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Abstract—We propose a new inner bound on the capacity
region of a memoryless multiple-access channel that is governed
by a memoryless state that is known strictly causally to the
encoders. The new inner bound contains the previous bounds,
and we provide an example demonstrating that the inclusion can
be strict.

A variation on this example is then applied to the case where
the channel is governed by two independent state sequences,
where each transmitter knows one of the states strictly causally.
The example proves that, as conjectured by Li et al., an inner
bound that they derived for this scenario can indeed by strictly
better than previous bounds.

I. INTRODUCTION

If a memoryless single-user channel is governed by an
independent and identically distributed (IID) state sequence,
then its capacity is not increased if the state is made available
to the encoder in a strictly-causal way. The picture changes
dramatically on the multiple-access channel (MAC) [1], [2]: In
the “single-state scenario,” where the channel is governed by
a single state sequence, the capacity region typically increases
if the state is revealed to both transmitters in a strictly causal
way [1]. Some of the gains can be attributed to the ability
of the two encoders to compress the state information and to
cooperate in sending the compressed version to the receiver.
But strictly-causal side information (SI) is beneficial even in
the “double-state scenario,” where the channel is governed by
two independent states, with each transmitter knowing one
of the sequences strictly causally. In this case too, the side
information can be helpful even though the transmitters cannot
cooperate in compressing the states or in sending them [2].

The present note deals with both the single-state and
the double-state scenarios. For the single-state scenario, we
present a new inner bound on the capacity region. This bound
contains the inner bound of [1] (which was extended to
the many-transmitters scenario in [3]). We also provide an
example showing that the inclusion can be strict.

By adapting this example to the double-state scenario, we
provide an example showing that—as conjectured in [3]—the
inner bound proposed by Li et al. in [3] can be strictly larger
than that in [2].

To keep the contribution focused, we do not consider causal
side information in this note, although our results can be
carried over to that setting as in [1], [2].

We next describe the two scenarios more explicitly. Our
descriptions are identical to those in [1], [2] except that, for
simplicity, we do not consider cost constraints and we assume
throughout that all the alphabets are finite.

A. The Single-State Scenario

In the single-state scenario we are given a discrete mem-
oryless state-dependent MAC of law PY |W,X1,X2 with state
alphabet W , state probability mass function (PMF) PW , input
alphabets X1 and X2, and output alphabet Y . Sequences
of letters from W are denoted wn = (w1, w2, . . . , wn)
and wj

i = (wi, wi+1 . . . , wj). Similar notation holds for
all alphabets, e.g. xn

1 = (x1,1, x1,2, . . . , x1,n), xj
2,i =

(x2,i, x2,i+1, . . . , x2,j). When there is no risk of ambiguity,
n-sequences will sometimes be denoted by boldface letters, y,
x1, w, etc. The laws governing n-sequences of output letters
and states are

Pn
Y |W,X1,X2

(y|w,x1,x2) =
n∏

i=1

PY |W,X1,X2(yi|wi, x1,i, x2,i),

Pn
W (w) =

n∏
i=1

PW (wi).

For notational convenience, we henceforth omit the super-
script n, and we denote the channel by P .

Definition 1: Given positive integers ν1, ν2, let M1 de-
note the set {1, 2, . . . , ν1}, and let M2 denote the set
{1, 2, . . . , ν2}. An (n, ν1, ν2, ε) code with strictly-causal side
information (SI) at the encoders is a pair of sequences of
encoder mappings

fk,i : Wi−1 ×Mk → Xk, k = 1, 2, i = 1, . . . , n (1)

and a decoding mapping

g : Yn →M1 ×M2

such that the average probability of error Pe does now ex-
ceed ε. Here Pe is 1− Pc;

Pc =
1

ν1ν2

ν1∑
m1=1

ν2∑
m2=1

Pr(correct|m1,m2);
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and

Pr(correct|m1,m2) =∑
w

PW (w)P
(
g−1(m1,m2)|w, f1(w,m1), f2(w,m2)

)
,

where g−1(m1,m2) ⊂ Yn is the decoding set of the pair of
messages (m1,m2), and

fk(w,mk) = (fk,1(mk), fk,2(w1,mk), . . . , fk,n(wn−1,mk)).

The rate pair (R1, R2) of the code is defined as

R1 =
1
n

log ν1, R2 =
1
n

log ν2.

