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The Multiple-Access Channel With Causal Side
Information: Double State
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Abstract—We consider a memoryless multiple-access channel
(MAC) that is governed by two independent memoryless state
sequences, each of which is revealed to a different encoder in a
strictly causal or causal way. The special case where one of the
state sequences is deterministic (null) corresponds to an MAC
governed by a single state that is revealed to only one of the
encoders. We show that, even in the strictly causal case, the state
information at the encoders can increase the capacity region.
It cannot, however, increase the sum-rate capacity. We provide
general inner and outer bounds on the capacity region, and we
also study a Gaussian example where they coincide. We show that
in the causal case, naïve Shannon strategies may be suboptimal.

Index Terms—Causal state information, feedback, multiple-ac-
cess channel (MAC), Shannon strategies, side information (SI),
state, strictly causal state information.

I. INTRODUCTION

W E study the capacity region of a memoryless mul-
tiple-access channel (MAC) that is governed by two

independent memoryless state sequences, each of which is
revealed—depending on the scenario—strictly causally or
causally to a different encoder. The special asymmetric case
where one of the state sequences is deterministic (null) corre-
sponds to an MAC governed by a single state sequence, which
is revealed to only one of the encoders. Our present work com-
plements [6], which deals with an MAC governed by a single
state sequence that is revealed to both encoders. We shall see
that, even in the present case, strictly causal side information
(SI) can increase the capacity region. Thus, the gains afforded
by SI in [6] and [7] cannot be attributed exclusively to the
encoders’ ability to cooperate in transmitting a compressed
version of the common state: some gains are to be had also
when the encoders obtain independent state information and
cannot, therefore, cooperate in sending it.
However, when it comes to the sum-rate capacity, the picture

changes. Strictly causal SI is beneficial in the common-state sce-
nario [6], [7], but it is useless in the present setting. The increase
in the sum-rate capacity when the state is common can thus be
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attributed to the ability of the encoders to jointly describe the
common state and cooperate in sending the description over the
MAC.
Why can strictly causal state information be useful on the

MAC with independent states? To gain some insight, consider
the case where Transmitter 1 is altruistic: although it can send
data to the receiver without interfering with Transmitter 2, it is
willing to give up all this rate in order to help Transmitter 2. In
the absence of SI, the most helpful it can be is by sending a con-
stant symbol (the symbol that interferes least with Transmitter
1). But in the presence of SI, it can do better: it can describe the
state sequence it observes to the receiver and in this way help
the receiver to decode the message sent by Transmitter 2. The
benefits of SI in this scenario are not in allowing the users to co-
operate in sending the state but rather in allowing them to trade
the rate of one user against the other.
The literature on single-user channels and multiterminal net-

works that are governed by state sequences is vast. For a recent
survey, see [5]. The literature on the causal and strictly causal
case is more limited. For single-user memoryless channels, the
former was solved by Shannon [9] using “Shannon strategies,”
and the latter does not increase capacity. The degraded broad-
cast channel is addressed in [10]. For follow-up work on our
problem, see [8] and Theorem 2 ahead.
The rest of this paper is organized as follows. The definitions

and main results pertaining to the first scenario, in which the
encoders learn the state sequence strictly causally, can be found
in Section II. Those pertaining to the second scenario, where the
encoders learn the state sequence causally, are in Section III.
These sections also contain the key examples. The proofs are in
Appendixes A–G and H–I, respectively.

II. STRICTLY CAUSAL SIDE INFORMATION

A. Basic Definitions

We are given a discrete memoryless state-dependent MAC
with state alphabets and , state probability

mass functions (PMFs) and , input alphabets and
, and output alphabet . All the alphabets are finite. We use

boldface symbols to denote -sequences from these alphabets,
e.g., for an -sequence over and for an -sequence over
. The laws governing -sequences of state and output letters

are
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For notational convenience, we henceforth omit the superscript
, and we denote the channel by . Let

be single-letter cost functions. The cost associated with trans-
mitting the sequence by encoder is

B. Coding

Given positive integers , , let denote the set
, and let denote the set .

Definition 1 (A Code With Strictly Causal SI): An
code with strictly causal SI at the en-

coders is a pair of sequences of encoder mappings

(1)

and a decoding mapping

such that the average input costs are bounded by

and the average probability of error is bounded by . Here

where denotes , and

where is the decoding set of the pair of
messages .
The rate pair of the code is defined as

A rate-cost quadruple is said to be achievable
if for every and sufficiently large , there exists an

code with strictly causal SI for the channel
with

The capacity-cost region of the channel with strictly
causal SI is the closure of the set of all achievable quadruples

. The superscript “ ” indicates that the two
states are independent, to distinguish the current model from
the one treated in [6]. For a given pair of input costs,

stands for the section of at . Our
interest is in characterizing .

