2)= �2j�Y (1)= �1; Y (1)= 
;�X=�)

=
X



P (Y (1) = 
j�Y (1) = �1;�X = �)P (�Y (2) = �2j�Y (1) = �1; Y (1) = 
)

=
X



P (Y (1) = 
j�Y (1) = �1;�X = �)P (�Y (2) = �2j�Y (1) = �1)

= P (�Y (2) = �2j�Y (1) = �1);

where the third equality comes from the fact that Y (1) and �Y (1) together determine

both Y (1) and Y (1)� so that �Y (2) has no further dependence on �X when Y (1)

and �Y (1) are speci�ed. Because the same round function is used in each round, this

Markov chain is homogeneous. For any key Z = z, the round function f(�; z) is a bi-

jective mapping from the set of plaintexts to the set of ciphertexts. This bijection in-

duces a bijection from pairs of distinct plaintexts (X;X�) to pairs of distinct ciphertexts

(Y; Y �) = (f(X; z); f(X�; z)). The fact that X and �X(6= e) are independent and uni-

formly distributed implies that (X;X�) is uniformly distributed over pairs of distinct

plaintexts. Thus, (Y; Y �) is also uniformly distributed over pairs of distinct ciphertexts

and hence �Y ( 6= e) is also uniformly distributed. Thus the uniform distribution is a

stationary distribution for this Markov chain.

Example 1 DES is a Markov cipher under the de�nition of di�erence as �X =

X
L
X� where

L
denotes bitwise XOR. (This is just a restatement of Lemma 1 in [1].)

For a Markov cipher with independent and uniformly random round subkeys, the

probability of an r-round characteristic is given by the Chapman-Kolmogorov equation

for a Markov chain as

P (�Y (1) = �1;�Y (2) = �2; ::;�Y (r) = �rj�X = �0) =
rY

i=1

P (�Y (1) = �ij�X = �i�1):

It follows that the probability of an r-round di�erential (�0; �r) is

P (�Y (r) = �rj�X = �0) =
X
�1

X
�2

� � �
X
�r�1

rY
i=1

P (�Y (1) = �ij�X = �i�1)

where the sums are over all possible values of di�erences between distinct elements, i.e.,

over all group elements excepting the neutral element e.

For any Markov cipher, let � denote the transition probability matrix of the ho-

mogeneous Markov chain �X = �Y (0); �Y (1); :::; �Y (r). The (i; j) entry in � is

P (�Y (1) = �jj�X = �i) where �1; �2; :::; �M is some agreed-upon ordering of the M
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possible values of �X and M = 2m � 1 for an m-bit cipher. Then, for any r, the (i; j)

entry in �r, p
(r)
ij , equals P (�Y (r) = �jj�X = �i), i.e., p

(r)
ij is just the probability of the

r-round di�erential (�i; �j).

The security of iterated cryptosystems is based on the belief that a cryptographi-

cally \strong" function can be obtained by iterating a cryptographically \weak" function

enough times. For Markov ciphers, one has the following fact.

Theorem 3 For a Markov cipher of block length m with independent and uniformly

random round subkeys, if the semi-in�nite Markov chain �X = �Y (0);�Y (1); ::: has a

\steady-state probability" distribution, i.e., if there is a probability vector (p1; p2; ::; pM),

such that, for all �i; limr!1 P (�Y (r) = �jj�X = �i) = pj ; then this steady state dis-

tribution must be the uniform distribution (1=M; 1=M; :::; 1=M), i.e., limr!1 P (�Y (r) =

�j�X = �) = 1
2m�1 for every di�erential (�; �), so that every di�erential will be roughly

equally likely after su�ciently many rounds. If we assume additionally that the hypothesis

of stochastic equivalence holds for this Markov cipher, then, for almost all subkeys, this

cipher is secure against a di�erential cryptanalysis attack after su�ciently many rounds.

Proof. The theorem follows from the facts that the existence of a steady-state prob-

ability distribution implies that a homogeneous Markov chain has a unique stationary

distribution, which is the steady-state distribution, and that, according to Theorem 2,

the uniform distribution is a stationary distribution.

4. Analysis of the block cipher PES

The block cipher PES, proposed by Lai and Massey in [2], is an iterated block cipher

based on three group operations on 16-bit subblocks, namely, bitwise-XOR, denoted asL
; addition modulo 216 of integers represented by 16-bit subblocks, denoted as +; and

multiplication modulo 216+1 (with the all-zero 16-bit subblock considered as representing

216), denoted as
J
. The encryption process of PES is shown in Fig.2. In order to consider

di�erential cryptanalysis of PES, we must �rst de�ne \di�erence".

