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The Multiple-Access Channel With Causal Side
Information: Common State
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Abstract—We show that if amemoryless multiple-access channel
(MAC) is governed by an independent and identically distributed
state sequence, then—unlike the single-user case—the capacity re-
gion is typically increased if the state is revealed to the encoders in
a strictly causal way. For this scenario, we derive inner and outer
bounds on the capacity region. For the Gaussian MAC whose state
sequence comprises the channel noise, we compute the capacity re-
gion and propose a variation on the Schalkwijk–Kailath scheme
that achieves capacity with a double-exponential decay of the max-
imal probability of error. We also study the causal case for which
we derive an achievable region, which is typically strictly larger
than the region achievable with naïve Shannon strategies.

Index Terms—Causal state information, feedback, multiple-ac-
cess channel (MAC), Shannon strategies, side information (SI),
state, strictly causal state information.

I. INTRODUCTION

I N this paper, we study the capacity of a memoryless
multiple-access channel (MAC) that is governed by an

independent and identically distributed (i.i.d.) state sequence,
which is revealed to the two encoders—depending on the
scenario—strictly causally or causally. These two scenarios
have not received much attention, perhaps because of the nature
of their single-user counterparts. For memoryless single-user
channels, revealing the state strictly causally to the encoder
does not increase capacity. And if causally, then the problem
is solved elegantly using Shannon strategies [13]. (Shannon
strategies are also optimal for the degraded broadcast channel
[15].) As we shall see, the situation is quite different on the
MAC. Strictly causal side information (SI) can increase the ca-
pacity region. And in the causal case, the naïve use of Shannon
strategies is suboptimal.
That, like feedback, strictly causal SI can be beneficial in

some memoryless networks can be learned from the work of
Dueck [4] on the additive-noise broadcast channel (BC) with
feedback. In additive-noise BCs, if we think about the noise as
channel state, then providing the encoder with a feedback link
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from the channel outputs is equivalent to revealing the state to
the encoder strictly causally. And Dueck provided an example
of such channels where feedback increases the capacity region.
In Dueck’s BC, the noise is common to the two receivers. The
encoder learns the channel noise via the feedback and transmits
it to the two users. Although valuable rate—that otherwise could
be used to transmit user messages—is spent on the transmission
of the noise, the net effect is an increase in channel capacity be-
cause the noise is common to both users.
The first model we study is the MAC with strictly causal SI.

Since only past (or delayed) samples of the state are known
to the encoders, neither binning (as in Gel’fand and Pinsker’s
channel [8]) nor Shannon strategies [13] can be employed.
Instead, we derive an achievable region based on block Markov
coding. The encoders, having access to a common state se-
quence (from the previous block), compress and transmit it
to the decoder. The users cannot establish cooperation in the
transmission of their private messages, but they do cooperate in
the transmission of the compressed state, and they thus increase
throughput.
Some of the gains from strictly causal state information can

be attributed to the ability of the two encoders to compress the
state information and to send the compressed version in coop-
eration. But strictly causal SI is beneficial even in the “double-
state” scenario, where the channel is governed by two indepen-
dent state sequences, each of which is revealed to a different
encoder strictly causally. The double-state scenario is studied
in [9] and [10]. Here, we only study the case of a single state,
which is revealed (causally or strictly causally) to both encoders.
It is instructive to consider the additive Gaussian noise MAC,

where the state is the channel noise. For thisMAC, our proposed
inner bound is tight, and we have a complete characterization of
the capacity region. This region turns out to be identical to the
capacity region of the additive Gaussian noise MAC without
SI but with full cooperation between the encoders. The full-co-
operation capacity region is always an outer bound on the ca-
pacity of the MAC with strictly causal SI (Proposition 1), and it
is interesting that on the Gaussian MAC it is achievable. In fact,
the achievability can be demonstrated not only using our inner
bound but also by an explicit scheme that is reminiscent of the
Schalkwijk–Kailath coding scheme for the single-user Gaussian
channel with feedback [12]. Although the users do not have
access to each other’s message and no feedback is available,
a Schalkwijk–Kailath type algorithm can be devised for this
channel, yielding the full-cooperation region with a double-ex-
ponential decay in the maximal probability of error.
Our block Markov scheme and the Schalkwijk–Kailath al-

gorithm make use of all the past samples of the channel noise.
It turns out, however, that much less is needed to achieve the

0018-9448/$31.00 © 2012 IEEE



LAPIDOTH AND STEINBERG: MULTIPLE-ACCESS CHANNEL WITH CAUSAL SIDE INFORMATION 33

full-cooperation region: it suffices that only the first sample of
the channel noise be known (strictly causally) to the encoders
(see Section H in the Appendix).1

The second model we study is the MAC with a common state
that is revealed to the encoders causally, so the time- inputs
can depend on the time- state . Here again our achievability
result is based on block Markov coding, but in conjunction with
Shannon strategies. Our achievable region contains the naïve re-
gion, which uses Shannon strategies for the MACwithout block
Markov coding. And in some cases, the inclusion is strict.
This paper is organized as follows. The definitions and main

results pertaining to the first scenario, in which the encoders
learn the state sequence strictly causally, can be found in
Section II. Those pertaining to the second scenario, where the
encoders learn the state sequence causally, are in Section III.
These sections also contain the key examples. The proofs are
given in Sections A–K and Sections L and M in the Appendix,
respectively.

II. STRICTLY CAUSAL SIDE INFORMATION

A. Basic Definitions

We are given a discrete memoryless state-dependent MAC
with state alphabet , state probability mass func-

tion (PMF) , input alphabets and , and output alphabet
. The alphabets , , , and are all finite. Sequences
of letters from are denoted and

with similar notation for all alphabets, e.g.,
, .

Sometimes, we denote -sequences by boldface letters, e.g., ,
, , etc. The laws governing -sequences of state and output

letters are

For notational convenience, we henceforth omit the superscript
, and we denote the channel by . Let

be single-letter cost functions. The cost associated with the
transmission of the sequence by Encoder is

B. Coding

Given positive integers and , let denote the set
, and let denote the set .

