
The Multiple Access Channel with Two Independent
States Each Known Causally to One Encoder

Amos Lapidoth

Signal and Information Processing Laboratory

ETH Zürich
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Abstract—We study the state-dependent multiple access chan-
nel (MAC) with causal side information at the encoders. The
channel state consists of two independent components, S1 and S2,
available at Encoder 1 and Encoder 2, respectively. The problem
where the state is available at only one of the encoders is a
special case . We consider two scenarios. In the first, the states
are available at the encoders in a strictly causal manner. We
derive an achievable region, which is tight for a Gaussian MAC
where the state sequence comprises the channel noise and is
available at one of the encoders only. In the second scenario the
state sequence is available to the encoders in a causal manner,
as in Shannon’s model. A simple extension of the previous result
to Shannon strategies yields an achievability result. Our region
contains as a special case the naı̈ve rate region obtained when
each of the users applies Shannon strategies. In some cases the
inclusion is strict.

Index Terms—Causal state information, feedback, multiple
access channel, strictly-causal state-information.

I. INTRODUCTION

The problem of coding for state-dependent channels with

state information (SI) at the encoder has been studied ex-

tensively in two main scenarios: causal SI, and noncausal

SI. The case where the state is available in a strictly-causal

manner or with a given fixed delay has not attracted much

attention, possibly because in single-user channels strictly-

causal SI does not increase capacity. However, like feedback,

strictly-causal SI can be beneficial in multiple user channels.

This can be seen using the examples of Dueck [3]. Specifically,

Dueck constructs an additive noise broadcast channel (BC),

where the noise is common to the two users. The input and

additive noise are defined in a way that the resulting BC is

not degraded. The encoder learns the channel noise via the

feedback and transmits it to the two users. Although valuable

rate—that otherwise could be used to transmit data—is spent

on the transmission of the noise, the net effect is an increase in

channel capacity (perhaps because the noise is common to both

users). In Dueck’s example the noise is transmitted to the two

users losslessly. But it is straightforward to construct examples

where only lossy transmission of the noise is possible, and

yet this use of feedback increases capacity. There is only one

encoder in the BC, so we can identify the additive noise as

channel state and think about the availability of feedback in

Dueck’s example as knowledge of the state in a strictly causal

manner.

Of most relevance to this contribution is [7], where the state-

dependent multiple access channel (MAC) with common SI at

the encoders was studied. Two main models were considered:

the strictly causal model, where at time i both encoders have

access to a common state sequence up to time i − 1 (or

possibly with larger fixed delay), and the causal model, in

the spirit of Shannon [8], where at time i both encoders have

access to a common state sequence up to (and including)

time i. In accordance with the insight gained from Dueck’s

example, it was shown that knowledge of the state in a strictly

causal manner increases the MAC’s capacity. The main idea

in the achievability results of [7] is to use a block Markov

coding scheme in which the two users cooperatively transmit

a compressed version of the state to the decoder. Although

rate is spent on the transmission of the compressed state, the

net effect can be an increase in the capacity region, because

knowledge of the state (or a compressed version thereof)

at the decoder helps both users. The same approach is also

beneficial in the causal case, where at time i the state Si is

known to both encoders. A block Markov coding scheme is

constructed exactly as in the strictly causal case, with the only

exceptions that the inputs at each of the entries are allowed

to depend on the state and that additional external random

variables that do not depend on the state are introduced. As

in the single-user channel with causal side information, the

external random variables are viewed as representing Shannon

strategies. The naı̈ve approach of using strategies without

block Markov coding is a special case of this scheme, since the

rate at which the state is described can be chosen as zero. An

example is constructed in [7] where the block Markov scheme

outperforms the naı̈ve scheme.

In this paper we study the state-dependent MAC where the

state (S1, S2) consists of two independent components S1 and

S2 that are available to Encoder 1 and Encoder 2, respectively.

Unlike the scenario studied in [7], here the SI at the two

encoders are independent, so the users cannot cooperate in

transmitting the state sequences. The special case when S2 is

determinstic corresponds to a state-dependent MAC with state

available at Encoder 1 only. We refer to this special case as
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the asymmetric state-dependent MAC.