The encryption of a plaintext pair by an r-round PES can be described as shown in

Fig. 3, where Xi and Z
(i)
j denote 16-bit subblocks, where X = (X1;X2;X3;X4), where

Z
(i)
A = (Z(i)

1 ; Z
(i)
2 ; Z

(i)
3 ; Z

(i)
4 ), where Z(i)

B = (Z(i)
5 ; Z

(i)
6 ), and where we introduce an operationN

de�ned on 64-bit blocks by

X
O

Z
(i)
A = (X1

J
Z
(i)
1 ;X2

J
Z
(i)
2 ;X3+Z

(i)
3 ;X4+Z

(i)
4 ): (1)

Under the operation
N
, the set of all 64-bit blocks forms a group. Let X�1 be the inverse

of X in this group. Then, for PES, we de�ne the di�erence of two distinct 64-bit blocks

X and X� as �X = X
N
X��1: The appropriateness of this de�nition stems from the

following fact:
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Figure 2: The encryption process of the block cipher PES.

9



- -: : : -
Y

Y �

NY (r)

Y �(r)S�(r)

S(r)Y (r � 1)

Y �(r � 1)Y �(1)

Y (1)S(1)

S�(1)X�

X N N

Z
(1)
A Z

(1)
B Z

(r)
A Z

(r)
B Z

(r+1)
A

g g
66666

? ? ? ? ?
- -: : : -NN N

g g

-

-

-

- - -

- -

Figure 3: Encrypting a pair of plaintexts with an r-round PES

Lemma 1 PES is Markov cipher under the de�nition of di�erence as �X= X
X��1;

where 
 is the group operation de�ned in (1).

Proof.

P (�Y (1) = �1j�X = �0;X = 
)

= P (�Y (1) = �1j�S(1) = �0;X = 
)

=
X
�

P (�Y (1) = �1; S(1) = �)j�S(1) = �0;X = 
)

=
X
�

P (�Y (1) = �1j�S(1) = �0;X = 
; S(1) = �)P (S(1) = �j�S(1) = �0;X = 
)

=
X
�

P (�Y (1) = �1j�S(1) = �0; S(1) = �)P (Z
(1)
A = � 
 
�1)

= 2�64
X
�

P (�Y (1) = �1j�S(1) = �0; S(1) = �);

which is independent of 
, where we have used the facts that �S(1) = �X since S(1) =

X 
 Z
(1)
A and that

P (S(1) = �j�S(1) = �0;X = 
) = P (S(1) = �jX = 
) = P (Z
(1)
A = �
 
�1):

The regular structure of PES makes it possible, and insightful, to consider \mini"

PES ciphers with shorter block length. A mini PES has the same computational graph

as the standard PES shown in Fig.2, but the subblocks are only n bits long (n=2, 4 or 8)

rather than 16, and the operations
L
;+ and

J
are then the corresponding bitwise XOR,

addition modulo 2n, and multiplication modulo 2n+1. Note that for n=2, 4 and 8, these

three operations are still group operations. Thus, the resulting mini PES is a Markov

cipher with block length 4n, by the same argument as for PES(64).

We have been able to prove that, for PES(8) and PES(16), the uniform distribution

is indeed the steady-state probability of the sequence of di�erences. Thus, PES(8) and
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PES(16) with su�ciently many rounds are guaranteed secure against di�erential crypt-

analysis. We conjecture that PES(32) and PES(64) also have the uniform distribution as

the steady-state probability distribution for their sequences of di�erences.

In order to �nd the one-round di�erential with highest probability, an exhaustive

search was performed for the mini ciphers PES(8) and PES(16). The most likely one-

round di�erentials (�X;�Y (1)) for PES(8) and PES(16) are:

�Y (1) = �X = (�X1;�X2;�X3;�X4) = (0; 1; odd; 0); odd 2 f1; 3; ::; 2n � 1g;

and each has a probability approximately 2�(2n�2). The i-round di�erentials (�X;�Y (i))

that take on these same values also have the greatest probabilities for small i > 1. The

probabilities of the above i-round di�erentials for PES(8) and PES(16) are shown in

Table 1.

pdf 8-bit 16-bit
1-round 1:25 � 2�2 1:13 � 2�6

2-round 1:62 � 2�3 1:47 � 2�10

3-round 1:07 � 2�3 1:03 � 2�13y
4-round 1:43 � 2�4 1:6 � 2�16y
5-round 0:97 � 2�4 �y

Table 1: The probabilities of the (estimated or proved) most probable i-round di�erentials
for PES(8) and PES(16). (� : statistically indistinguishable from 2�4n; y : estimated by
statistical test.)