By the asymmetric case, we shall refer to the case where
is deterministic, in which case the state consists of only one
component , which is available to User 1.

C. Outer Bounds

Denote by the sum-rate capacity of theMACwithout state
information

(2)

where the maximum on the right-hand side (RHS) is over all
joint PMFs of the form

(3a)

satisfying the constraints

(3b)

As the next proposition shows, strictly causal SI does not in-
crease the sum-rate capacity. This is in contrast to the case where
the channel is governed by a common state, which is revealed
strictly causally to both encoders [6].

Proposition 1 (The Sum-Rate Capacity): Strictly causal SI
does not increase the sum-rate capacity:

(4)

Proof: See Appendix A

The following proposition deals with the asymmetric case. It
shows that in this case, strictly causal SI can only increase the
maximal rate at which the user without the SI can communicate:
If User 2 is not provided any SI, then providing User 1 with
strictly causal SI cannot increase its rate; it can only increase
the rate of User 2. In this sense, the channel from User 1 to
the output can be viewed as a single-user channel where strictly
causal SI does not increase capacity.

Proposition 2 (Asymmetric Case): If is deterministic, then
strictly causal SI to User 1 does not increase its maximal rate:

(5)

where the maximum on the RHS is over joint distributions sat-
isfying (3).

Proof: See Appendix B.

We next present an outer bound on the capacity region. De-
note by the set of all tuples satisfying

(6a)

(6b)

(6c)

(6d)

for some joint distribution of the form

(6e)
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where is a time-sharing random variable taking values in an
alphabet whose size can be bounded by four.

Proposition 3 (Outer Bound):

(7)

Proof: See Appendix C.

Note that, because is a time-sharing random variable, it fol-
lows from (6c) that strictly causal SI does not increase the sum-
rate capacity. Consequently, Proposition 1 can be viewed as a
corollary of Proposition 3. In fact, Proposition 2 on the asym-
metric setting (where is deterministic) can also be viewed as
a corollary by considering (6a).
As the following example shows, the outer bound of Propo-

sition 3 need not be tight.

Remark 1: For some channels the inclusion in (7) is strict.

Example 1: Consider the asymmetric case in which
Transmitter 1’s input is binary; Transmitter 2’s input

is a binary tuple; and the channel
output is such that is binary, whereas

is a binary tuple. The channel law is

(8a)

(8b)

where is a random binary tuple whose
components are independent and identically distributed (IID)

, and is a random binary tuple
whose components are IID , where is the
unique constant in the interval whose binary entropy
function is :

(8c)

The state tuple and the noise tuple are independent, and
the mod-2 addition in (8b) is componentwise:

For this channel, the rate pair is in but not in .

Proof: See Appendix D.

D. Achievable Region

Let be the collection of all PMFs
of the form

(9)

Note that (9) implies the Markov relations

(10a)

(10b)

(10c)

and that are independent of each other and of the
quadruple . Let be the convex hull of the
collection of all tuples satisfying

(11a)

(11b)

(11c)

(11d)

for some in .
Our main achievability result for the strictly causal case is the

following.

Theorem 1: The region is achievable:

(12)

Proof: The proof is in Appendix E. It is based on dis-
tributed Wyner–Ziv source coding [4] and on block-Markov
channel coding to transmit the Wyner–Ziv codewords and the
messages (data). The channel output serves as SI for the recon-
structor in the distributed Wyner–Ziv code. Since the two com-
ponents of the source are independent, there is no direct coop-
eration between the encoders via a common message as in [6].
Instead, each user spends part of its private rate on the transmis-
sion of its Wyner–Ziv codeword.

In some cases, the region coincides with . The
next example is such a case. It is also an example where the
outer bound of Proposition 3 is tight.1 Although Theorem 1 is
proved for the discrete memoryless case, we apply it here for
the Gaussian model. Extension to continuous alphabets can be
done as in [11].

Example 2: Consider the asymmetric Gaussian MAC with
input power constraints , where the state
is the channel noise:

(13)

The capacity region of this channel when is revealed strictly
causally to Transmitter 1 comprises all the rate-pairs
satisfying

(14a)

(14b)

Proof: That all achievable rate pairs must satisfy (14a)
follows from Proposition 2, and that they must also all satisfy
(14b) follows from Proposition 1. The achievability is proved
in Appendix F.