A rate-pair (R1, R2) is said to be achievable if for every posi-
tive ε and sufficiently large n there exists an (n, 2nR1 , 2nR2 , ε)
code with strictly-causal SI for the channel PY |W,X1,X2 . The
capacity region of the channel with strictly-causal SI is the
closure of the set of all achievable pairs (R1, R2), and is
denoted Ccom

s-c . The subscript “s-c” stands for strictly-causal.

B. The Double-State Scenario

In the double-state scenario we are given a discrete memory-
less state-dependent MAC PY |S1,S2,X1,X2 with state alphabets
S1 and S2, state probability mass functions (PMFs) PS1 and
PS2 , input alphabets X1 and X2, and output alphabet Y . The
laws governing n sequences of output letters and states are

Pn
Y |S1,S2,X1,X2

(y|s1s2,x1,x2)

=
n∏

i=1

PY |S1,S2,X1,X2(yi|s1,i, s2,i, x1,i, x2,i),

Pn
S1,S2

(s1, s2) =
n∏

i=1

PS1(s1,i)PS2(s2,i).

For notational convenience, we henceforth omit the super-
script n, and we denote the channel by P .

Given positive integers ν1, ν2, let M1 be the set
{1, 2, . . . , ν1} and M2 the set {1, 2, . . . , ν2}. An (n, ν1, ν2, ε)
code with strictly causal independent SI at the encoders is a
pair of sequences of encoder mappings

fk,i : Si−1
k ×Mk → Xk, k = 1, 2, i = 1, . . . , n (3)

and a decoding mapping

g : Yn →M1 ×M2

such that the average probability of error Pe is bounded by ε,
where Pe = 1− Pc and

Pc =
1

ν1ν2

ν1∑
m1=1

ν2∑
m2=1

∑
s1,s2

PS1(s1)PS2(s2)P
(
g−1(m1,m2)|s1, s2, f1(s1,m1), f2(s2,m2)

)
where g−1(m1,m2) ⊂ Yn is the decoding set of the pair of
messages (m1,m2), and

fk(sk,mk) =
(
fk,1(mk), fk,2(sk,1,mk), . . . , fk,n(sn−1

k ,mk)
)
.

The rate pair (R1, R2) of the code is defined as

R1 =
1
n

log ν1, R2 =
1
n

log ν2.

A rate-pair (R1, R2, ) is said to be achievable if for every
ε > 0 and sufficiently large n there exists an (n, 2nR1 , 2nR2 , ε)
code with strictly-causal SI for the channel PY |S,X1,X2 . The
capacity region of the channel with strictly-causal independent
SI is the closure of the set of all achievable pairs (R1, R2),
and is denoted Cind

s-c . The superscript “ind” indicates that the
two states are independent.

II. THE SINGLE-STATE SCENARIO

For the single-state scenario, an inner bound on Ccom
s-c was

derived in [1] and later extended to many-transmitters in [3].
In the absence of cost constraints this bound can be described
as follows: Let Pcom

s-c be the collection of all random variables
(U, V,X1, X2,W, Y ) whose joint distribution satisfies

PU,V,X1,X2,W,Y = PW PX1|UPX2|UPUPV |W PY |W,X1,X2 .
(4)

Note that (4) implies the Markov relations X1(−−U(−−X2

and V (−−W(−−Y , and that the triplet (X1, U, X2) is in-
dependent of (V,W ). Let Rcom

s-c be the convex hull of the
collection of all (R1, R2) satisfying

R1 ≤ I(X1;Y |X2, U, V ) (5a)
R2 ≤ I(X2;Y |X1, U, V ) (5b)

R1 + R2 ≤ I(X1, X2;Y |U, V ) (5c)
R1 + R2 ≤ I(X1, X2, V ;Y )− I(V ;W ) (5d)

for some (U, V,X1, X2,W, Y ) ∈ Pcom
s-c .

Theorem 1 ([1]): Rcom
s-c ⊆ Ccom

s-c .
The achievability of this region is based on a Block-Markov
scheme where at Block ν + 1 the transmitters send fresh
private messages as well as a common message that is used to
send a compressed version of the state sequence of Block ν.
The compression is of the Wyner-Ziv type with the side
information being the channel outputs at Block ν.