For PES(64), a detailed cryptanalysis (see the Appendix) strongly suggests that the

most probable one-round di�erentials correspond to eight values of �X, namely �i =

(0; 0; 0; 
i) (i=1,2,...,8) where 
1 = 216 � 1; 
2 = 1; 
3 = 216 � 3; 
4 = 3; 
5 = 216 � 5;


6 = 5; 
7 = 216�7; and 
8 = 7: The 8�8 submatrix of the transition probability matrix

� corresponding to these values is shown in the Appendix to be well-approximated by

T = 10�7

0
BBBBBBBBBBBBB@

0 25460 12556 0 0 9417 698 0
25460 0 0 12556 9417 0 0 698
12556 0 0 0 6278 0 0 3139
0 12556 0 0 0 6278 3139 0
0 9417 6278 0 0 0 0 0

9417 0 0 6278 0 0 0 0
698 0 0 3139 0 0 0 0
0 698 3139 0 0 0 0 0

1
CCCCCCCCCCCCCA
:

Note that the (i; j) entry in T k is just

P (�Y (k) = �j;�Y (k � 1) 2 A; � � � ;�Y (1) 2 A; j�X = �i)
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where A = f�1; �2; :::; �8g, which is a lower bound on the (i; j) entry of �k. One obtains

T 7 = 2�58

0
BBBBBBBBBBBBB@

0 1:22 0:53 0 0 0:43 0:07 0
1:22 0 0 0:53 0:43 0 0 0:07
0:53 0 0 0:23 0:19 0 0 0:03
0 0:53 0:23 0 0 0:19 0:03 0
0 0:43 0:19 0 0 0:15 0:03 0

0:43 0 0 0:19 0:15 0 0 0:03
0:07 0 0 0:03 0:03 0 0 0
0 0:07 0:03 0 0 0:03 0 0

1
CCCCCCCCCCCCCA

which is a lower bound on, and a plausibly good approximation to, the probabilities of the

7-round di�erential (�i; �j). One sees that the di�erential (�1; �2) has probability about

1:22�2�58 and appears to be the largest 7-round di�erential probability. Our lower bound

on the complexity of di�erential cryptanalysis shows then that at least 259 encryptions

will be required. The detailed cryptanalysis given in the Appendix shows that in fact the

di�erential cryptanalysis attack will require all 264 possible encryptions.

5. Improved PES

PES can be modi�ed to improve its security without violating the design principles [2]

used for PES. The resulting modi�ed cipher will be called Improved PES and denoted

as IPES. The only essential modi�cation is that a di�erent (and simpler) permutation of

subblocks is used at the end of each of the �rst 7 rounds. The software implementation of

IPES is in fact more e�cient than that of PES.

The computational graph of the encryption process of IPES is shown in Fig.4. Note

that the permutation before the output transformation \undoes" the permutation at the

end of 8-th round, i.e., at the end of 8-th round, the subblocks are not in fact permuted.

The key schedule used to generate the encryption key subblocks for IPES is the same

as for PES (see [2]).

The decryption key DK for IPES is computed from the encryption key Z as follows,

for r=2; ::; 8 : (DK
(r)
1 ;DK

(r)
2 ;DK

(r)
3 ;DK

(r)
4 ) = (Z

(10�r)
1

�1
;�Z

(10�r)
3 ;�Z

(10�r)
2 ; Z

(10�r)
4

�1
)

for r=1; 9 : (DK(r)
1 ;DK

(r)
2 ;DK

(r)
3 ;DK

(r)
4 )= (Z(10�r)

1

�1
;�Z

(10�r)
2 ;�Z

(10�r)
3 ; Z

(10�r)
4

�1
)

for r=1; ::; 8 : (DK(r)
5 ;DK

(r)
6 ) = (Z(9�r)