1In our original submission, we proposed a scheme that requires knowledge
of the first two samples of the state. We are thankful to the reviewer for pointing
out that one sample suffices.

Definition 1 (A Code With Strictly Causal SI): An
code with strictly causal SI at the en-

coders is a pair of sequences of encoder mappings

(1)

and a decoding map

such that the input costs are bounded by

and the average probability of error does not exceed . Here

(2)

where is the decoding set of the pair of
messages and

The rate pair of the code is2

A rate-cost quadruple is said to be achiev-
able if for every and sufficiently large there exists an

code with strictly causal SI for the
channel . The capacity-cost region of the channel
with strictly causal SI is the closure of the set of all achiev-
able quadruples , and is denoted by . The
subscript “s-c” stands for “strictly causal,” and the superscript
“com” stands for “common” to remind us that the state is re-
vealed to both encoders. For a given pair of input costs,

stands for the section of at . Our in-
terest is in characterizing .

C. Outer Bounds

We present three outer bounds. The first and simplest states
that the capacity of the MAC with strictly causal SI available
at both encoders cannot be larger than the capacity of the same
MAC without SI but with fully cooperating encoders.3 Let

stand for the collection of all satisfying

(3a)

(3b)

for some joint distribution of the form

(4)

2We use base-two logarithms throughout, and all rates are in bits per channel
use.
3An improved bound that is based on cribbing can be found in [2, Corollary

2] and [1, Corollary 2.4 and Remark 2.1].
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Proposition 1 (The Full-Cooperation Outer Bound):

(5)

Proof: For a proof, see Section A in the Appendix. The in-
tuition is that cooperation cannot hurt, and once we allow coop-
eration the channel behaves like a single-user channel for which
strictly causal state information does not increase capacity.

The next outer bound states that the capacity region of the
MAC with common strictly causal SI at the encoders is con-
tained in the capacity region of the sameMACwith an informed
decoder and uninformed encoders. Let stand for the col-
lection of all satisfying

(6a)

(6b)

(6c)

(6d)

for some joint distribution of the form

(7)

where is a time-sharing random variable taking values in a
set , whose size can be bounded as

(8)

Proposition 2 (The Informed-Decoder Outer Bound):

(9)

Proof: See Section B in the Appendix.

As to the third outer bound, let denote the set of all
quadruples satisfying

(10a)

(10b)

(10c)

(10d)

(10e)

for some joint distribution of the form

(10f)

Proposition 3:
(11)

Proof: See Section C in the Appendix

The latter bound is more difficult to evaluate than the first two
but, as we next show, it is also tighter.

Proposition 4: The outer bound is at least as tight as
the full-cooperation outer bound

(12)

Proof: See Section D in the Appendix. For a stronger state-
ment, see [1, Remark 2.4]: the outer bound is at least as
tight as the cribbing bound [2, Corollary 2], [1, Corollary 2.4],
and the latter is at least as tight (and sometimes tighter) than the
full-cooperation bound.

Proposition 5: The outer bound is at least as tight as
the informed-decoder outer bound

(13)

Proof: See Section E in the Appendix.

Although the outer bound is at least as tight as the
full-cooperation and informed-decoder outer bounds, the latter
two may still be useful because they are much easier to eval-
uate: they do not require any optimization over auxiliary random
variables. But, as the following example demonstrates, this sim-
plicity comes with a price.

Remark 1: For some channels, the outer bound of Proposi-
tion 3 is strictly contained in the intersection of the full-coop-
eration outer bound (Proposition 1) and the informed-decoder
outer bound (Proposition 2).4

Example 1: Consider the channel where
, and where the common state acts as a random switch

that connects a randomly chosen transmitter to the output:
, where is uniform over .
Both the full-cooperation and the informed-decoder outer

bounds contain the rate pair

but the outer bound of Proposition 3 does not contain any
rate pairs summing to one.

Proof: See Section F in the Appendix.

D. Achievable Region

Let be the collection of all random variables
whose joint distribution satisfies

(14)

Note that (14) implies the Markov relations and
, and it also implies that the triplet

is independent of . Let be the convex hull of the
collection of all satisfying

(15a)

(15b)

(15c)

(15d)

(15e)

for some . Our main achievability
result for the strictly causal case is given in the following.

4This remark is strengthened in [1, Remark 5.3].
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Theorem 1 (An Achievable Region With Strictly Causal SI):
Every rate pair in is achievable on the MAC with strictly
causal SI

(16)

Proof: The proof is given in Section G in the Appendix. It
is based on a scheme where a lossy version of the state is con-
veyed to the decoder using Wyner–Ziv compression [17] and
block Markov encoding for the MAC with common message
[14].

In some cases, the region coincides with the capacity
region . The next example is such a case. Although The-
orem 1 is proved for the discrete memoryless case, we apply it
here for the Gaussian model. Extension to continuous alphabets
can be done as in [16].

Example 2: Consider the Gaussian MAC where the state is
the channel noise

(17)

and where we impose average power constraints on the inputs

(18)

The capacity region of this channel when is
revealed strictly causally to the two encoders comprises all rate
pairs satisfying

(19)

Proof: Since the set of rate pairs satisfying (19) coincides
with the full-cooperation outer bound (Proposition 1), it only re-
mains to prove achievability. Two achievability proofs are pre-
sented in Section H in the Appendix. The first is based on a judi-
cious choice of the auxiliary random variables defining .
The second is based on a Schalkwijk–Kailath type algorithm.
The latter approach provides a scheme whose maximal proba-
bility of error decays double exponentially to zero. A small vari-
ation demonstrates that to achieve the full-cooperation region,
not all states must be revealed strictly causally to the encoders: it
suffices to reveal (strictly causally) just the state corresponding
to the first time instant. This variation extends to the case where
the state sequence is a general stationary Gaussian noise, i.e.,
not necessarily white: in this case too, revealing the time-one
state suffices to achieve the full-cooperation region (which now
no longer takes the form (19)).