We next present a tighter inner bound. At Block ν + 1
we still use the MAC by sending private messages and a
common message. The common message is still a compressed
version of the state information from the previous block.
The twist, however, is that the private messages need not be
entirely composed of fresh information. The private message
of Transmitter 1 has two parts. The first, of rate R1, is
indeed fresh information. But the second, of rate R

(1)
0 , is a

compressed version of the pair of sequences (x1,w) from
Block ν (again with the side information being the received
symbols in the previous block). Since Transmitter 1 knows
which symbols it sent in the previous block, and since it knows
the state of the channel in the previous block, it can compress
the pair (x1,w). Likewise Transmitter 2. Using Gastpar’s
results on the compression of correlated sources with side
information [4] we obtain the following bound:
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Theorem 2: The rate-pair (R1, R2) is achievable if for some
joint distribution of the form

PU,V,V1,V2,X1,X2,W,Y =
PW PX1|UPX2|UPUPV |W PV1|W,X1PV2|W,X2PY |W,X1,X2 (6)

there exist nonnegative numbers R
(1)
0 and R

(2)
0 such that

R1 + R
(1)
0 ≤ I(X1;Y, V1, V2, V |X2, U) (7)

R2 + R
(2)
0 ≤ I(X2;Y, V1, V2, V |X1, U) (8)

R1 + R2 + R
(1)
0 + R

(2)
0 ≤ I(X1, X2;Y, V1, V2, V |U) (9)

R0 + R1 + R2 + R
(1)
0 + R

(2)
0 ≤ I(X1, X2;Y, V1, V2, V ) (10)

and

R
(1)
0 ≥ I(X1,W ;V1|V, V2, Y ) (11a)

R
(2)
0 ≥ I(X2,W ;V2|V, V1, Y ) (11b)
R0 ≥ I(W ;V |V1, V2, Y ) (11c)

R
(1)
0 + R

(2)
0 ≥ I(X1, X2,W ;V1, V2|V, Y ) (11d)

R
(1)
0 + R0 ≥ I(X1,W ;V1, V |V2, Y ) (11e)

R
(2)
0 + R0 ≥ I(X2,W ;V2, V |V1, Y ) (11f)

R
(1)
0 + R

(2)
0 + R0 ≥ I(X1, X2,W ;V1, V2, V |Y ). (11g)

If we only consider joint distributions where V1 and V2 are
deterministic, and if we set R

(1)
0 , R

(2)
0 to zero, we obtain the

inner bound of [1]. Thus,
Remark 1: The proposed inner bound contains the inner

bound of [1]
The following example shows that the inclusion can be strict.

Example 1: Consider a MAC with two binary inputs X1 =
X2 = {0, 1}; a common state W = (W0,W1) ∈ {0, 1}2,
where W0, W1 are IID with entropy

H(W0) = H(W1) = 1/2; (12)

and an output Y = (Y1, Y2) ∈ {0, 1}2 with

Y1 = X1 ⊕WX2 (13a)
Y2 = X2. (13b)

Thus, if X2 is equal to zero, then Y1 is the mod-2 sum of X1

and W0, and otherwise it is the mod-2 sum of X1 and W1.
We study the highest rate at which User 2 can communicate
when User 1 transmits at rate 1. We show that for this channel

max{R2 : (1, R2) ∈ Rcom
s-c } = 0 (14)

but
max{R2 : (1, R2) ∈ Ccom

s-c } = 1/2, (15)

and that the rate-pair (1, 1/2) is in the new inner bound.
Proof: We first prove (15). To this end we note that if

(1, R2) is achievable, then R2 cannot exceed 1/2. This can
be shown using the full-cooperation outer-bound [1], which
implies that (R1, R2) can only be achievable if R1+R2 ≤ 3/2.
Of more interest to us is the fact that the rate-pair (1, 1/2) is

achievable. We demonstrate this using the new inner bound.
Indeed, it is straightforward to verify that setting

R
(1)
0 = R0 = 0, R

(2)
0 = 1/2, (16a)

V = V1 = 0, V2 = WX2 , (16b)

U = 0, (16c)

X1, X2 ∼ IID Bernoulli 1/2, (16d)

and
(R1, R2) = (1, 1/2) (16e)

satisfies all the required inequalities. This choice corresponds
to the following Block-Markov scheme: In the Block-Markov
scheme Transmitter 1 sends its data uncoded. At Block b + 1
Transmitter 2 sends n bits, half of which are fresh data bits
and half of which are used to describe the n-length sequence
wx2 of the previous block. Note that Transmitter 2 does not
describe the entire state sequence w of the previous block
but only wx2 . This latter sequence is known to Transmitter 2
at the beginning of Block b + 1 thanks to the strictly-causal
state information and because it knows the sequence x2 it
transmitted in the previous block. And n/2 bits suffice to
describe this sequence because WX2 is of entropy 1/2.