5 ; Z
(9�r)
6 );

where Z�1 denotes the multiplicative inverse (modulo 216 + 1) of Z, i.e., Z
J
Z�1 = 1

and where �Z denotes the additive inverse (modulo 216) of Z, i.e., �Z+Z = 0. Thus,

symmetry of encryption and decryption, which was one of the design principles of PES,

is maintained in the sense that IPES(IPES(X;Z);DK) = X.
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Xi : 16-bit plaintext subblock
Yi : 16-bit ciphertext subblock

Z
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i : 16-bit key subblockL
: bit-by-bit exclusive-OR of 16-bit subblocks

+ : addition modulo 216 of 16-bit integersJ
: multiplication modulo 216 + 1 of 16-bit integers
with the zero subblock corresponding to 216

Figure 4: Encryption process of IPES.
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Because of the involution property of the round function for PES, the transition

probability matrix � of round di�erentials of PES is symmetric. Thus, the one-round

di�erentials (A,B) and (B,A) will have the same probability P (BjA). For a highly

likely one-round di�erential (A,B), the probability of a 2i-round di�erential (A,A) can

thus be approximated by the probability of the corresponding 2i-round characteristics

(A;B;A;B; :::; A;B;A), i.e., P2i(AjA) � [P (BjA)]2i. Similarly, the probability of the

2i+1 round di�erential (A,B) can be approximated by P2i+1(BjA) � [P (BjA)]2i+1. For

example, the probability of the plausibly most probable one-round di�erential for PES

is P (�Y (1) = (0; 0; 0; 1)j�X = (0; 0; 0;�1)) � 2�9, [�1 stands for the integer 216 � 1,]

the corresponding 7-round characteristics has probability about 2�61. This suggests that

(�X = (0; 0; 0;�1);�Y (7) = (0; 0; 0; 1)) is the most likely 7-round di�erential. The

analysis given in Appendix shows that it is indeed the (plausibly) most likely 7-round

di�erential with probability about 2�58, which is quite close to the probability of the

corresponding characteristic.

The previous discussion suggests the following design principle for a Markov cipher:

The transition probability matrix of a Markov cipher should not be symmetric.

Otherwise, the concatenation of the most probable one-round di�erential with itself r-1

times will tend to provide an (r-1)-round di�erential with high probability. The change

of the permutation of subblocks between rounds of PES that is used in IPES is in ac-

cordance with this new design principle, i.e., the transition probability matrix of IPES is

not symmetric. The change also signi�cantly reduces the probabilities of the highly likely

one-round di�erentials. For IPES, the (plausibly) most probable 1-round di�erential has

probability P (�Y (1) = (1; 0; 1; 0)j�X = (1; 1; 0; 0)) � 2�18;

and the (provably) most probable one-round di�erentials with �X = (1; 0; 1; 0) and

�X = (1; 1;�1; 1) are

P (�Y (1) = (1; 1;�1; 1)j�X = (1; 0; 1; 0)) � 2�34; and

P (�Y (1) = (1; 1; 0; 0)j�X = (1; 1;�1; 1)) � 2�34:

These �gures imply that the corresponding 3-round characteristic ((1; 1; 0; 0), (1; 0; 1; 0),

(1; 1;�1; 1), (1; 1; 0; 0)) has probability about 2�86. This suggests that the probability of

the 3-round di�erential (�X = (1; 1; 0; 0);�Y (3) = (1; 1; 0; 0)) should not be signi�cantly

larger than the average value, 2�64. Other known one-round di�erentials for IPES with

high probabilities are

P (�Y (1) = (1;H; 0; 3)j�X = (1;H;H; 1)) � 2�30;

P (�Y (1) = (1; 0;H; 3)j�X = (1;H; 0; 3)) � 2�30;

P (�Y (1) = (1;H;H; 1)j�X = (1; 0;H; 3)) � 2�30;

where H stands for the integer 215 whose corresponding 16-bit subblock is (1;

15bitsz }| {
0; ::; 0; 0). To

date, we have found no evidence that there are any 3-round di�erentials for IPES whose

probabilities are signi�cantly larger than 2�m = 2�64.