The capacity region in the above example can be strictly
larger than the capacity region in the absence of state informa-
tion [1, Sec. 15.1]. Indeed, in the presence of strictly causal

1In fact, in this example, Propositions 1 and 2 already specify the region.
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SI to User 1, the network can support positive rates by User 2
even if its allowed average power approaches zero. We thus
conclude the following.

Remark 2: Strictly causal state information on the MAC can
increase capacity.
In the scheme achieving , each transmitter sends in

Block a compressed version of the SI information it ob-
served in Block . But, more generally, it can send a compressed
version of the pair of sequences comprising the state sequence
that it observed in Block and, additionally, the sequence
comprising its own inputs at Block . This improvement was
proposed by Li et al. [8] who obtained the following region.

Theorem 2 [8]: If satisfy

(15)

(16)

(17)

for some joint PMF

(18)

then is achievable.
Li et al. showed that their achievable region contains the one

of Theorem 1, and they conjectured that for some channels, the
inclusion is strict. We next demonstrate that this is indeed the
case by providing such a channel.

Example 3: Suppose that the state is null (deterministic),
and the state is the pair , where and are IID
binary random variables each of entropy

(19a)

(19b)

The MAC has binary inputs and an output
with

(20a)

(20b)

Thus, if is equal to zero, then is the mod-2 sum of
and , and otherwise, it is the mod-2 sum of and .
The rate pair is in the inner bound of Li

et al. but not in the inner bound of Theorem 1. In fact, if
is in , then must be zero.

Proof: See Appendix G.

III. CAUSAL SIDE INFORMATION

A. Basic Definitions and Coding

The definition of codes and achievable rates remain as in
Section II-B, with the only difference being in the definition of
encoding mappings: in the causal case, (1) is replaced by

(21)

The capacity region and its section at are denoted
and .
In general, causal SI can be more beneficial than strictly

causal. Indeed, in the single-user channel, the former can
increase capacity [9] and the latter cannot. Since the single-user
channel can be viewed as a degenerate MAC, we have the
following.

Remark 3: The capacity region of an MAC with causal
state information can be larger than with strictly causal state
information.
Of course, in some cases, causal SI is no better than strictly

causal SI, e.g., when the states are irrelevant, i.e., when
does not depend on .

B. Achievable Region

Let be the set of all PMFs of
the form

(22)

Observe that (22) implies the Markov relations

(23)

Let be the convex hull of the collection of all tuples
satisfying

(24a)

(24b)

(24c)

(24d)

for some in .

Theorem 3: In the presence of causal SI, is achievable:

Proof: The proof proceeds along the lines of the proof of
Theorem 1, except that the input is allowed to depend on the
state and that additional external random variables and
that do not depend on are introduced. This resembles

the situation in coding for the single-user channel with causal
SI, where a random Shannon strategy can be represented by an
external random variable that is independent of the state.

The scheme that Shannon proposed to achieve the capacity of
the single-user channel with causal SI does not involve block-
Markov coding [9]. In fact, Shannon’s scheme ignores the past
states, and in his scheme, the present input is a function only
of the message and the present state . This allowed Shannon
to reduce the channel to one where the inputs are mappings
(“strategies”) from the state alphabet to the input alphabet and to
then reduce the problem to that of coding for a channel without
states. This “naïve approach” can also be applied to the MAC.
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It leads to the region comprising all rate-pairs
satisfying

(25a)

(25b)

(25c)

for some PMF of the form

(25d)

where for are random Shannon strategies [9]
whose realizations are mappings ; the random vari-
able is for time sharing

(25e)

and

(25f)

By choosing in (24) to be deterministic, we obtain the
following.

Remark 4: Every rate pair that is achievable with naïve
Shannon strategies must also be in

(26)

The next example demonstrates that the reverse is not true.
Consequently, the naïve approach—while optimal for the
single-user channel—need not be optimal on the MAC.

Remark 5: For some channels, there are rate pairs in
that are not achievable using naïve Shannon strategies.

Example 4: Consider the asymmetric state-dependent MAC
consisting of two independent single-user channels, where the
state of Channel 2 is available causally at the input of Channel
1. Specifically, let the input and output alphabets be

where

The channel is defined as

where takes value in the set according the
probability vector

and is small enough so

(27)

For this channel, the rate pair is in , but it cannot be
achieved using naïve Shannon strategies

Proof: That the rate pair is in is not surprising
because is smaller than 1, so in the block-Markov
scheme Encoder 1 can losslessly compress the state sequence
pertaining to the previous block and transmit it over the channel
from to whose capacity is one. The receiver, upon
obtaining this state sequence, can subtract it (mod-4) from the
sequence of the previous block and in this way obtain a

clean channel from to of capacity 2. The choice of the
auxiliary random variables and the PMF that correspond to this
scheme can be found in Appendix A, which also contains a
proof that this pair is not achievable with the naïve approach.