For the strictly causal case we suggest a block Markov cod-

ing scheme, where each user transmits a compressed version

of its SI. Instead of full cooperation in the state transmissions,

the users employ a distributed Wyner-Ziv coding scheme [10],

[4], where the channel output serves as the decoder’s side

information about the two compressed state sequences. Note

that although the two state sequences are independent, they

do depend on each other given the channel output, so a

distributed Wyner-Ziv scheme is superior to a scheme that

employs two independent Wyner-Ziv codes. The resulting

region is tight for the Gaussian asymmetric state-dependent

MAC where the state comprises the channel noise. As in [7],

the block Markov scheme with distributed Wyner-Ziv coding

is applied also to the causal model. Here we use Shannon

strategies to allow dependence between the inputs and channel

states. The resulting rate region includes, as a special case,

the naı̈ve rate region which uses Shannon strategies for the

MAC without block Markov coding. We show via an example

that in some cases the inclusion is strict. The combination of

Shannon strategies and block-Markov coding was suggested

by El Gamal et. al. [1] in the context of the relay channel.

The state-dependent MAC with causal side information

was studied in the past by Das and Narayan [2] and by

Jafar [6]. Das and Narayan developed a non single-letter

characterization of the capacity region of the state-dependent

MAC with causal SI. The achievability results in [2, Theorem

2] hinge on the techniques developed for the multiple-access

channel by Han [5] and do not explicitly include block-

Markov coding schemes. However, note that optimization of

limits of information functions over input distributions include

implicitly also block-Markov coding schemes, since the input

distributions can have arbitrary structures. Jafar suggested

in [6] an achievable region for the MAC with causal SI,

which is in fact identical to the naı̈ve region, but without the

convex hull operation. We will comment on Jafar’s region after

Theorem 2 in Section II-C.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Basic definitions

We are given a discrete memoryless state dependent MAC

PY |S1,S2,X1,X2 with state alphabets S1 and S2, state proba-

bility mass functions (PMFs) PS1 and PS2 , input alphabets

X1 and X2, and output alphabet Y . Sequences of letters

from Sk are denoted by sn
k = (sk,1, sk,2, . . . , sk,n) and

sj
k,i = (sk,i, sk,i+1 . . . , sk,j), for k = 1, 2. Similar notation

holds for all alphabets, e.g. xn
1 = (x1,1, x1,2, . . . , x1,n),

and xj
2,i = (x2,i, x2,i+1, . . . , x2,j). Sometimes we denote n-

sequences by boldface letters, e.g., x1, s1, y, etc. The laws

governing n-sequences of state and output letters are given by

Pn
Y |S1,S2,X1,X2

(y|s1s2,x1,x2) =
n∏

i=1

PY |S1,S2,X1,X2(yi|s1,i, s2,i, x1,i, x2,i),

Pn
S1,S2

(s1, s2) =
n∏

i=1

PS1(s1,i)PS2(s2,i).

For notational convenience, we henceforth omit the superscript

n, and we denote the channel by P . Let φk : Xk → [0,∞),
k = 1, 2, be single-letter cost functions. The cost associated

with the transmission of the sequence xk by Transmitter k is

defined as

φk(xk) =
1
n

n∑
i=1

φk(xk,i).

B. The strictly causal model

Definition 1: Given positive integers μ1 and μ2, let M1 be

the set {1, 2, . . . , μ1} and let M2 be the set {1, 2, . . . , μ2}. An

(n, μ1, μ2, Γ1, Γ2, ε) code with strictly causal independent side

information at the encoders is a pair of sequences of encoder

mappings

fk,i : Si−1
k ×Mk → Xk, k = 1, 2, i = 1, . . . , n (1)

and a decoding map

g : Yn →M1 ×M2

such that the input cost costs are bounded by Γk

φk(xk) ≤ Γk, k = 1, 2,

and the average probability of error Peis bounded by ε

Pe = 1− 1
μ1μ2

μ1∑
m1=1

μ2∑
m2=1

∑
s1,s2

PS1(s1)PS2(s2)·

P
(
g−1(m1,m2)|s1, s2, f1(s1,m1), f2(s2,m2)

) ≤ ε,

where g−1(m1,m2) ⊂ Yn is the decoding set of the pair of

messages (m1,m2), and

fk(sk,mk) = (fk,1(mk), fk,2(sk,1,mk), . . . , fk,n(sn−1
k ,mk)).