Finally, we remark that if one uses the di�erence de�ned as DX = X1
L
X2, then the

most probable di�erentials (that we have found) for IPES become
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P (DY (1) = (0;H; 0;H)jDX = (0;H;H; 0)) = P (Z(1)
5 2 f0; 1g) = 2�15,

P (DY (1) = (0; 0;H;H)jDX = (0;H; 0;H)) = P (Z(1)
4 2 f0; 1g) = 2�15, and

P (DY (1) = (0;H;H; 0)jDX = (0; 0;H;H)) = P (Z
(1)
4 2 f0; 1g; Z

(1)
5 2 f0; 1g) = 2�30:

However, IPES is not a Markov cipher for this notion of di�erence. If DX is used as the

de�nition of di�erence, the hypothesis of stochastic equivalence does not hold at all for

IPES so that the di�erential probabilities computed for this notion of di�erence have no

relation to an attack by di�erential cryptanalysis. The fact that the 3-round di�erential

(DX = (0;H;H; 0);DY (3) = (0;H;H; 0)) for the di�erence DX has probability much

larger than 3-round di�erentials for the \appropriate" di�erence �X used above has thus

no signi�cance for di�erential cryptanalysis.

Appendix: Detailed Di�erential Cryptanalysis of PES

1. Some One Round Di�erentials for PES

We �rst calculate the probabilities of certain one-round di�erentials for PES for pairs of

input blocks that di�er by a given value. This will enable us to calculate the probability

of a 712 -round di�erential from which it is usually possible to �nd the sub-key used in the

last round.

Clearly a 16-bit number is its own inverse under the group operation �. Let �z denote

the inverse of z under tu+, and z�1 the inverse of z under �. For any n-bit number z, let z0

denote the n-bit complement of z. We also introduce some notation for the di�erence of

two 16-bit numbers z1; z2 under the group operations � and tu+. Let � denote the di�erence

under � and @ denote the di�erence under tu+, i.e.,

�z = z1 � z�12 ; @z = z1 tu+ � z2:

Then, for any 16-bit number k,

(z1 � k)� (z2 � k)�1 = �z; (z1 tu+ k) tu+ � (z2 tu+ k) = @z:

Suppose �z = z1 � z�12 = 0, where we recall that 216 is represented by the integer 0 for

the operation
J
. Then for z1; z2 =2 f0; 1g,

z1 = 216z2 = (216 + 1)z2 � z2 = �z2 (mod 216 + 1); so z1 + z2 = 0 (mod 216 + 1:)

Because z1 and z2 are positive 16-bit numbers, we have z1 + z2 = 216 + 1. If z1 = 0, then

z2 = 1, so in either case z1 + z2 = 1 (mod 216). Clearly, the converse also holds and so

we have

�z = 0 () z1 + z2 = 1 (mod 216): (A:1)

Consider the MA-box, as de�ned in [2] and shown within the dashed lines in Figure 5.

Suppose we have inputs (p1; q1) and (p2; q2) with outputs (t1; u1) and (t2; u2) respectively.

The notion of the other 16-bit subblocks within the MA-box are de�ned in Figure 5.

Suppose further that

p1 + p2 = 1 (mod 216); q1 + q2 = 0 (mod 216):
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: multiplication modulo 216 + 1 of 16-bit integers
with the zero subblock corresponding to 216

Figure 5: The �rst round of PES and the notation used for di�erential cryptanalysis

Then �p = 0, so �r = 0 and hence r1 + r2 = 1 (mod 216). Thus,

s1 + s2 = (r1 tu+ q1) + (r2 tu+ q2) = r1 + r2 + q1 + q2 = 1 (mod 216);

and hence �s = 0. Therefore �t = 0 so that t1 + t2 = 1 (mod 216) and hence

u1 + u2 = (r1 tu+ t1) + (r2 tu+ t2) = r1 + r2 + t1 + t2 = 2 (mod 216):

Thus, we have shown the following relationship between a pair of inputs and a pair of

outputs of the MA-box,

p1 + p2 = 1; q1 + q2 = 0 (mod 216) ) t1 + t2 = 1; u1 + u2 = 2 (mod 216): (A:2)

Consider one round of the cipher, as shown in Figure 5, where (a; b; c; d) are input

subblocks and (x; y; v; w) the output subblocks. The intermediate results are de�ned in

Figure 5. Suppose we have a pair of inputs with

(�a; �b; @c; @d) = (0; 0; 0; n) where n 2 S = f�1;�3;�5;�7g:
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Then trivially we have (�e; �g; @f; @h) = (0; 0; 0; n): Apart from the MA-box, an encryp-

tion round separates into two parts, and we consider �rst the half starting with (a; c).