APPENDIX

A. Proof of Proposition 1

The RHS of (2) is the sum-rate capacity of the same MAC
without SI. Consequently, it is also achievable in the presence
of (strictly causal) SI, because the SI can always be ignored. It
remains to show that the RHS is also an upper bound. Let
and be the random messages of Users 1 and 2. Starting with
Fano’s inequality

(28)

where the last equality holds because in the strictly causal case

Since and are independent, so are
and . The claim now follows by the standard time sharing
argument.
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B. Proof of Proposition 2

Since the SI can always be ignored, we only need to prove
a converse. Denote by the random message of User 1, and
note that and are independent. By Fano’s inequality and
this independence

where the last equality follows from the Markov relation

Since and are independent, so are and
. The claim now follows by the standard time sharing ar-

guments.

C. Proof of Proposition 3

Following the proof of Proposition 1

(29)

where and are independent. For the individual rates

(30)

where (a) holds due to the Markov relation

(31)

(b) holds since is a deterministic function of ;
(c) holds due to the Markov chain

(32)

(d) holds since conditioning reduces entropy; and (e) holds due
to the Markov chain

(33)

In a similar manner, we obtain for

(34)

The proposition now follows by applying the standard time
sharing argument on (30), (34), and (29).

D. Analysis of Example 1

To see that the rate pair is in , we can consider
the distribution on according to which they are inde-
pendent; is ; and the components of are
IID . With this distribution, the sum-rate con-
straint is 1 bit and the constraint on is also 1 bit. It remains
to show that the rate pair is not achievable, i.e., that it is
not in .
The key to that is to note that because User 1’s input alphabet

is binary, and because the entropy of is 2 bits, Transmitter
1 cannot describe perfectly. More specifically, consider an
-sequence produced by Transmitter 1 and an -tuple of
states :

(35)
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As we next show, this inequality yields an upper bound on .
Indeed, starting with Fano’s inequality

(36)

To lower-bound the entropy term on the RHS of (36) we next
use (35) and Mrs. Gerber’s Lemma [3, Sec. 2.1]:

(37)

where the second inequality follows from (35); the mono-
tonicity of ; the monotonicity of ; and the
monotonicity of on the interval .
Using (37), we now obtain from (36) upon dividing by and

taking the limit as tends to infinity

(38)

which is strictly smaller than 1.
In fact, it is not difficult to see that the RHS of (38) is achiev-

able: Transmitter 1 uses bits to describe the first component
of the -length state sequence using a classical rate-distor-
tion codebook, and uses bits to describe the second com-
ponent. This leads to two parallel binary symmetric channels,
each of crossover probability .

E. Proof of Theorem 1

Lemma 1: If for some PMF of form (9), the rates
and satisfy inequalities (11), then cannot exceed

. Consequently, if the latter is zero, then both
and must be zero.

Proof: From the sum-rate inequality (11c)

(39)

where the second line holds because and are
independent; the third by the chain rule; the fourth by expressing
mutual information in terms of conditional entropies; the fifth by
the Markov relation (10c); and the sixth because conditioning
cannot increase entropy.

Lemma 2: If for some PMF of form (9), the rates and
satisfy inequalities (11) and is zero, then
must be zero and cannot exceed . In this case,

is achievable by using the MAC as a single-user
channel from to and by ignoring the state information.

Proof: Fix some PMFs of form (9) and rates and
satisfying inequalities (11). Assume that

(40)

Starting with (11b)

(41)

(42)

(43)

with the following justifications.
We first justify (42), where we replaced with . The

first term on the RHS of (41) is clearly no larger than the first
term on the RHS of (42). And as to the second term

where the second line follows from (10b); the third because con-
ditioning cannot increase entropy; and the fourth because (9)
implies

Having justified (42), we next justify (43), where we have
dropped . Starting with the first term

where the second line follows because, under all joint PMFs of
form (9), and are independent; and the third
line because under such PMFs
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To conclude the justification of (43), it remains to consider the
second term of (42) and to show that we can drop from it too:

where the second equality follows from (10b), and the third
equality because for PMFs of form (9)

(44)

Having justified (43), we now use it to conclude that must
be zero. Starting from (43)

where the second line follows from the independence of and
; the third by the chain rule; the fourth by (40); the sixth

line because conditioning cannot increase entropy; the seventh
because for PMFs of form (9), the Markov relation

holds [e.g., by (10b)]; and the final line because conditioning
cannot increase entropy. This establishes that the lemma’s hy-
potheses imply that must be zero.
To conclude the proof, it remains to establish that cannot

exceed . Since is zero, it follows from (39) that

where the last equality follows from the assumption (40).