The rate pair (R1, R2) of the code is defined as

R1 =
1
n

log μ1, R2 =
1
n

log μ2.

A rate-cost quadruple (R1, R2, Γ1, Γ2) is said to be achievable

if for every ε > 0 and sufficiently large n there exists

an (n, 2nR1 , 2nR2 , Γ1, Γ2, ε) code with strictly causal side

information for the channel PY |S,X1,X2 . The capacity-cost

region of the channel with strictly causal independent SI is the

closure of the set of all achievable quadruples (R1, R2, Γ1, Γ2)
and is denoted by Ci

sc. The superscript i stands for independent,

to distinguish the current model from the one treated in [7].

For a given pair (Γ1, Γ2) of input costs, Ci
sc(Γ1, Γ2) stands for

the section of Ci
sc at (Γ1, Γ2). Our interest is in characterizing

Ci
sc(Γ1, Γ2).
We refer to the situation where S2 is a deterministic random

variable, i.e., where the state consists of only one component

S1, which is available to User 1, as the asymmetric case.

The sum capacity of the channel, denoted by C i
Σ,sc, is

defined as

C i
Σ,sc(Γ1, Γ2) = max

(R1,R2)∈Ci
sc(Γ1,Γ2)

(R1 + R2). (2)
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A few simple properties of Ci
cs can be readily obtained.

Proposition 1: Strictly-causal independent SI does not in-

crease the sum-rate capacity:

C i
Σ,sc(Γ1, Γ2) = max I(X1, X2; Y ), (3)

where the maximum is over all product distributions PX1PX2

satisfying the input constraints

IEφk(Xk) ≤ Γk, k = 1, 2. (4)

The proof of Proposition 1 is deferred to Section III. A simple

property of the capacity region for the asymmetric case is

stated next.

Proposition 2: Let S2 be deterministic. Then the maximal

rate of User 1 with strictly causal SI is equal to its single user

capacity without SI

max
{
R1 : (R1, 0) ∈ Ci

sc(Γ1, Γ2)
}

= max I(X1; Y |X2),

where the maximum in the right hand side is over all PX1PX2

satisfying the input constraints (4).

The proof is deferred to Section III.

Let P i
sc be the collection of all random variables

(V1, V2, S1, S2, X1, X2, Y ) whose joint distribution satisfies

PV1,V2,S1,S2,X1,X2,Y =
PV1|S1PV2|S2PS1PS2PX1PX2PY |S1,S2,X1,X2 . (5)

Note that (5) implies the Markov relations

V1−◦ S1−◦ (V2, Y, S2)
V2−◦ S2−◦ (V1, Y, S1)
(V1, V2)−◦ (S1, S2)−◦ Y (6)

and that X1, X2 are independent of each other and of the

quadruple (V1, V2, S1, S2). Let Ri
sc be the convex hull of the

collection of all (R1, R2, Γ1, Γ2) satisfying

0 ≤ R1 ≤ I(X1; Y |X2, V1, V2)− I(V1; S1|Y, V2) (7)

0 ≤ R2 ≤ I(X2; Y |X1, V1, V2)− I(V2; S2|Y, V1) (8)

R1 + R2 ≤ I(X1, X2; Y |V1, V2)− I(V1, V2; S1, S2|Y ) (9)

Γk ≥ IEφk(Xk), k = 1, 2

for some (V1, V2, S1, S2, X1, X2, Y ) ∈ P i
sc. Our main result

for the strictly causal case is the following.

Theorem 1: Ri
sc ⊆ Ci

sc.

The proof is based on a scheme where lossy versions of the

state sequences are conveyed to the decoder using distributed

Wyner-Ziv compression [4] followed by block-Markov encod-

ing to transmit the messages and the Wyner-Ziv codewords.

The channel output serves as the decoder’s side information

in the distributed Wyner-Ziv code. Since the two components

of the source are independent, there is no direct cooperation

between the encoders via a common message as in [7]. Instead,

each user spends part of its private rate on the transmission of

its Wyner-Ziv codeword. The details of the proof are omitted.

In some cases, the region Ri
cs coincides with Ci

cs. The next

example is such a case. Although Theorem 1 is proved for the

discrete memoryless case, we apply it here for the Gaussian

model. Extension to continuous alphabets can be done as

in [9].