This example demonstrates:
Note 1: Revealing the state governing a MAC strictly

causally to both encoders can increase the sum-rate capacity.

Such an increase in the sum-rate capacity is impossible if
the MAC is governed by two independent states that are each
known strictly causally to a different encoder [9], [10].

E. Improved Achievable Region

We next present a tighter inner bound. For simplicity, we as-
sume that no cost constraints are imposed. The improved region

is based on the following scheme. At Block , we still use
the MAC by sending private messages and a common message.
The common message is still a compressed version of the state
information from the previous block. The improvement comes
from the fact that the private messages need not be entirely com-
posed of fresh information. The private message of Transmitter
1 has two parts. The first, of rate , is indeed fresh information.
But the second, of rate , is a compressed version of the pair
of sequences from Block (again with the SI being the
channel outputs of Block ). Since Transmitter 1 knows which
symbols it sent in the previous block, and since it knows the
state of the channel in the previous block, it can compress the
pair . Likewise Transmitter 2. Using Gastpar’s results on
the compression of correlated sources with SI [6], we obtain the
improved inner bound, which is described in Theorem 2. In this
bound, the constraints (25) guarantee that the rates , ,
and be large enough so that they suffice to describe the se-
quences from Block corresponding to , , and . Con-
straints (21)–(24) guarantee that once Block is decoded
and the sequences from Block corresponding to , , and
become available, the individual rates , ,
and the common rate become achievable in Block .

Theorem 2 (Improved Achievable Region): Assume that the
alphabets , , , and are all finite, and assume that no cost
constraints are imposed. The rate pair is achievable if
for some joint distribution of the form

(20)

there exist nonnegative numbers and such that

(21)

(22)

(23)

(24)

and
(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

(25g)

The set of rate pairs satisfying these constraints for some such
joint distribution is denoted .

Proof: The remaining part of the proof pertaining to the
termination of the block Markov scheme is sketched in Section
I in the Appendix.
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If we only consider joint distributions where and are
deterministic, and if we set , to zero, we obtain the
inner bound of Theorem 1. Thus:

Remark 2: The improved inner bound contains the inner
bound of Theorem 1.
As the following example shows:

Remark 3: For some channels, the improved inner bound is
strictly larger than the bound of Theorem 1.

Example 3: Consider a MAC with two binary inputs
; a common state , where

, are i.i.d. with entropy

(26)

and an output with

(27a)

(27b)

Thus, if is equal to zero, then is the mod-2 sum of
and , and otherwise, it is the mod-2 sum of and . We
study the highest rate at which User 2 can communicate when
User 1 transmits at rate 1. For this channel

(28)

but

(29)

and the rate-pair is in the improved inner bound
.

Proof: The proof is given in Section J in the Appendix;
here, we only provide some intuition. Since the decoder ob-
serves only via (27a), in order for to equal 1, the receiver
needs to learn . Since in the scheme yielding the en-
coders only transmit a (possibly compressed) description of the
state (in addition to their private messages), and since for
to equal 1 the receiver must be able to compute from this
description, this description must actually convey the full state

, which is of rate 1. And since the channel (27b)
from to the receiver is only of capacity 1, it cannot support
any private rate in addition to the full state, thus leading to (28).
However, one can do better using a block Markov scheme

where User 2 does not convey the full state of the previous
block but only the values of from the previous blocks. (It
is cognizant of these values thanks to the strictly causal state
information and because it knows the values of from the
previous block, as they were sent by it). The rate of is only
, so it can use the remaining capacity on the channel (27b)

to send a private message at rate , thus demonstrating the
achievability of (29).
The rate pair is achievable by the improved scheme

because it allows User 2 to describe/compress the pair
and not just . The improved scheme thus allows User 2 to
describe (in a lossy manner) as .

In deriving the improved bound, we used the results of
Gastpar [6] on general Wyner–Ziv networks; we did not exploit
the additional structure in our problem. In our problem, the
three terminals observe , , and . For this sce-
nario, the results of Gastpar can be improved by utilizing not
only binning but also superposition coding [1, Ch. 7]. Indeed,
for this setting, it has been shown in [1, Th. 7.1] that we can
replace (25) with

(30a)

(30b)

(30c)

(30d)

where the joint PMF is now of the form

(31)

We denote the resulting inner bound by .
Note that if—rather than allowing any PMF of the form

(31)—we restrict ourselves to PMFs of the form (20), then the
constraints in (30) are a subset of those in (25). Hence

(32)

The analysis of the termination of the block Markov scheme
is given in Section K in the Appendix.

III. CAUSAL SIDE IINFORMATION

A. Basic Definitions and Coding

When the state information is revealed to the encoders
causally, the encoding functions have the form

(33)

The definition of codes and achievable rates remain otherwise
as in Section II-A and Section II-B. The capacity region and its
section at are now denoted and .

B. Achievable Region

Let be the collection of all random variables
whose joint distribution can

be written as

(34)

Observe that (34) implies the Markov relations

(35a)

(35b)

and that

(35c)
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Let be the convex hull of the collection of all
satisfying

(36a)

(36b)

(36c)

(36d)

(36e)

for some . Our main result
for the causal case is the following.

Theorem 3 (Achievability Result for Causal Common SI):

(37)

Proof: A sketch of the proof is given in Section L in the
Appendix. It proceeds along the lines of the proof of Theorem
1, except that the inputs , , are allowed to depend
on the state , and that additional external random variables
and that do not depend on are introduced. This resembles
the situation in coding for the single-user channel with causal
SI, where a random Shannon strategy can be represented by an
external random variable independent of the state [5, Remark
7.6].