Proof of Theorem 1: Fix some joint distribution
in , and let and satisfy

inequalities (11). We need to show that is achievable.
If is zero, then Lemma 1 implies that both
and must be zero and hence achievable. It thus remains to
prove achievability when

(45)

as we henceforth assume.

As we next argue, (45) implies that and
cannot be both zero. Indeed, the independence

of and implies that and
, so if both and

are zero, then so are both and
and hence so is , which contradicts
(45). In the rest of the proof, we shall treat the case where

(46)

the case where this is violated but is positive is
symmetric.
The significance of (46) is that it guarantees that—by having

Encoder 2 transmit a deterministic sequence—Encoder 1 can
ignore the state information and still communicate at a positive
rate to the uninformed decoder. As we shall see, this will be
critical in the termination of the block-Markov scheme. Also
critical to the termination of the block-Markov scheme is the
assumption

(47)

which we can make because if this is violated, then achiev-
ability is guaranteed by Lemma 2. The significance of (47) is
that it guarantees that—by having Encoder 1 transmit a deter-
ministic sequence—Encoder 2 can ignore its state information
and communicate at a positive rate to the decoder, provided that
the decoder is made cognizant (at some later phase of the coding
scheme) of the prevailing -sequence.
Using the Fourier–Motzkin elimination, it can be shown that

the fact that the rates , satisfy inequalities (11) is equiva-
lent to the existence of rates such that

(48a)

(48b)

(48c)

and

(49a)

(49b)

(49c)

Indeed, form (9) of the joint PMF implies that the sum of (48a)
and (49a) yields (11a). Similarly, (48b) and (49b) yield (11b).
The sum-rate bound (11c) is obtained by summing (48c) with
(49c). Next, observe that

(50)

where the second equality and the inequality in (50) hold due to
the Markov relations (10a), (10b). By (50), the sum-rate bound
(11c) obtained by summing (48c) with (49c) dominates the sum
of (48c), (49a), and (49b). Similarly, it can be shown that (11c)
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dominates all other sum-rate bounds that can be obtained from
(48) and (49).
Having established that the condition that the rates ,

satisfy inequalities (11) implies (and is, in fact, equivalent to)
the existence of rates satisfying (48) and (49),
we next interpret the two sets of inequalities.
Inequalities (48) have a channel-coding flavor. They guar-

antee that the rates

be achievable on the MAC when the decoder, in addition to the
channel output, is also cognizant of and . Inequalities (49)
have a distributed source-coding flavor. They guarantee that in
the distributed Wyner–Ziv network [4] where one describing
terminal observes , the second observes , and the recon-
structor observes , the description rates allow the
reconstructor to reconstruct as and reconstruct as .
These interpretations motivate the following block-Markov

scheme. The scheme consists of length- blocks followed by
three terminating blocks of lengths , , and (to be spec-
ified shortly). In Block 1, Encoder 1 transmits fresh informa-
tion at rate , and Encoder 2 transmits fresh information at
rate . In Blocks 2 through , Encoder 1 transmits fresh
bits and bits that describe the length- state sequence it
observed in the previous block. Likewise Encoder 2. The de-
scription of the state sequences from the previous block that
Encoders 1 and 2 use is based on a binning scheme that was
proposed in [4] for the Wyner–Ziv distributed source-coding
problem where Encoder 1 describes the state sequence it ob-
served in the previous block, Encoder 2 describes the state se-
quence it observed in the previous block, and the reconstructor
has the -length channel outputs from the previous block as SI.
Constraints (49) guarantee that if the decoder succeeds in de-
coding the bits sent in the block, it will be able to produce a
reconstruction sequence of joint type with the state se-
quence observed by Encoder 1 in the previous block, and it will
also be able to produce a reconstruction sequence of joint type

with the state sequence observed by Encoder 2 in the pre-
vious block. Constraints (48) guarantee that if (using backward
decoding) the decoder is given the description of the states per-
taining to the given block, it will be able to decode the bits sent
by the two encoders in the block—i.e., both those comprising
fresh information and those describing the states pertaining to
the previous block. If the decoder were given the description of
the states pertaining to Block , it could then decode all the data
using backward decoding: Using the description of the states
pertaining to Block , it would decode the fresh information
of Block as well as the description of the states pertaining to
Block . Using the latter, it would then be able to decode
the fresh bits sent in Block as well as the description of
the states pertaining to Block , etc.
The purpose of the three terminating block is to provide

this information to the receiver, i.e., to convey to the receiver
the description of the states pertaining to block . This is
done as follows. In Block , which is roughly of length