We now turn to proving (14). We fix some distribution
PU,V,X1,X2,W,Y of the form (4), we assume that (R1 = 1, R2)
satisfy Inequalities (5), and we then prove that R2 must be
zero. Since R1 = 1 and since X1 is binary, Inequality (5a)
must hold with equality, and X1 must be independent of
(X2, U, V ). By (4), this implies that

X1 is independent of (X2, U, V, W ). (17a)

From (5a) (that we know holds with equality) and the fact that
R1 = 1 we also infer that

1 = H(Y |X2, U, V )−H(Y |X1, X2, U, V )
= H(Y1|X2, U, V )−H(Y1|X1, X2, U, V ) (17b)

where the second equality holds because Y2 is a deterministic
function of X2. Since Y1 is binary, H(Y1|X2, U, V ) is upper-
bounded by 1, and we conclude from (17b) that

0 = H(Y1|X1, X2, U, V )
= H(Y1 ⊕X1|X1, X2, U, V )
= H(WX2 |X1, X2, U, V )
= H(WX2 |X2, U, V ) (17c)

where the last equality follows from (17a).
We next show that

U(−−(X2, V )(−−WX2 . (17d)

To this end we note that, by (4), the pair (V,W ) is independent
of (U,X2) and hence

U(−−(X2, V )(−−W. (17e)

Since WX2 is a deterministic function of (X2, V, W ), this
implies (17d), because if A(−−B(−−C forms a Markov chain
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then A(−−B(−−f(B,C). Having established (17d), we now
obtain from (17c)

H(WX2 |X2, V ) = 0. (17f)

We now focus on the case where X2 is not deterministic

Pr
[
X2 = η

]
> 0, η ∈ {0, 1}, (17g)

because if X2 is deterministic then R2 must be zero by (5b).
We also assume that the PMF of V is strictly positive

Pr
[
V = v

]
> 0, v ∈ V, (17h)

because outcomes of the auxiliary random variable that have
zero probability can be removed from V without affecting the
inner bound. Since , by (4), V is independent of X2, it follows
from (17g) and (17h) that

Pr
[
X2 = η, V = v

]
> 0, η ∈ {0, 1}, v ∈ V. (17i)

This and (17f) imply that

H(Wη|X2 = η, V = v) = 0, η ∈ {0, 1}, v ∈ V. (17j)

Since, by (4), X2 is independent of (V,W ) and, a fortiori, of
(V,Wη), it follows from (17j) that

H(Wη|V = v) = 0, η ∈ {0, 1}, v ∈ V. (17k)

Thus, H(Wη|V ) = 0, and since W = (W0,W1),

H(W |V ) = 0. (17l)

Consequently,

I(V ;W ) = H(W )
= 1, (17m)

where the second equality follows from (12) and the indepen-
dence of W0 and W1. From (17m), (5d), and the fact that Y
has four elements we then conclude that R1 + R2 ≤ 1. This
combines with R1 = 1 to establish that R2 must be zero.
Terminating the Block-Markov scheme: To conclude the
sketch of the achievability of the new inner bound, we still
need to describe how the Block-Markov scheme is terminated.
We thus assume that B blocks have been transmitted, and we
proceed to describe Blocks B + 1, B + 2, and B + 3. We
think about these blocks as “overhead,” because they contain
no fresh information. Fortunately, this overhead does not affect
the throughput because we can choose B very large.

The next lemma shows that if the full-cooperation capacity
of the MAC without SI is zero, then the new inner bound
contains only the rate-pair (0, 0) and is thus trivially an inner
bound.

Lemma 1: If the capacity of the MAC without any side
information but with full cooperation is zero, i.e., if

max
PX1,X2

I(X1, X2;Y ) = 0, (18)

then the proposed new inner bound contains only the all-zero
rate tuple.