Remark 4: In a similar fashion, one can obtain an improved
achievable region by building on the coding scheme for The-
orem 2.
The proposed scheme outperforms the “naïve approach” of

using Shannon strategies without block Markov coding. The
naïve approach leads to the rate region comprising all rate pairs

satisfying

(38a)

(38b)

(38c)

where is a random Shannon strategy [13], i.e., a chance vari-
able taking values in the set of mapping from to ; the chance
variable takes values in the set of mapping from to ; the
conditional law of given and is

(38d)
the random variable is for time sharing and the allowed joint
distribution are of the form

(38e)

Restricting in (36a)–(36d) to be deterministic reduces our
achievable region to the set of rates achievable with the
naïve approach. Thus:

Remark 5: Every rate pair that is achievable using the naïve
approach is also in .
The next example shows that the reverse statement is not true.

Remark 6: For some channels, there exist rate pairs that are
in but that are not achievable using the naïve approach.

Example 4: Consider the noiseless binary MAC where

and for some .
The state determines which of the two inputs is connected to
the output

For this channel

(39)

(where denotes the binary entropy function
) whereas with the naïve approach, the

highest achievable rate for Transmitter 1 is

(40)

For sufficiently large values of , this is strictly smaller than the
right-hand side (RHS) of (39).
If is large enough so that , then the RHS of (39)

is equal to , which is the highest rate at which Transmitter
1 could have communicated even if the state had been known to
the receiver.

Proof: See Section M in the Appendix.

APPENDIX

A) Proof of the Full-Cooperation Outer Bound:
Proof of Proposition 1: Let .

Then, there exists a sequence of
codes with strictly causal SI, such that . Denote
by the random message of user , . Starting with
Fano’s inequality

(41)

where

(42)

and the input constraints are satisfied

(43)
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Inequality (a) in (41) holds by the data processing inequality:
due to the coding scheme, the quadruple
is independent of , so

(44)

Since the joint distribution of is arbitrary, we do not
have to employ time-sharing considerations on (41) and (43),
and any achievable quadruple satisfies

(45a)

(45b)

for some joint distribution of the form

(46)

B) Proof of the Informed-Decoder Outer Bound:
Proof of Proposition 2: Starting with Fano’s inequality,

(47)

where (a) holds due to the Markov relation

(48)

(b) holds because is a deterministic function of
, ; (c) holds because conditioning

cannot increase entropy; and (d) holds due to the Markov chain

(49)

In a similar manner, we obtain for and the sum rate

(50)

(51)

Defining

(52)

we can rewrite (47), (50), and (51) as

(53a)

(53b)

(53c)

(53d)

Recalling that

and that are independent, we conclude that

and the joint PMF thus factorizes as

(53e)

Taking the limit in (53) and using the fact that
is convex yields the proposition. The proof that the alphabet size
of need not be larger than 4 is standard and follows from
Carathéodory’s theorem.

C) Proof of Proposition 3:
Let be in . Then, we have a sequence

of codes with strictly causal SI, such
that . Denote by the random message of
user , . Starting with Fano’s inequality
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(54)

where (a) and (b) hold due to Csiszar’s lemma [5, Sec. 2.3],
which states that for any pair of random vectors

(55)

and in the last equality of (54) we defined

(56a)

(56b)

(56c)

In a similar manner, we obtain

(57)

As to the sum-rate constraint

(58)

As to the positivity constraint (10d)

(59)

Finally, note that are independent for each
and, due to the coding scheme, is a deterministic function
of , for . Thus, the joint PMF factorizes as

(60)

The outer bound (10) now follows by letting tend to infinity in
(54), (57), (58), and in (59), and by using the fact that the region
(10) is convex.

D) Proof of Proposition 4:
Fix some joint PMF of the form (10f). We need to show that

the polytope defined by the inequalities in (10) is contained in
. Starting with the sum-rate constraint (10c) and using the

positivity constraint (10d), we have

where the first line follows from the sum-rate constraint (10c);
the second from the chain rule; the third from the positivity con-
straint (10d); the fourth from the chain rule; the fifth from (10f);
the sixth from the (conditional) data processing inequality be-
cause by (10f)

(61)

and the final inequality holds because by (10f)

(62)
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E) Proof of Proposition 5:
Inspecting Inequalities (10), we see that is contained in

the result of applying Proposition 3 to a new channel where the
output is replaced by the augmented output . We will
show that the result of applying Proposition 3 to the augmented
channel is contained in . Substituting for in (10)
leads to the inequalities

(63a)

(63b)

(63c)

where the positivity constraint is omitted because in the aug-
mented channel it is always satisfied. Fix some joint distribution
of the form (10f).
Addressing the sum-rate constraint, we have from (63c)

(64)

where the second inequality holds because conditioning cannot
increase entropy; the subsequent equality because conditional
on the output is independent of all the other vari-
ables; and the final equality follows from the definition of con-
ditional mutual information. Notice that by (10f)

(65)

and

(66)

Consider now the constraint (63a) on

(67)

where the second line follows because conditioning reduces en-
tropy; the third line from

(68)

and the last line follows from the (conditional) data processing
inequality, because for every joint law of the form (10f)

(69)

Continuing from (67)

(70)

A symmetric argument yields

(71)

The inequalities (71), (70), and (64) combine with (65) and (66)
to yield the informed-decoder constraints (with the role of
played by ).

F) Analysis of Example 1:
Proof: The proof is by contradiction. We assume that the

rate pair sums to one

(72a)

and that for some joint PMF of the form (10f) all the constraints
(10a)–(10d) are satisfied. We then show that this leads to a con-
tradiction.
From (72a), (10c), and the fact that (because

has only two elements), we conclude that

(72b)

(72c)

and

(72d)

From (72b) and the positivity constraint (10d)

(72e)

It now follows from (72c) and (72f) that

(72f)

From (72d), (72f), and the fact that , we conclude
that

(with probability one) and hence also unconditionally

(72g)

From (10f)

and hence also

(72h)
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From (72g) and (72h) we see that, conditionally on
, the chance variables and are indepen-

dent but also deterministically equal to each other. This
implies that and that both are deterministic func-
tions of . Because , this implies that

and that hence by (10b)

(72i)

By symmetry, we also have

(72j)

We have thus reached a contradiction because (72j), (72i), and
(72a) cannot all hold.