Example 1: Consider the asymmetric Gaussian MAC with

input power constraints IEX2
k ≤ Γk, k = 1, 2, where the state

S1 comprises the channel noise:

Y = X1 + X2 + S1, S1 ∼ N(0, σ2
s1

). (10)

The capacity region of this channel when S1 is known strictly

causally to Encoder 1 is the collection of all pairs (R1, R2)
satisfying

R1 ≤ 1
2

log
(

1 +
Γ1

σ2
s1

)
(11)

R1 + R2 ≤ 1
2

log
(

1 +
Γ1 + Γ2

σ2
s1

)
. (12)

Note that this collection is the convex hull of the union of the

capacity region when S1 is unknown and the set comprising

the rate pair

R1 = 0, R2 =
1
2

log
(

1 +
Γ1 + Γ2

σ2
s1

)
. (13)

A time-sharing argument thus demonstrates that, to prove the

achievability of (11)–(12) in the asymmetric case, it suffices

to show that the rate pair in (13) is achievable. To this end,

make the following substitutions in the definition of the set

Ri
sc: V2 = 0; V1 is zero mean and jointly Gaussian with S1;

and X1, X2 are zero mean independent Gaussians independent

of (V1, S1). Then (7)–(9) reduce to

0 ≤ 1
2

log
(Γ1 + σ2

s1|v1
)(Γ1 + Γ2 + σ2

s1
)

σ2
s1

(Γ1 + Γ2 + σ2
s1|v1

)
(14)

R2 ≤ 1
2

log

(
1 +

Γ2

σ2
s1|v1

)
(15)

R2 ≤ 1
2

log
(

1 +
Γ1 + Γ2

σ2
s1

)
(16)

where σ2
s1|v1

is the variance of S1 conditioned on V1. For any

σ2
s1|v1

satisfying

Γ2 σ2
s1

Γ1 + Γ2
− Γ1 ≤ σ2

s1|v1
≤ Γ2 σ2

s1

Γ1 + Γ2
(17)

the bound (16) dominates (15) and the right hand side of (14)

is positive. We thus conclude that (13) is achievable.

We next have to show that the achievable region (11)–(12)

is tight. This follows from the capacity region of the Gaussian

MAC without SI, and Propositions 1 and 2.

C. The causal model

The definition of codes and achievable rates remain as in

Section II-B, with the only difference being the definition of

encoding maps: in the causal case (1) is replaced by

fk,i : Si
k ×Mk → Xk, k = 1, 2, i = 1, . . . , n. (18)
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The capacity region and its section at (Γ1, Γ2) are denoted by

Ci
c and Ci

c(Γ1, Γ2), respectively. Let P i
c be the collection of all

random variables (V1, V2, U1, U2, S1, S2, X1, X2, Y ) whose

joint distribution can be written as

PV1,V2,U1,U2,S1,S2,X1,X2,Y = PV1|S1PV2|S2PU1PU2PS1PS2 ·
PX1|U1,S1PX2|U2,S2PY |S1,S2,X1,X2 . (19)

Observe that (19) implies the Markov relations

V1−◦ S1−◦ (V2, S2, X1, X2, U1, U2, Y )
V2−◦ S2−◦ (V1, S1, X1, X2, U1, U2, Y )
(V1, V2)−◦ (S1, S2)−◦ (X1, X2, U1, U2, Y ). (20)

Let Ri
c be the convex hull of the collection of all

(R1, R2, Γ1, Γ2) satisfying

0 ≤ R1 ≤ I(U1; Y |U2, V1, V2)− I(V1; S1|Y, V2) (21)

0 ≤ R2 ≤ I(U2; Y |U1, V1, V2)− I(V2; S2|Y, V1) (22)

R1 + R2 ≤ I(U1, U2; Y |V1, V2)− I(V1, V2; S1, S2|Y ) (23)

Γk ≥ IEφk(Xk), k = 1, 2

for some (V1, V2, U1, U2, S1, S2, X1, X2, Y ) ∈ P i
c. Our result

for the causal case is stated next.

Theorem 2: Ri
c ⊆ Ci

c.