Suppose that

e1 = (�; 10:::0; �)

for some [16 � (l + 1)]-bit number �, where l 2 f0; � � � ; 15g and � 2 f0; 1g, so there are

(l � 1) consecutive zeros before �. Such an e1 has probability 2�l. From (A:1), we know

that, since �e = 0, e1 + e2 = 1 (mod 216); and thus

e2 = (�0; 10:::0; �0):

Now we can write gi as

g1 = g2 = (�; 00:::0; �);

where � is a [16� (l+1)]-bit number and � 2 f0; 1g. For a given l such an e2 occurs with

probability 2�l. Then we have

p1 = e1 � g1 = (�� �; 10:::0; �� �)
p2 = e2 � g2 = (�0 � �; 10:::0; �0� �)

and thus p1 + p2 = 1 (mod 216): From the MA-box result (A:2), it follows that

q1 + q2 = 0 (mod 216) ) t1 + t2 = 1 (mod 216):

Thus, with probability 2�l;

t1 = (
; 10:::0; �); t2 = (
0; 10:::0; �0);

for some [16 � (l + 1)]-bit number 
 and � 2 f0; 1g. Thus, for a given l, ei; gi and ti
all have the forms speci�ed above with probability 2�3l. Hence, ei; gi and ti all have the

forms speci�ed above for some l with probability

15X
l=1

2�3l �
1

7
:

Thus, with probability 1
7 , we simultaneously obtain two results. Firstly, we have

v1 = e1 � t1 = (� � 
; 00:::0; � � �)
v2 = e2 � t2 = (� � 
; 00:::0; � � �)

so that v1 = v2 and hence @v = 0. Secondly,

x1 = g1 � t1 = (� � 
; 10:::0; �� �)
x2 = g2 � t2 = (� � 
0; 10:::0; �� �0)

so that x1 + x2 = 1 (mod 216) and hence �x = 0. Thus, we have shown that if

q1 + q2 = 0 (mod 216) , then

(�a; @c) = (0; 0) ) (�x; @v) = (0; 0) with probability �
1

7
:
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For the other half of the encryption process, we have �f = 0 and @h 2 S. If we

can �nd f and h such that q1 + q2 = 0 (mod 216); then, provided �p = 0, we have

u1 + u2 = 2 (mod 216): In order to �nd a di�erential with high probability, we need to

�nd such (u1; u2) with �y = 0 and @w 2 S, where

yi = hi � ui; wi = fi � ui:

Thus, we need to �nd f; h and u, where

f1 + f2 = 1 (mod 216); h1 � h2 2 S; u1 + u2 = 2 (mod 216); (A:3)

that satisfy, for q; w and y de�ned as above,

q1 + q2 = 0 (mod 216); w1 � w2 2 S; y1 + y2 = 1 (mod 216): (A:4)

We can �nd most of the possible solutions fairly easily. Suppose

f1 = (�; �1); f2 = (�0; �2);

h1 = (�; �1); h2 = (�; �2);

u1 = (
; �1); u2 = (
0; �2);

for 12-bit numbers �; �; 
, and 4-bit numbers �i; �i; �i. Then, from (A.3), we have

�1 + �2 = 17; �1 � �2 2 S; �1 + �2 = 18: (A:5)

Now, by de�nition,

q1 = (�� �; �1 � �1); q2 = (�0 � �; �2 � �2);

y1 = (� � 
; �1 � �1); y2 = (� � 
0; �2 � �2);

w1 = (�� 
; �1 � �1); w2 = (� � 
; �2 � �2);

and thus (A.4) requires us to �nd solutions to

(�1 � �1) + (�2 � �2) = 16
(�1 � �1) + (�2 � �2) = 17
(�1 � �1)� (�2 � �2) 2 S:

(A:6)

There are 514 triplets of 4-bit numbers satisfying (A.5) and (A.6). The numbers of

solutions that correspond to each pair of elements of S are given in the matrix M below,

where the rows and columns are in the order f�1; 1;�3; 3;�5; 5;�7; 7g,

M =

0
BBBBBBBBBBBBB@

0 73 36 0 0 27 2 0
73 0 0 36 27 0 0 2
36 0 0 0 18 0 0 9
0 36 0 0 0 18 9 0
0 27 18 0 0 0 0 0
27 0 0 18 0 0 0 0
2 0 0 9 0 0 0 0
0 2 9 0 0 0 0 0

1
CCCCCCCCCCCCCA
:
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This gives a matrix of transition probabilities, Tb;d = 2�12M , where

Tb;d = 10�7

0
BBBBBBBBBBBBB@

0 178223 87891 0 0 65918 4882 0
178223 0 0 87891 65918 0 0 4882
87891 0 0 0 43945 0 0 21973
0 87891 0 0 0 43945 21973 0
0 65918 43945 0 0 0 0 0

65918 0 0 43945 0 0 0 0
4882 0 0 21973 0 0 0 0
0 4882 21973 0 0 0 0 0

1
CCCCCCCCCCCCCA
:

We can now make a similar statement to the one above for the other half of the cipher.