G) Proof of Theorem 1: Throughout the achievability
proof, we use the definition of typical sequences and typical sets
as in [3]. Thus, denote by the number of occurrences of
the letter in the -vector . Then, for a given PMF
over the finite alphabet , the -typical set is defined as

For a joint PMF and a given -vector , the conditional
-typical set is

Typical sets will be used with depending on , such that

We further adopt the Delta-Convention of [3, Convention 2.11]
(see also lemmas 2.12 and 2.13 there). Thus, throughout the
paper, the sequences are fixed, and the dependence of the
typical sets on them is omitted.

Proof of Theorem 1: We first claim that the region
is contained in the full cooperation region , as defined in
(3) and (4). To this end, observe that we can write the bound on
the sum rate (15d) as

(73a)

(73b)

where the equality in (73a) holds since by (14), is independent
of , and the inequality in (73b) holds because of the
Markov chain

Fix a distribution as in (14). In view of (73b), we can assume
that for the chosen distribution

(74)

for some real number , as otherwise there is nothing to prove.
The rate pairs that satisfy the constraints (15) can

also be characterized as those for which there exists some
such that the triple satisfies the constraints

(75a)

(75b)

(75c)

(75d)

(75e)

(75f)

where as in (14)

(76)

so

(77)

(78)

Indeed, by (78) and the data processing inequality, the RHS of
(75e) is nonnegative, so we can choose so that it hold with
equality. We can then substitute this choice of in (75d) to
obtain (15d). To prove Theorem 1, it thus suffices to show that
any pair satisfying (75a)–(75e) for some is
achievable. This is what we proceed to do next. Before giving
a formal proof, we provide some interpretation for (75a)–(75e).
Ignoring , Constraints (75a)–(75d) and (77) are reminiscent
of the capacity region of the MAC with a common message
of rate and without SI. The random variable is indepen-
dent of , but it does depend on . Constraint (75e)
can be interpreted as guaranteeing that the rate corresponding to
Wyner–Ziv coding of with SI does not exceed the common
rate of the MAC.
To prove this result, we consider a block Markov coding

scheme with backward decoding. The total transmission time
is divided into blocks. Each of the first blocks is of
length . The length of block is denoted by and is set to

(79)

The blocks are indexed by , so . In the first block,
User 1 and User 2 transmit messages at rates and without
a common message. In Block , for , the users coop-
eratively transmit a common message at rate , and superim-
pose on it their fresh messages at rates and . The common
message consists of theWyner–Ziv codeword for describing the
channel state sequence in the previous block, Block , with
the channel outputs at Block serving as the decoder’s SI.
This Wyner–Ziv codeword is independent of the channel state
sequence during its transmission. In Block , the users do
not transmit any fresh information: they only transmit common
information on the state sequence in Block . The blocklength
given by (79) guarantees that this information can be transmitted
in block . The decoding proceeds backward: based on
the output sequence in block , the decoder decodes the
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common message, which consists of a Wyner–Ziv codeword
of the state sequence during Block . This codeword and the
channel output sequence of Block give it some information
about the state sequence at Block . It then uses this informa-
tion to decode the private messages and the common message
of Block . This common message of Block and the channel
output sequence of Block give the decoder some infor-
mation about the state sequence in Block . This process
continues until Block 1 is reached. Overall, the users transmit
messages at rates

(80)

which approach as increases.
We proceed now to a more detailed description of the code-

books and coding scheme.
Codebook Generation: Choose real numbers , , sat-

isfying

(81)

(82)

For each block , the codebook is constructed in three steps, as
described in the following.
1) Generate independent length- codewords

each i.i.d. according to the distribution on the finite
set . Randomly partition the indices into
bins. Denote by

the index of the bin to which belongs, and by the
content of Bin

2) Generate independent length- codewords

each i.i.d. according to .
3) For every , generate

a) vectors , ,
independent of each other, according to

.
b) vectors , ,
independent of each other, according to

.

The codebook generation and partition as described previously
are repeated independently times, with the same distribution
and rates. For the last block , the codebook that compresses
the state is not needed, since the state is not sent to the
receiver. Therefore, at block , Step 1 above can be omitted.
Steps 2 and 3 are repeated for the last block, with blocklength

(as given in (79)) instead of . For notational convenience, we
drop the dependence of the codebooks and codewords length on
the block number . It will be clear from the context whether the
length is (blocks ) and when it is (block ).
Reveal the codebooks to the encoders and decoder.
Encoding: Let and

be the message indices of the users in Block , and let
be the common state sequence in that block, i.e.,

. The operation of the two en-
coders depend on the block number as follows.
Block 1. The users send and .
Block , for . Both encoders are cognizant of
. They select the first index such that

(83)

where denotes the set of -length typical pairs . De-
note this index by . If a vector satisfying (83) does not
exist, the users pick a default vector, say . Denote by
the bin number to which belongs, i.e., . The in-

puts to the channel now depend on whether we are in the last
block or not. For , the inputs are

(84)

whereas in Block the inputs are

(85)

That is, no user messages are sent in the last block.
Decoding: Denote the channel outputs in Block by

Decoding starts at Block and proceeds backward.
Block . Having observed , the decoder looks for

an index such that

(86)

If an index satisfying (86) does not exist, or
is not unique, an error is declared.
Block , . The decoder has at hand an estimate
. It looks in Bin for an index such that

(87)

If there is no such vector in Bin , or there is more than one,
an error is declared.
Observe that if decoded correctly, the vector is the com-

pressed state in Block . This information on the state facili-
tates the decoding of the messages , and the index ,
which is the bin number of the state in Block . Specifically,
the decoder looks for the indices , ,

, , such that

(88)
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If there is no triple satisfying (88), or there is more
than one such triple, an error is declared.
Block 1. Since it is the first block, there is no need to decode

the bin index . The decoder operates exactly as in Blocks
, except that is set to 1.

The decoder output is the sequence of pairs ,
.