The proof proceeds along the lines of the proof of Theorem 1,

except that the input Xk is allowed to depend on the state Sk,

and that additional external random variables U1 and U2 that

do not depend on S1, S2 are introduced. This resembles the

situation in coding for the single user channel with causal

side information, where a random Shannon strategy can be

represented by an external random variable independent of the

state. The proposed scheme outperforms the naı̈ve approach of

using strategies without block Markov encoding of the state.

This latter naı̈ve approach leads to the region comprising all

rate pairs (R1, R2) satisfying

R1 ≤ I(T1; Y |T2, Q)
R2 ≤ I(T2; Y |T1, Q)

R1 + R2 ≤ I(T1, T2; Y |Q) (24)

for some PQPT1|QPT2|Q, where Tk are random Shannon

strategies [8] whose realizations are mappings tk : Sk → Xk,

k = 1, 2; Q is a time sharing random variable, and

PY |T1,T2(y|t1, t2) =
∑

s1∈S1

∑
s2∈S2

PS1(s1)PS2(s2)·

PY |S1,S2,X1,X2(y|s1, s2, t1(s1), t2(s2)).

The naı̈ve region (24) contains the region suggested by S. A.

Jafar in [6, Section VI], as the latter does not include the time

sharing random variable, or convex hull operation. Note that

the time sharing random variable cannot be included in the

coding random variables (U1, U2) of [6, Section VI], since

they should be kept independent of each other. Clearly Rc

contains the region of the naı̈ve approach as we can choose

V1, V2 in (21)–(23) to be deterministic. The next example

demonstrates that the inclusion can be strict.

Example 2: Consider the asymmetric state-dependent MAC

consisting of two independent single user channels, where

the state of Channel 2 is available causally at the input of

Channel 1. Specifically, let the input and output alphabets be

X1 = {0, 1}, X2 = {0, 1, 2, 3}, Y = Y1 × Y2

where

Y1 = {0, 1}, Y2 = {0, 1, 2, 3}.
The channel is defined as

Y1 = X1

Y2 = X2 ⊕ S1,

where ⊕ stands for modulo 4 addition, S1 is additive noise

given by

S1 = {0, 1, 2, 3}, PS = (1− p, p/3, p/3, p/3),

and p ∈ (0, 1) is small enough to guarantee that

H(S1) < 1. (25)

We now characterize the maximal rate of User 2.
Block Markov Coding. For this channel the rate pair (0, 2) is

in Ri
c, and every rate pair (R1, R2) in Ci

c must satisfy R2 ≤ 2.

Thus,

R(bm)
2,max = 2 [bits]. (26)

That no achievable rate R2 can exceed 2 bits is obvious,

because this is even true if the state is known to all parties.

That (0, 2) is in Ri
c can be shown by a proper choice of the

random variables in (21)–(23) as follows. Since S2 is null,

let V2 also be a null random variable, and set U2 = X2.

For the external random variables of User 1, note that the

entropy of S1 is lower than the capacity of the channel of

User 1. Therefore choose V1 = S1, U1 = X1, and let X1 be

independent of S1. With these substitutions, (21)–(23) reduce

to

0 ≤ I(X1; Y1, Y2|X2, S1)−H(S1|Y1, Y2) (27)

R2 ≤ I(X2; Y1, Y2|X1, S1) (28)

R2 ≤ I(X1, X2; Y1, Y2|S1)−H(S1|Y1, Y2) (29)

with the joint distribution

PS1,X1,X2,Y = PS1PX1PX2PY1|X1PY2|S1,X2 . (30)

With the joint distribution (30), we obtain from (27)

0 ≤ H(Y1, Y2|X2, S1)−H(Y1, Y2|X1, X2, S1)−H(S1|Y2)
= H(Y1|Y2, X2, S1) + H(Y2|X2, S1)
−H(Y1|X1, S1, X2, Y2)−H(Y2|X1, X2, S1)
−H(S1|Y2)

= H(Y1)−H(S1|Y2). (31)

Similarly, from (28), (29) we obtain the bounds

R2 ≤ H(Y1, Y2|X1, S1)−H(Y1, Y2|X1, X2, S1)
= H(Y1|X1) + H(Y2|X1, S1)−H(Y1|X1)
−H(Y2|X1, X2, S1)