Given p1+p2 = 1 (mod 216); (�b; @d) = (0; n1) ) (�y; @w) = (0; n2) for n1; n2 2 S

with probability given by the appropriate entry of Tb;d:

We can now calculate some approximate 1-round di�erential probabilities for PES.

These are given by the transition matrix Ta;b;c;d =
1
7Tb;d. Therefore,

Ta;b;c;d = 10�7

0
BBBBBBBBBBBBB@

0 25460 12556 0 0 9417 698 0
25460 0 0 12556 9417 0 0 698
12556 0 0 0 6278 0 0 3139
0 12556 0 0 0 6278 3139 0
0 9417 6278 0 0 0 0 0

9417 0 0 6278 0 0 0 0
698 0 0 3139 0 0 0 0
0 698 3139 0 0 0 0 0

1
CCCCCCCCCCCCCA
;

and hence

(�a; �b; @c; @d) = (0; 0; 0; n1) ) (�x; �y; @v; @w) = (0; 0; 0; n2) for n1; n2 2 S

with probability given by the appropriate entry of Ta;b;c;d:

It is of interest to know how accurate our approximation is. For purposes of compar-

ison, the di�erential probabilities were calculated by simulation. The results, based on

10,000,000 randomly chosen input pairs for each element of S, are given in the matrix T̂

given below:

T̂ = 10�7

0
BBBBBBBBBBBBB@

0 25291 12891 0 0 9755 817 0
25691 0 0 12769 9509 0 0 807
12712 0 0 0 6353 0 0 3154
0 12800 0 0 0 6324 3050 0
0 9482 6422 0 0 0 0 0

9396 0 0 6329 0 0 0 0
770 0 0 3148 0 0 0 0
0 757 3173 0 0 0 0 0

1
CCCCCCCCCCCCCA
:

3. A Possible Cryptanalysis of the PES
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We can now calculate a 7-round transition matrix, whose entries give the probability

that, given that the input pair to the �rst round di�er by a given value, then the output

di�erences of the seventh round and the input di�erences to all the intermediate rounds

are all of the required form. We denote this matrix by T7a;b;c;d. It is easily calculated

since

T7a;b;c;d = T 7
a;b;c;d = 2�12�77�7M7:

The calculation gives the following matrix:

T7a;b;c;d =

0
BBB@
1:22 � 2�58 1:06� 2�59 0:86 � 2�59 1:12� 2�62

1:06 � 2�59 0:92� 2�60 1:52 � 2�61 0:96� 2�63

0:86 � 2�59 1:52� 2�61 1:21 � 2�61 0:96� 2�63

1:12 � 2�62 0:96� 2�63 0:96 � 2�63 1:76� 2�65

1
CCCA

where the (i; j) entry of the matrix gives a plausibly good approximation of the probability

of the 7-round di�erentials of the form

(�a1; �b1; @c1; @d1) = (0; 0; 0;�(2i� 1)); (�a7; �b7; @c7; @d7) = (0; 0; 0;�(�1)i+j(2j � 1))

where the superscript indicates the round index.

We can now obtain the key as follows. Suppose initially we choose (�a1; �b1; @c1; @d1) =

(0; 0; 0; 1); then we know that after 7 encryption rounds that

(�a8; �b8; @c8; @d8) = (�e8; �f8; @g8; @h8) = (0; 0; 0;�1)

with probability 1:22 � 2�58. From our earlier arguments on the (a; c) half of the cipher,

it follows that (�a; @c) = (0; 0) ) �p = 0 with probability � 1
3
; and, by an argument

similar to one given above of searching all the 4-bit numbers, we can show that

(�b; @d) = (0; 1)) q1 + q2 = 0 (mod 216)

with probability � 42
256: Hence we have

t1 + t2 = 1 (mod 216); u1 + u2 = 2 (mod 216);

with probability � 14
256 = 1:75 � 2�5: After 7 rounds, we have

(�e8; �f8; @g8; @h8) = (0; 0; 0;�1)

p81 + p82 = 1; q81 + q82 = 0; t81 + t82 = 1; u81 + u82 = 2

with probability 1:07 � 2�62:

We can now determine the 96 key bits that are used from this stage to the ciphertext

in the following way. If we denote the ciphertext as (e9i ; f
9
i ; g

9
i ; h

9
i ), then observing one

ciphertext pair gives us

(�e9; �f9; @g9; @h9) = (�x8; �y8; @v8; @w8):
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As before, we divide the encryption round into two halves and we consider �rst the half

ending with (x; v). For a given (�x8; @v8), each 48-bit triplet (t81; x
8
1; v

8
1) determines all the

other quantities in that half of the cipher outside the MA-box. We have additionally to

satisfy three 16-bit constraints in order to satisfy the conditions for the 712 -round char-

acteristics given above. Hence, for a given (�x8; @v8), there will on the average be one

48-bit triplet (t81; x
8
1; v

8
1) and hence also one possible value for the key blocks Z

(9)
1 and Z

(9)
3

(in the notation of Figure 2). However, some values of (�x8; @v8) will give considerably

more triplets (t81; x
8
1; v

8
1). For example, if (�x8; @v8) = (0; 0), the di�erential output, then

one seventh of all triplets (t81; x
8
1; v

8
1) will be possible. Such di�erences do occur infre-

quently, (the one given above with probability 2�32) and do not signi�cantly a�ect the

argument given below. Note that these 48-bit triplets and two 16-bit key blocks can be

pre-calculated for each value of (�e9; @g9). A similar result obviously holds for (�f9; @h9).

Combining the two results, we can see that, for each value of (�e9; �f9; @g9; @h9), we ob-

tain on the average one value for (p81; q
8
1; t

8
1; u

8
1), and from inverting the MA-box, we then

obtain on average one value for the key blocks Z(8)
5 and Z

(8)
6 . Hence, for each plaintext-

ciphertext pair, we obtain on the average one possible value for 96 key bits, that is to

say, a particular value for the 96 key bits occurs with a probability of 2�96 per encryption

pair.

If a key occurs with probability p, then in 2N encryption pairs, the key occurs k times

with probability  
2N

k

!
pk(1� p)2

N
�k �

(2Np)k

k!
e�2

Np:

Thus, in 2N encryption pairs, an incorrect key will occur two or more times with proba-

bility 1
2 � 22(N�96). If we encrypt the whole message space (N = 64; 2Np = 2�32), then a

wrong key will occur two or more times with probability

1� P (wrong key occurs 0 or 1 time) = 1 � exp(�2�32) � 2�32exp(�2�32) �
1

2
2�64;

so this event will happen for 231 of the 96-bit keys. The correct key, however, occurs with

this probability whenever the 712 -round di�erential does not occur, and with probability

p = 1:07�2�62 when the di�erential does occur. Thus in 264 encryption pairs (2Np = 4:28),

the correct key will occur less than twice with probability

exp(�4:28) + 4:28exp(�4:28) � 0:073;

so the correct key is highly likely to occur more than once (about 93% of the time).

To �nd the key, we can then just try all the 96-bit keys that occur more than once in

this procedure, there are approximately 231 such keys. However, since the subkeys are

determined by 128-bit key, there are 232 keys that give rise to each last round 96-bit

subkey, so there are 263 keys that give last round subkeys occurring more than once. We

therefore have a reduced key search of about 263 after all the encryptions have taken place.

Since the true key occurs with a much larger probability than any of the false subkeys,
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we would expect to deal with it before we had tried too many false keys. In that way, we

should have to try only the 232 keys that give the correct 96-bit subkey, and a few other

subkeys perhaps. Thus, the key search will in practice be reduced to almost 232.

4. Conclusions

The cryptanalysis of PES given above is, of course, computationally infeasible, but it

does illustrate some interesting points. The �rst is that the true strength of the standard

PES algorithm is of the order 264 encryptions, a considerable reduction from the work that

a cryptanalyst would expected in an exhaustive key search for the 128-bit key. Second,

it shows that a chosen plaintext attack would be computationally possible on a reduced

round standard PES. It can be seen that the attack outlined above works on an m-round

PES with roughly 28m encryption pairs. Thus a 4-round PES could be broken with roughly

232 encryption pairs. These conclusions of course do not apply to the modi�ed PES,

called IPES and described in this paper; IPES appears to be invulnerable to di�erential

cryptanalysis for the reason given in Section 5.
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