[and which is finite by (46)], Encoder
2 sends no data (i.e., sends a deterministic sequence of type

) and Encoder 1 sends the (lossy) description of the state
sequence it observed in Block . After decoding Block ,
the receiver can obtain a description of the state sequence that
was observed by Encoder 1 in Block . The remaining two
blocks are used to convey the lossy description of the state
sequence that was observed by Encoder 2 in Block . In Block

, which is roughly of length
(and which is finite by (47)), Encoder 1 sends no data (i.e.,
sends a deterministic sequence of type ) and Encoder 2
sends the lossy description of the state sequence it observed
in Block . The decoder, however, cannot yet decode this
description because the rate is not achievable
unless the decoder is informed of . This is done in Block

, which is roughly of length ,
where Encoder 2 sends no data and Encoder 1 sends a lossless
description of the state sequence it observed in Block .
Decoding is thus performed as follows: The receiver first de-

codes Block and thus losslessly learns the state sequence
that was observed by Encoder 1 in Block . Using this
state sequence, it then decodes Block and thus learns
the lossy description of the state that was observed by Encoder
2 in Block . By Decoding Block , it also learns the de-
scription of the state sequence that was observed by Encoder 1
in Block . Armed with the lossy descriptions of the two state
sequences pertaining to Block , it can now decode Block
and use backward decoding to decode all the remaining blocks

through 1.
The rates supported by our scheme approach as

tends to infinity. Indeed, Encoder 1 sends a total of data
bits, and the total number of channel uses is roughly

so the ratio tends to as tends to infinity. Similarly, the rate
of Encoder 2 approaches .
We now give a more detailed proof. Recall that since

satisfy inequalities (11), there exist such
that both (48) and (49) holds. Fix such . By (46) and
(47), there exist such that

(51a)

and

(51b)

As explained earlier, the proof is based on a block-Markov
coding scheme with backward decoding. The total transmission
time is divided into blocks. Each of the first blocks is of
length . Block is of length , Block is of length ,
and Block is of length . In terms of and ,
we can now specify the lengths of the terminating blocks as

(52a)

(52b)

(52c)
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where is some arbitrary fixed constant. Our scheme is
thus of rates

(53)

which approaches for large .
The blocks are indexed by , where .

Denote by the state sequence observed by User during
Block , i.e.,

In the rest of the proof, we use the definitions of typical se-
quences and typical sets as in [2]. Thus, is the number
of occurrences of the letter in the -vector . And, for
a given PMF over the finite alphabet , the -typical set is

For a joint PMF and a given -vector , the conditional
-typical set is

Typical sets will be used with depending on , such that

We further adopt the Delta-Convention of [2, Convention 2.11]
(see also lemmas 2.12 and 2.13 there). Thus, throughout the
proof, the sequences are fixed, and the dependence of the
typical sets on them is omitted.
We proceed now to a more detailed description of the code-

books and coding scheme.
Codebook Generation. Pick real numbers , satis-

fying

(54)

in a fashion that will be specified later. For each block
, the codebook is constructed in four steps, as described

below.
1) Generate vectors , , IID
according to . Randomly partition the indices

into bins. Denote by the
index of the bin to which belongs, and by bin
number .

2) Generate vectors , ,
, IID, according to .

3) Similarly, generate vectors ,
, IID according to . Randomly parti-

tion the indices into bins.
Denote by the index of the bin to which belongs,
and by bin number .

4) Generate vectors ,
, , IID, ac-

cording to .
The codebook generation and partition as described above are
repeated independently times, with the same distribution and
rates. The last three blocks are devoted to the transmission of
the description of the state sequences of block . They carry no
fresh information. The construction of codebooks for the last
three blocks is described next.
Block .
1) Generate one length- codeword IID .
2) Generate independent length- codewords
for each IID .