Proof: By (11g) and (10), we conclude that if R1, R2 is
in the new inner bound, then for some joint distribution of the
form (6)

R1 + R2

≤ I(X1, X2;Y, V1, V2, V )− I(X1, X2,W ;V1, V2, V |Y )
= I(X1, X2;Y ) + I(X1, X2;V1, V2, V |Y )
−I(X1, X2,W ;V1, V2, V |Y ).

Consequently, if (18) holds and hence I(X1, X2;Y )
is zero, then R1 + R2 must be upper-bounded by
I(X1, X2;V1, V2, V |Y ) − I(X1, X2,W ;V1, V2, V |Y ), which
is nonpositive.

In view of Lemma 1, it only remains to prove the achievabil-
ity of the new inner bound when the full-cooperation capacity
without SI is positive. The next lemma shows that we can also
assume that the channel between Transmitter 1 (uninformed)
and the receiver (informed) is of positive capacity and likewise
from Transmitter 2.

Lemma 2: If the channel between Transmitter 1 (unin-
formed) to the receiver (informed) is of zero capacity, i.e.,

max
x2∈X2

max
PX1

I(X1;Y, W |X2 = x2) = 0, (19)

then the new inner bound contains only rate pairs (R1, R2)
with R1 = 0 and R2 ≤ max I(X2;Y ). An analogous result
holds if

max
x1∈X1

max
PX2

I(X2;Y, W |X1 = x1) = 0, (20)

Proof: We first prove that if a rate pair (R1, R2) is in the
new inner bound, and if (19) holds, then R1 must be zero.
Fix some joint distribution of the form (6) and let (R1, R2)
satisfy the inequalities of Theorem 2. We next argue that
Hypothesis (19) implies

I(X1;Y, V2, V |X2, U) = 0. (21)

Indeed,

I(X1;Y, V2, V |X2, U)
≤ I(X1;Y, V2, V |X2, U, W ) (22a)
= I(X1;Y |X2, U, W, V2, V ) (22b)
= I(X1;Y |X2, U, W ), (22c)
= I(X1;Y, W |X2, U), (22d)
≤ max

u∈U
max

x2∈X2
I(X1;Y, W |X2 = x2, U = u) (22e)

≤ max
u∈U

max
x2∈X2

max
PX1|U=u

I(X1;Y, W |X2 = x2, U = u) (22f)

= max
x2∈X2

max
PX1

I(X1;Y, W |X2 = x2) (22g)

where the first line follows from

X1(−−(X2, U)(−−W ; (23)

the second from the chain rule and because

X1(−−(X2, U, W )(−−(V2, V ) (24)
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so I(X1;V2, V |X2, U, W ) is zero; the third from

(X1, Y )(−−(X2, U, W )(−−(V2, V ); (25)

the fourth again by (23); the fifth by upper bounding the
average by the maximal value; the sixth by maximizing over
the conditional distribution of X1 given U = u; and the
last because the maximization over u on the RHS of (22f)
is unnecessary.

Continuing our proof that R1 must be zero, we note that (7)
and (11a) imply

R1 ≤ I(X1;Y, V1, V2, V |X2, U)− I(X1,W ;V1|V, V2, Y )
= I(X1;Y, V2, V |X2, U) + I(X1;V1|X2, U, Y, V2, V )

−I(X1,W ;V1|V, V2, Y )
= I(X1;V1|X2, U, Y, V2, V )− I(X1,W ;V1|V, V2, Y )
= H(V1|X2, U, Y, V2, V )−H(V1|X1, X2, U, Y, V2, V )

+H(V1|X1,W, V, V2, Y )−H(V1|V, V2, Y )
= H(V1|X2, U, Y, V2, V )−H(V1|X1, X2, U, Y, V2, V )

+H(V1|X1,W )−H(V1|V, V2, Y )
≤ 0,

where the second equality (third line) follows from (21), and
where in the last inequality we have used

H(V1|X2, U, Y, V2, V ) ≤ H(V1|V, V2, Y )

(conditioning reduces entropy) and

H(V1|X1, X2, U, Y, V2, V ) ≥ H(V1|X1,W ),

which can be argued as follows:

H(V1|X1, X2, U, Y, V2, V ) ≥ H(V1|X1,W, X2, U, Y, V2, V )
= H(V1|X1,W ),

where the first inequality is because conditioning cannot
increase entropy, and the second by (6), which implies that,
conditional on (X1,W ), the auxiliary random variable V1 is
independent of (X2, U, Y, V2, V ).