= H(Y2|X1, S1) = H(X2) (32)
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R2 ≤ H(Y1, Y2|S1)−H(Y1, Y2|X1, X2, S1)−H(S1|Y1, Y2)
= H(Y1) + H(Y2|S1)−H(Y1|X1)
−H(Y2|X2, S1)−H(S1|Y2)

= H(X2) + H(Y1)−H(S1|Y2). (33)

Let X1 be Bernoulli(1/2), and let X2 be uniformly distributed

over its alphabet {0, 1, 2, 3}. Due to the bound (25) on the

entropy of S1, (31) is satisfied. Consequently (32) domi-

nates (33), and since H(X2) = 2 bits, we conclude that (26)

is achievable.

The Naı̈ve Approach. Since the state S2 is null, we substitute

X2 instead of T2 in (24). Based on properties of the capacity

region of the classical MAC without side information, the

maximal rate R
(naı̈ve)
2,max at which User 2 can communicate

utilizing the naı̈ve approach is given by

R
(naı̈ve)
2,max = max

t1,PX2

I(X2; Y1, Y2|T1 = t1). (34)

We claim that R
(naı̈ve)
2,max is strictly less than 2 bits. To see this,

let us write

I(X2; Y1, Y2|T1 = t1)
= H(Y1, Y2|T1 = t1)−H(Y1, Y2|T1 = t1, X2)
= H(Y1|T1 = t1) + H(Y2|Y1, T1 = t1)
−H(Y1|T1 = t1, X2)−H(Y2|Y1, T1 = t1, X2)

= I(X2; Y2|Y1, T1 = t1) (35)

= H(X2)−H(X2|Y1, Y2, T1 = t1), (36)

where (35) holds because X2 is independent of (Y1, T1) so

H(Y1|T1 = t1) = H(Y1|T1 = t1, X2), and (36) holds

because X2 is independent of (X1, T1).
Since X2 takes value in a set with four elements, it follows

from (34) and (36) that R
(naı̈ve)
2 cannot be 2 if X2 is not

uniform. It thus remains to show that R
(naı̈ve)
2 cannot be

2 even if X2 is uniform. By (36), this is equivalent to

showing that when X2 is uniform, the conditional entropy

H(X2|Y1, Y2, T1 = t1) is strictly positive for all functions t1.

This can be shown by noting that t1(S1) can take on at most

two different values and therefore cannot determine S1.

III. PROOFS

Proof of Proposition 1: First note that the right hand side

of (3) is the sum-rate capacity of the same MAC without SI

and hence is achievable in the presence of strictly causal SI.

It remains to show that this is also an upper bound. Consider

the result of applying any coding scheme to messages M1 and

M2 that are chosen uniformly and independently at random.

Starting with the Fano inequality, we have

n(R1 + R2)− nεn ≤ I(M1,M2; Y n)

=
n∑

i=1

I(M1,M2; Yi|Y i−1)

≤
n∑

i=1

I(M1,M2, Y
i−1; Yi)

≤
n∑

i=1

I(M1,M2, X1,i, X2,i, Y
i−1; Yi)

=
n∑

i=1

I(X1,i, X2,i; Yi)

where the last equality holds because in the strictly causal

case the Markov relation (M1,M2, Y
i−1)−◦ (X1,i, X2,i)−◦ Yi is

satisfied. Since (M1, S
i−1
1 ) and (M2, X

i−1
2 ) are independent

of each other, so are X1,i and X2,i. The claim now follows

by the standard time sharing argument.
Proof of Proposition 2: We need to show only the

converse part. Denote by M1 the random message of User 1,

and note that M1 and Xn
2 are independent of each other. By

Fano’s inequality

nR1 − nεn ≤ I(M1; Y n|Xn
2 ) =

n∑
i=1

I(M1; Yi|Y i−1, Xn
2 )

≤
n∑

i=1

I(M1, X1,i, Y
i−1, Xi−1

2 , Xn
2,i+1; Yi|X2,i)

=
n∑

i=1

I(X1,i; Yi|X2,i)

where the last equality is due to the Markov relation

(M1, Y
i−1, Xi−1

2 , Xn
2,i+1)−◦ (X1,i, X2,i)−◦ Yi. The claim now

follows by the standard time sharing arguments.
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