Probability of error analysis: Define the error event

Denote by the random sequence of bin numbers chosen
by the encoder in (84) and (85). We can write

(89)

Since the partitioning is done for every block independently
of other blocks and of the data, we have

(90)

Moreover, by symmetry, the probability of error does not de-
pend on the sequence . Hence, we can assume throughout
that a specific sequence is chosen. Similarly, we can as-
sume that the message pair was sent in all
blocks. Fix a state sequence and de-
fine the events

where . Further define

(91)

where, again, and with the understanding that for
, the value of in the definition of is set to 1 (see the

decoding process at block 1). We can write

(92)

where is the product of . It is enough to show
that

(93)

The probability of error conditioned on a given state sequence
can be bounded as follows:

(94)

for some fixed in the range . We proceed to bound each
of the terms in (94). We assume throughout that .
For notational convenience, we drop the dependence on .

(95)

The third term in the RHS of (95) is the probability of error in
lossy coding of the state with the vectors . By classical
results

(96)

provided

(97)

Conditioned on , the codewords at the channel input are jointly
typical with the state. By classical arguments

(98)

provided

(99)

Conditioned on and , for some
, and the decoder knows the bin number .

Thus, using standard arguments as in Wyner–Ziv coding [17]

(100)

whenever

(101)

We proceed to bound the probability of the event , condi-
tioned on the events . The conditioning on the
pair guarantees that the decoder knows the correct
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value of , and the index is held fixed in (91). Decom-
pose the union in (91) as

By standard methods

(102)

whenever the following inequalities are satisfied:

(103)

(104)

(105)

(106)

In view of (76), inequalities (103)–(106) dominate the other
aforementioned inequalities, and (106) is equivalent to

(107)

The last two terms in (94),
and , are treated exactly as

and . The
only difference between these terms is in the definitions of

and , but this does not add any difficulty.
We now collect terms. First, note that (99) is always satisfied

due to (79) and the choice of (74). Choose

Then, (97) and (101) are satisfied for some .
Therefore, the following constraints suffice to guarantee (93):

(108)

(109)

(110)

(111)

(112)

In addition, (96) guarantees that the input constraints are satis-
fied. This completes the proof of Theorem 1.

H) Analysis of Example 2: The collection of rate pairs that
satisfy (19) is the capacity region of the same MAC when the

encoders are uninformed of but can fully cooperate. Conse-
quently, by Proposition 1, this is an outer bound on the capacity
of our MAC with strictly causal SI and no cooperation. To con-
clude the analysis, it thus only remains to prove that every rate
pair satisfying (19) is achievable. We show this in two different
ways.
The first is by judiciously choosing the random variables in

(15). We first examine the maximal rate for Encoder 1. To this
end, we choose , and we choose to
be zero-mean jointly Gaussian with independent of

and with and of variance and . The correla-
tion between and and between and will be addressed
shortly. With these choices, (15b) simplifies to ; (15a)
and (15c) simplify to

(113)

and (15d) simplifies to

(114)

where is the variance of conditioned on , where
is the variance of given , and where is the power in

the sum

(115)

Given an arbitrary , we can choose to be strictly
positive but small enough so that the RHS of (114) will be within
of the RHS of (19). Since we have chosen strictly pos-
itive, we can now choose small enough (but positive) so
that the RHS of (113) will exceed the RHS of (19). With this
choice of , the inequality (113) is inactive, and the RHS of
(114) is achievable for . Since this RHS is within of the
RHS of (19), this demonstrates that the rate pair where
is the RHS of (19) is achievable. By symmetry, we can also

achieve the rate pair , where is the RHS of (19). A
time-sharing argument now concludes the proof.
The second way of establishing that rate pairs satisfying (19)

are achievable is based on a Schalkwijk–Kailath type algorithm
[12] that achieves the rate region (19) with a double-exponential
decay of the maximal probability of error. As earlier, we first
prove the achievability of the rate pair

(116)

The achievability of the region (19) then follows by symmetry
and time sharing. Split the interval into equally spaced
subintervals. Let be the center of one of these subintervals,
representing the message of User 1, as in [12]. At the first time
instance, User 1 transmits and User 2 is silent so

(117)

and the channel output is

(118)
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As of time instance , the first noise sample is known
to both encoders, who proceed to transmit it to the decoder with
full cooperation. Since as of this point the encoders are transmit-
ting a common message, knowing the states in a strictly causal
manner is equivalent to having causal feedback. The users can
thus send by mimicking the Schalkwijk–Kailath algorithm
for the single-user Gaussian with feedback and power

.
Applying this algorithm, it follows from [12] that after

channel uses the receiver can construct a maximum likelihood
estimate for , whose error satisfies

(119)

where

(120)

Based on this estimate of and on , the decoder can now
estimate by

(121)

with error

(122)

Thus, if we choose with , then the
probability of error will vanish doubly exponentially as .
This proves the achievability of the rate pair (116). Using sym-
metry and a time-sharing argument proves that this algorithm
achieves the entire region (19).
We next show that the region (19) is achievable also under the

weaker assumption that only the time-one state is revealed
to the encoders strictly causally, i.e., that is known to the en-
coders as of time . We begin by showing that even under
this weaker assumption, we can achieve the rate pair (116). For
typographical reasons, we now denote the blocklength by ,
so after the first channel use we still have remaining channel
uses. As earlier, User 1 maps its message to some number in
a manner that will be explained later. At time , the trans-
mitted symbols and the corresponding output are as in (117) and
(118). As of time , the time-one state is known to both
encoders, who cooperate in transmitting it to the receiver as fol-
lows. Given any , we first pick some sufficiently
large so that

(123)

Note that

(124)

As of time , both encoders know and they cooperate in
sending a quantized version of it. More specifically, they use the
remaining channel inputs to send the first bits to the right
of the period in the (nonterminating) binary representation of

(125)

(This corresponds to uniformly quantizing (125) using bits.)
To send these bits, they use a Gaussian codebook that achieves
the capacity of the single-user Gaussian channel under the max-
imal error probability criterion. Thus, for sufficiently large ,
the number of bits that can be sent reliably is , where is
any rate satisfying