Block
1) Generate one length- codeword IID .
2) Generate length- codewords for

each IID .
Block .
1) Generate length- codewords for

each IID .
2) Generate one length- codeword IID .
For notational convenience, we omit the dependence of the
codebooks and codewords lengths on the block number . It
will be clear from the context whether the codewords are of
length , , , or .
Reveal the codebooks to the encoders and decoder.
Encoding. Let and

be the message indices of the users in Block . The operation of
the two encoders depend on the block number, as follows.
Block 1. The users send and .
Block , . User is cognizant of and inspects

the sequences that were generated in Block to find the
first index such that

(55)

Denote this index by . If a vector satisfying (55)
does not exist, the user picks a default index, say .
Denote by the bin number to which the index be-
longs. The inputs to the channel are

(56)

Block . In this block, only User 1 transmits the codeword
of the compressed state sequence . Being cognizant of ,
User 1 inspects the sequences that were generated in Block
and selects the first index such that

(57)

Denote this index by . If a vector satisfying (57) does
not exist, the user picks a default index, say . Denote
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by the bin number to which the index belongs. The
inputs to the channel are

(58)

That is, no user messages are sent in the last block.
Block . In this block, User 2 transmits the codeword of

the compressed state sequence . Being cognizant of ,
User 2 inspects the sequences that were generated in Block
and selects the first index such that

(59)

Denote this index by . If a vector satisfying (59) does
not exist, the user picks a default index, say . Denote
by the bin number to which the index belongs. The
inputs to the channel are

(60)

Block . In this block, User 1 transmits an almost-loss-
less description of using, for example, the scheme in [1,
Sec. 7.13] for transmitting a source over a noisy channel. Thus,
if is the index of in the set of all -typical se-
quences, (with being set to one if is not typical),
it transmits :

(61)

Decoding. Let be the channel output at Block . Decoding
begins at Block and proceeds backwards.
Block . In this block, the decoder recovers (with high

probability) . It looks for an index such that

(62)

If an index satisfying (62) does not exist, or is not
unique, an error is declared. Otherwise, it sets to be
the sequence whose index is in the set of -typical
sequences.
Block . The decoder has the output , and it also

has the estimate obtained in the previous decoding step.
It looks for an index such that

(63)

If an index satisfying (63) does not exist, or is not
unique, an error is declared.
Block . Here, the decoder decodes the compressed state

sequence of User 1 in block . The decoding proceeds as in
Block : The decoder looks for an index such that

(64)

If an index satisfying (64) does not exist, or is not
unique, an error is declared.

Block b, . The decoder has at hand the pair
, and the channel output . It looks for

and , such that

(65)

If such a pair does not exist, or is not unique, an error is declared.
If decoded correctly, the pair consists of

the compressed state sequences in Block . This information on
the states facilitates the decoding of the messages and
the indices , , which are the bin numbers of the states
in Block . Specifically, the decoder looks for the indices

such that

(66)

If there is no quadruple satisfying (66), or
there is more than one such quadruple, an error is declared.
Block 1. Since it is the first block, there is no need to de-

code the bin indices . The decoder operates exactly as
in Blocks , except that and are set to 1.
The decoder output is the sequence of pairs ,

.
Probability of error analysis. Standard techniques related

to single-user channels show that (51) and (52) guarantee
that are decoded with small probability of
error. We thus focus on the decoding of the first blocks and
specifically on the decoding of , assuming
that the tuple was decoded correctly. Without
loss of generality, we assume that a specific sequence of pairs

is chosen, and that .
Fix state sequences , , and

define the events

(67)

(68)
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It is enough to show that

(69)

where is the error event, and
is the product of . The probability of error con-

ditioned on the pair can be bounded as

(70)

for some fixed . We turn now to bound each of the terms in
the RHS of (70). For notational convenience, we drop the con-
ditioning on the state sequences. By classical results on source
coding

(71)

whenever

(72)

Conditioned on , the state sequences and the channel input
vectors are all typical. Recall that we assume that the decoder
has at hand the correct bin indices . Moreover,
conditioned on , the decoder has at hand the correct bin in-
dices of the last block, i.e., ,
for . Hence, , , is the decoding
error event in distributed Wyner–Ziv coding. We next evaluate
the probability of the union in the RHS of (67):

(73)

for some , . Similarly

(74)

(75)

Therefore, we conclude that

if

(76)

where we used the independence of and .
We proceed to bound the probability of conditioned

on . Observe that conditioned on , the decoder
has at hand the compressed version of the state at Block ,

, and this pair is independent of the inputs
in Block . Decompose the union in (68) as

(77)

Therefore, we have

provided

(78)

The terms and are treated ex-
actly as and : the extra conditioning on

only means that the decoder has at hand the bin indices
as we assumed for the last block . Hence,

they yield the same rate constraints, i.e., (76) and (78). The rate
constraints (72) and (76) are equivalent to

(79)

where we used the independence of , , , . The rate
constraints (78) and (79) are equivalent to (48)–(49). Moreover,
(71) guarantees that the input constraints are satisfied. This con-
cludes the proof of Theorem 1.