Having established that R1 is zero, we now conclude from
(11g) and (10)

R2 = R1 + R2

≤ I(X1, X2;Y, V1, V2, V )− I(X1, X2,W ;V1, V2, V |Y )
= I(X1, X2;Y )+

I(X1, X2;V1, V2, V |Y )− I(X1, X2,W ;V1, V2, V |Y )
≤ I(X1, X2;Y )
= I(X2;Y ) + I(X1;Y |X2)
= I(X2;Y ).

Lemma 2 shows that if either (19) or (20) holds, then the
new inner bound is achievable. It thus only remains to prove
its achievability when

max
x2∈X2

max
PX1

I(X1;Y, W |X2 = x2) > 0 (26)

and
max

x1∈X1
max
PX2

I(X2;Y, W |X1 = x1) > 0, (27)

both of which we now assume.
We are now ready to describe the termination of the Block-

Markov scheme. Block B+1 is split into two parts. In the first,
Transmitter 1 sends the v1-sequence of Block B assuming that
the receiver knows the state sequence w of Block B +1. This
can be done (under this assumption) by (26). In the second,
Transmitter 2 sends the v2-sequence of Block B assuming that
the receiver knows the state of Block B + 1. This is possible
by (27). In Block B + 2 the transmitters cooperate to send
the sequence w of Block B + 1, and in Block B + 3 they
cooperate to send the v sequence of Block B.

Decoding is performed as follows. The decoder first decodes
Block B +3 without any side-information and thus learns the
sequence v of Block B. It then decodes Block B + 2 (again
without any side information) and learns the state sequence w
of Block B+1. Now that it knows the state sequence of Block-
B +1, it can decode that block and learn the v1-sequence and
the v2-sequence of Block B. From here on, it can proceed with
the regular backward decoding: in decoding Block b it knows
the sequences v, v1, and v2 of Block b and it can therefore
decode the common message and the messages transmitted
by each of the transmitters in Block b. From this decoding it
learns the private messages of Block b, and the sequences v,
v1, and v2 of Block b− 1.

III. THE DOUBLE-STATE SCENARIO

For the double-state scenario, an inner bound on Cind
s-c was

proposed in [2]. In the absence of cost constraints this bound
can be described as follows: Let P ind

s-c be the collection of
all random variables (V1, V2, S1, S2, X1, X2, Y ) whose joint
distribution satisfies

PV1,V2,S1,S2,X1,X2,Y =
PV1|S1PV2|S2PS1PS2PX1PX2PY |S1,S2,X1,X2 . (28)

Note that (28) implies the Markov relations

V1(−−S1(−−(V2, Y, S2)
V2(−−S2(−−(V1, Y, S1)
(V1, V2)(−−(S1, S2)(−−Y (29)

and that X1, X2 are independent of each other and of the
quadruple (V1, V2, S1, S2). Let Rind

s-c be the convex hull of the
collection of all rate-pairs (R1, R2) satisfying

0 ≤ R1 ≤ I(X1;Y |X2, V1, V2)− I(V1;S1|Y, V2) (30)
0 ≤ R2 ≤ I(X2;Y |X1, V1, V2)− I(V2;S2|Y, V1) (31)

R1 + R2 ≤ I(X1, X2;Y |V1, V2)− I(V1, V2;S1, S2|Y ) (32)

for some (V1, V2, S1, S2, X1, X2, Y ) ∈ P ind
s-c .

Theorem 3 ([2]): Rind
s-c ⊆ Cind

s-c .
The proof is based on a scheme where lossy versions of the
state sequences are conveyed to the decoder using distributed
Wyner-Ziv compression [4] and Block-Markov encoding for
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the MAC, to transmit the messages and the Wyner-Ziv code-
words. The channel output serves as the decoder’s SI in the
distributed Wyner-Ziv code. Since the two components of
the source are independent, there is no direct cooperation
between the encoders via a common message as in single-state
scenario. Instead, each user spends part of its private rate on
the transmission of its Wyner-Ziv codeword.

An improved inner bound was proposed by Li et al. in [3].
There it was shown that the improved inner bound always
contains the inner bound of [2], and it was conjectured that
there are cases where the inclusion is strict. We next present
the inner bound of Li et al. and then show that the inclusion
can, indeed, be strict.