(126)

Based on these bits, the decoder can determine
to within an error of whenever , i.e., it can
form an estimate such that

(127)

The decoder then guesses based on . To make sure
that this guess is correct whenever is smaller than and the

bits describing (125) are correctly decoded, we allow to
take on only the values

(128)

where is chosen as

(129)

so as to guarantee that the distance between the nearest values
of , i.e., , is greater than . With this constellation
for , we can send bits corresponding to the first bits in the
binary expansion of the transmitted . The rate is thus

(130)

which converges to , as tends to infinity. Thus, the pair (116)
is achievable.
We next explain how to achieve other rate pairs of the same

sum as the rate pair (116). Recall that, in our scheme, conveys
bits corresponding to the first bits in the binary expansion

of . Suppose now that we distribute these bits among the
two users by expressing as for nonnegative integers
and , and by allowing User 1 to send bits and User 2 to

send bits as follows. The first symbol sent by User 1 is

where are the bits it wishes to convey. The
first symbol sent by User 2 is

where are the bits it wishes to convey. Since
the channel adds the inputs, the time-one received symbol is
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As earlier, the transmitters use the next channel uses to de-
scribe the quantization of . The decoder can then estimate
and with high probability recover

from which it can recover the data bits. With this scheme, all
rates summing to are achievable, and only the
first state is needed.

I) Sketch of the Proof of Theorem 2: To conclude the
sketch of the achievability of the improved inner bound, we still
need to describe how the block Markov scheme is terminated.
We thus assume that blocks have been transmitted, and we
proceed to describe Blocks , , and . We
think about these blocks as “overhead,” because they contain
no fresh information. Fortunately, this overhead does not affect
the throughput because we can choose very large.
The next lemma shows that if the full-cooperation capacity

of the MAC without SI is zero, then the improved inner bound
contains only the rate pair and is thus trivially an inner
bound.

Lemma 1: If the capacity of the MAC without any SI but
with full cooperation is zero, i.e., if

(131)

then the improved inner bound contains only the all-zero
rate tuple.

Proof: It follows from (25g) and (24) that if is in
, then for some joint distribution of the form (20)

Consequently, if (131) holds and is
hence zero, then must be upper bounded by

, which
is nonpositive (irrespective of the joint PMF).

In view of Lemma 1, it only remains to prove the achiev-
ability of the improved inner bound when the full-cooperation
capacity without SI is positive. We henceforth therefore assume

(132)

The next lemma shows that we can also assume that the channel
between Transmitter 1 (uninformed) and the receiver (informed)
is of positive capacity and likewise from Transmitter 2.

Lemma 2: If the channel between Transmitter 1 (unin-
formed) to the receiver (informed) is of zero capacity, i.e., if

(133)

then the improved inner bound contains only rate pairs
with and . An analogous

result holds if

(134)

Proof: We first prove that if a rate pair is in
, and if (133) holds, then must be zero. Fix some

joint distribution of the form (20) and let satisfy the
inequalities of Theorem 2. We next argue that Hypothesis (133)
implies

(135)

Indeed

(136a)

(136b)

(136c)

(136d)

(136e)

(136f)

(136g)

where the first line follows from

(137)

the second from the chain rule and because

(138)

so is zero; the third from

(139)

the fourth again by (137); the fifth by upper bounding the av-
erage by the maximal value; the sixth by maximizing over the
conditional distribution of given ; and the last because
the maximization over on the RHS of (136f) is unnecessary.
Continuing our proof that must be zero, we note that (21)

and (25a) imply

(140)

(141)
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where the second equality (third line) follows from (135);
the last equality because (20) implies that, conditional on

, the auxiliary random variable is independent of
; and where in the last inequality we have

used

(conditioning reduces entropy) and

which can be argued as follows:

where the first inequality is because conditioning cannot in-
crease entropy, and the second by (20), which implies that, con-
ditional on , the auxiliary random variable is inde-
pendent of .
Having established that is zero, we now conclude from

(25g) and (24)

(142)

(143)

(144)

where the last equality follows from (133).

Lemma 2 shows that if either (133) or (134) holds, then the
improved inner bound is achievable. It thus only remains to
prove its achievability when

(145)

and

(146)

both of which we now assume.
With the aid of (132), (145), and (146), we can now describe

the termination of the block Markov scheme. This is done in
three blocks , , and whose length is some finite
multiple of . Block is split into two parts. In the first,
Transmitter 1 sends the -sequence of Block assuming that
the receiver knows the state sequence of Block . This
can be done (under this assumption) by (145). In the second,
Transmitter 2 sends the -sequence of Block assuming that
the receiver knows the state of Block . This is possible
by (146). In Block , the transmitters cooperate to send the
sequence of Block (this is possible by (132)), and in

Block they cooperate to send the sequence of Block
(again possible by (132)).
Decoding is performed as follows. The decoder first decodes

Block without any SI and thus learns the sequence of
Block . It then decodes Block (again without any SI) and
learns the state sequence of Block . Now that it knows
the state sequence of Block- , it can decode that block and
learn the -sequence and the -sequence of Block . From
here on, it can proceed with the regular backward decoding:
in decoding Block , it knows the sequences , , and of
Block and it can therefore decode the common message and
the messages transmitted by each of the transmitters in Block .
From this decoding, it learns the private messages of Block ,
and the sequences , , and of Block .