F. Analysis of Example 2

By ignoring the state, we can achieve the region cor-
responding to (14) but with the additional constraint

. Since the convex combination of

this region with the rate-point

(80)
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yields the rate region (14) (without the additional constraint), a
time-sharing argument shows that to prove that the rate region
(14) is achievable, it suffices to prove that the rate-pair (80) is
achievable, which is what we proceed to do.
To this end, set and make the following substitutions

in the definition of the set . Set ; zero mean and
jointly Gaussian with ; and ,
independent of each other and of . Then, (11a)–(11c)
reduce to

(81)

(82)

(83)

where is the variance of conditioned on . For any
positive satisfying

(84)

the bound (83) dominates (82) and the RHS of (81) is positive.
We thus conclude that (80) is achievable. By the time-sharing
argument, this also proves the achievability of the region (14).
We next have to show that no rate-pair outside the region (14)

is achievable. This can be shown by recalling the capacity region
of the GaussianMACwithout state information and by recalling
Propositions 1 and 2.

G. Analysis of Example 3

The rate pair is in the inner bound of Li
et al.. To see this, we set and with ,
IID random bits. However, as we next prove, the pair
is not in .
We prove this by showing that if is in , then
must be zero. Suppose then that . Since
is null, it follows from the structure (9) of the joint distri-

bution that must be independent of all the other random
variables. Consequently, we can strike it out from (11a)–(11c).
Since , it follows from (11a) that must be

and that must be zero. This
implies that must also be zero (because

). Consequently, must
also be zero (because ). This implies that

(85a)

because is and independent of ,
so , which is equal to , must also be independent
of .
We now distinguish between two cases depending on whether
is deterministic or not. If it is deterministic, then the rate

must be zero by (11b). Consider now the case when it is not. In
this case, is positive for all . Since

is independent of [by (9)], and since without changing the
inner bound we can assume that is positive for all

, it follows that in this case

(85b)

This combines with (85a) to imply that

(85c)

This implies that

(85d)

because, by (9), is independent of and hence a
fortiori of . Thus, , and since

,

(85e)

Consequently

(85f)

This implies that also

(85g)

because is independent of . It now follows from
(85g), the fact that is deterministic, and from (11b) that
must be zero.

H. Sketch of the Proof of Theorem 3

Proof of Theorem 3: The region (24) can be written as

(86)

(87)

(88)

(89)

(90)

(91)

(92)

with joint distribution

(93)

The proof proceeds as the proof of Theorem 1, except that
additional external random variables and are intro-
duced. The codewords and are replaced
by codewords and , independent of the
states. The inputs to the channel are allowed now to depend
on the states, according to the laws and .
The proof proceeds exactly along the lines of the proof of
Theorem 1, with replacing

there. The details are omitted.
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I. Analysis of Example 4

We first show that is in . This can be shown by
a proper choice of the random variables in (24a)–(24c). Since
is deterministic, we set to be deterministic too, and we

set . For the external random variables of User 1, note
that the entropy of is lower than the capacity of the channel
of User 1. Therefore, set , , and let be
independent of . With these substitutions and with the choice

, (24a)–(24c) reduce to

(94a)

(94b)

(94c)

with the joint distribution

(95)

With the joint distribution (95), we can simplify (94a) to

(96a)

Similarly, (94b) and (94c) simplify to

(96b)

(96c)

Let be , and let be uniformly distributed
over its alphabet . The bound (27) on the entropy of
implies that (96a) is satisfied and that (96b) is more stringent

than (96c). Since bits, we conclude that the tuple
is in .

We next show that if is achievable using naïve
Shannon strategies, then must be strictly smaller than 2 bits.
Since is null, we substitute for in (25c). Based on
properties of the capacity region of the classical MAC without
SI, the maximal rate at which User 2 can communicate
utilizing the naïve approach is

(97)

We claim that is strictly less than 2 bits. To see this, let
us write

(98)

(99)

where (98) holds because is independent of so
, and (99) holds because

is independent of .
Since takes value in a set with four elements, it follows

from (97) and (99) that cannot be 2 if is not uniform.
It thus remains to show that cannot be 2 even if is uni-
form. By (99), this is equivalent to showing that when is uni-
form, the conditional entropy is strictly
positive for all functions . This can be shown by noting that

can take on at most two different values and, therefore,
cannot determine .
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