Li et al. consider all joint distributions of the form

PV1,V2,S1,S2,X1,X2,Y =
PV1|S1,X1PV2|S2,X2PS1PS2PX1PX2PY |S1,S2,X1,X2 (33)

and prove the achievability of rate pairs (R1, R2) satisfying

R1 ≤ I(X1, V1;Y |X2, V2)− I(V1;S1|X1) (34a)
R2 ≤ I(X2, V2;Y |X1, V1)− I(V2;S2|X2) (34b)

R1 + R2 ≤ I(X1, X2, V1, V2;Y )
−I(V1;S1|X1)− I(V2;S2|X2). (34c)

Roughly speaking, the improvement in the inner bound is the
result of Transmitter 1 compressing the pair (s1,x1) from
the previous block (with the outputs from the previous block
serving as side information) and not just s1 and likewise for
Transmitter 2. We next show, by example, that the bound of
Li et al. can, indeed, be tighter than that of Theorem 3

The example is very similar to Example 1. In fact, the
channel is as in Example 1, but with the state S1 being null
(deterministic) and the state S2 consisting of the pair (W0,W1)
of Example 1:

S1 = 0 S2 = (W0,W1), (35a)

where W0,W1 are IID binary random variables, each of
entropy 1/2.

The rate pair (R1, R2) = (1, 1/2) is in the inner bound of
Li et al.. To see this we set V1 = 0 and V2 = WX2 with
X1, X2 IID random bits. However, as we next prove, the pair
(1, 1/2) is not in Rind

s-c .
We prove this by showing that if (1, R2) is in Rind

s-c , then R2

must be zero. Suppose then that (1, R2) ∈ Rind
s-c . Since S1 is

null, it follows from the structure (28) of the joint distribution,
that V1 must be independent of all the other random variables.
Consequently, we can strike it out from (30), (31), and
(32). Since R1 = 1, it follows from (30) that X1 must be
Bernoulli(1/2) and that H(X1|X2, V2, Y ) must be zero. This
implies that H(WX2 |X2, V2, Y ) must also be zero (because
X1 = Y1 ⊕ WX2). Consequently, H(WX2 |X2, V2, Y1) must
also be zero (because Y2 = X2). This implies that

H(WX2 |X2, V2) = 0 (35b)

because X1 is Bernoulli(1/2) and independent of (X2, V2,W ),
so Y1, which is equal to X1⊕WX2 , must also be independent

of (X2, V2,W ). Equation (35b) is reminiscent of (17f) (with
V2 replacing V ).

As in Example 1, we now distinguish between two cases
depending on whether X2 is deterministic or not. If it is
deterministic, then the rate R2 must be zero by (31). Consider
now the case when it is not. In this case Pr[X2 = η] is positive
for all η ∈ {0, 1}. Since V2 is independent of X2 (by (28)),
and since without changing the inner bound we can assume
that Pr[V2 = v2] is positive for all v2 ∈ V2, it follows that in
this case

Pr[X2 = η, V2 = v2] > 0, η ∈ {0, 1}, v2 ∈ V2. (35c)

This combines with (35b) to imply that

H(Wη|X2 = η, V2 = v2) = 0, η ∈ {0, 1}, v2 ∈ V2. (35d)

This implies that

H(Wη|V2 = v2) = 0, η ∈ {0, 1}, v2 ∈ V2, (35e)

because, by (28), X2 is independent of (V2, S2) and hence a
fortiori of (V2,Wη). Thus, H(Wη|V2) = 0, and since S2 =
(W0,W1),

H(S2|V2) = 0. (35f)

Consequently,

I(V2;S2) = H(S2) = 1. (35g)

This implies that also

I(V2;S2|Y ) = 1, (35h)

because Y is independent of (V2, S2). It now follows from
(35h), the fact that V1 is deterministic, and from (31) that R2

must be zero.

IV. SUMMARY

We have presented an improved inner bound on the capacity
region of the memoryless multiple-access channel that is
controlled by an IID state that is known strictly causally to
the two encoders. This bound contains the bound of [1], and
we have provided an example showing that the inclusion can
be strict.

We also adapted this example to a memoryless multiple-
access channel that is governed by two independent states,
where each transmitter knows one of the states strictly
causally. The resulting example demonstrates that—as con-
jecture by Li et al. [3]—the inner bound of Li et al. can be
strictly tighter than that of [2].
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