J) Analysis of Example 3: We first prove (29). To this end,
we note that if is achievable, then cannot exceed
. This can be shown using the full-cooperation outer bound

(Proposition 1), which implies that can only be achiev-
able if . Of more interest to us is the fact that
the rate pair is achievable. We demonstrate this using
the improved inner bound. Indeed, it is straightforward to verify
that setting

(147a)

(147b)

(147c)

(147d)

and

(147e)

satisfies all the required inequalities. This choice corresponds
to the following block Markov scheme: in the block Markov
scheme, Transmitter 1 sends its data uncoded. At Block ,
Transmitter 2 sends bits, half of which are fresh data bits and
half of which are used to describe the -length sequence of
the previous block. Note that Transmitter 2 does not describe
the entire state sequence of the previous block but only .
This latter sequence is known to Transmitter 2 at the beginning
of Block thanks to the strictly causal state information and
because it knows the sequence it transmitted in the previous
block. And bits suffice to describe this sequence because

is of entropy .
We now turn to proving (28). We fix some distribution

of the form (14), we assume that
satisfy inequalities (15), and we then prove that must be
zero. Since and since is binary, inequality (15a)
must hold with equality, and must be independent of

. By (14), this implies that

(148a)

From (15a) (that we know holds with equality) and the fact that
, we also infer that

(148b)
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where the second equality holds because is a deterministic
function of . Since is binary, is upper
bounded by 1, and we conclude from (148b) that

(148c)

where the last equality follows from (148a).
We next show that

(148d)

To this end, we note that, by (14), the pair is independent
of and hence

(148e)

Since is a deterministic function of , this implies
(148d), because if forms a Markov chain, then

. Having established (148d), we now obtain
from (148c)

(148f)

We now focus on the case where is not deterministic

(148g)

because if is deterministic then must be zero by (15b).
We also assume that the PMF of is strictly positive

(148h)

because outcomes of the auxiliary random variable that have
zero probability can be removed from without affecting the
inner bound. Since, by (14), is independent of , it follows
from (148g) and (148h) that

(148i)

This and (148f) imply that

(148j)

Since, by (14), is independent of and, a fortiori, of
, it follows from (148j) that

(148k)

Thus, , and since

(148l)

Consequently

(148m)

where the second equality follows from (26) and the indepen-
dence of and . From (148m), (15d), and the fact that
has four elements, we then conclude that . This
combines with to establish that must be zero.

K) Termination of the Block Markov Scheme for :
The termination of the block Markov scheme for is
identical to that for . Since the proof of Lemma 1 only
relies on (24), (25g), and on the properties of mutual informa-
tion, and since (30d) is identical to (25g), Lemma 1 also holds
when we replace with . Consequently, we only
have to consider the case where (132) holds.
We next show that Lemma 2 too continues to hold when we

replace with . To see this, we first note that
(133) implies (135) also for all PMFs of the form (31). Indeed,
the proof in Section I in the Appendix that (133) implies (135)
relies only on the basic properties of mutual information and on
the Markov relations (137)–(139), which also hold for PMFs of
the form (31).
The proof that must be zero also if we replace with

in the hypothesis of Lemma 2 (cf., (141)) requires some
slight alteration: rather than using (21) and (25a) to infer (140),
we now use (21) and (30a) to replace (140) with

where the third line follows from (135); the sixth because condi-
tioning cannot increase entropy; and the seventh can be justified
as follows:

(149)

where the first line holds because conditioning (on ) cannot
increase entropy; the second because the PMFs of the form (31)
satisfy the Markov condition

and the third because conditioning cannot increase entropy.
To conclude the proof that Lemma 2 continues to hold when

we replace with , it remains to show that, under
the lemma’s hypothesis, must satisfy (144). The derivation
is identical to the one in the proof of the lemma in Section I in
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the Appendix, because in deriving (144) we only used the fact
that must be zero, (24), (25g) (which is identical to (30d)),
the properties of mutual information, and (133).

L) Proof of Theorem 3:
As in the proof of Theorem 1, we write the region (36a)–(36e)

as

(150)

(151)

(152)

(153)

(154)

(155)

To prove Theorem 3, it is enough to show that any pair
satisfying (150)–(154) for some is achiev-

able. We proceed along the lines of the proof of the strictly
causal case, with minor modifications in the construction of
the codewords. Specifically, new external random variables
and are introduced, with joint law (34). The codewords

and are replaced by and ,
generated by and ,
respectively. The input word of User 1 is now generated by

, and similarly for User
2. The advantage of this construction over the code construction
for the strictly causal case is that the input at time can depend
on . From this point, we follow the arguments leading to
(106), with and replacing and . Note that now

and therefore we do not drop the random variable in (153),
as it will lead to lower achievable rates. Regarding the termina-
tion: as in the strictly causal case, it can be easily shown that the
region defined via (34) and (36) is contained in the full-cooper-
ation region of the causal model

(156)

where the maximization is over all joint distributions

Hence, we can assume that the RHS of (156) is strictly positive,
as otherwise is trivially achievable. If the RHS of (156) is
strictly positive, then the users can cooperate in Block to
transmit the compressed state of Block without any fresh
information. The details are omitted.

M) Analysis of Example 4: We begin by proving (39), i.e.,
that contains the rate pair

(157)

To see this, consider the choice

with , , and being independent and with and taking
on the values 0 and 1 equiprobably. With this choice, (36b) re-
duces to and consequently (36a) and (36c) reduce to

and (36d) to

This establishes that the rate pair in (157) is in . It is in-
teresting to note that when , the rate pair
is achievable. This shows that the highest rate for User 1 in this
case is because this rate cannot be exceeded by User 1
even when the receiver knows the state .
The Naïve Approach: From the region (38) and the charac-

terization of the extreme points of the capacity region of the
classical MAC, the maximal rate that User 1 can transmit is

(158)

where the maximum is over the distribution of and over all
the strategies (mappings) . For this MAC, the law

does not depend on the value to which
maps the state , i.e., the strategy influences the output
only when , in which case it gives a certain input ,
connected directly to the output. User 1 is then disconnected.
Therefore, the exact value of is immaterial. Without loss of
generality, we thus assume that .
Similarly, influences the output only when , in which

case it gives a certain input directly connected to the output.
Since the strategies are chosen independently of , the MAC
reduces to a -channel from User 1

(159)

The capacity of the Z-channel is

(160)

For sufficiently large values of , this is strictly smaller than
, thus demonstrating that for this channel,

our rate region contains rate pairs that are not achievable
using the naïve approach.
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