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Sending a Bivariate Gaussian Source Over a Gaussian
MAC With Feedback
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Abstract—We study the power-versus-distortion tradeoff for the
transmission of a memoryless bivariate Gaussian source over a
two-to-one Gaussian multiple-access channel with perfect causal
feedback. In this problem, each of two separate transmitters ob-
serves a different component of a memoryless bivariate Gaussian
source as well as the feedback from the channel output of the pre-
vious time-instants. Based on the observed source sequence and the
feedback, each transmitter then describes its source component to
the common receiver via an average-power constrained Gaussian
multiple-access channel. From the resulting channel output, the re-
ceiver wishes to reconstruct each source component with the least
possible expected squared-error distortion. We study the set of dis-
tortion pairs that can be achieved by the receiver on the two source
components. We present sufficient conditions and necessary condi-
tions for the achievability of a distortion pair. These conditions are
expressed in terms of the source correlation and of the signal-to-
noise ratio (SNR) of the channel. In several cases the necessary con-
ditions and sufficient conditions are shown to agree. In particular,
we show that if the channel SNR is below a certain threshold, then
an uncoded transmission scheme that ignores the feedback is op-
timal. Thus, below this SNR-threshold, feedback is useless. We also
derive the optimal high-SNR asymptotics.

Index Terms—Achievable distortion, combined source-channel
coding, correlated sources, feedback, Gaussian multiple-access
channel with feedback, Gaussian source, mean squared-error
distortion, multiple-access channel with feedback, uncoded trans-
mission.

I. INTRODUCTION

T HIS paper is a sequel to [1], where a bivariate Gaussian
source is to be transmitted over a Gaussian multiple-ac-

cess channel. The new element here is the presence of perfect
causal feedback from the channel output to each of the trans-
mitters. As in [1], our interest is in the power-versus-distortion
tradeoff.

Our setup consists of a memoryless bivariate Gaussian source
and a two-to-one Gaussian multiple-access channel (MAC) with
perfect causal feedback. Each of the two transmitters in the
multiple-access channel observes a different component of the
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source as well as feedback from the previous channel outputs.
Based on the feedback and the observed source sequence, each
transmitter then describes its source component to the common
receiver via an average-power constrained Gaussian multiple-
access channel. Based on the channel output sequence, the re-
ceiver wishes to reconstruct each source component with the
least possible expected squared-error distortion. Our interest is
in characterizing the pairs of squared-error distortions that can
be achieved simultaneously on the two source components.

We present sufficient conditions and necessary conditions for
the achievability of a distortion pair. These conditions are ex-
pressed in terms of the source correlation and the signal-to-noise
ratio (SNR) of the channel. In several cases the necessary condi-
tions and sufficient conditions are shown to agree. In particular,
we show that if the channel SNR is below a certain threshold,
then an uncoded transmission scheme is optimal, and feedback
is useless. We also show that, in general, the source-channel sep-
aration approach is suboptimal, but that it is asymptotically op-
timal as the transmit power tends to infinity.

II. PROBLEM STATEMENT

A. Setup

Our setup is illustrated in Fig. 1. A memoryless bivariate
Gaussian source is connected to a two-to-one Gaussian mul-
tiple-access channel with perfect causal feedback. Each trans-
mitter of the multiple-access channel observes one of the source
components and wishes to describe it to the common receiver.
The source symbols produced at time are denoted by

. The source output pairs are indepen-
dent identically distributed (i.i.d.) zero-mean Gaussians of co-
variance matrix

(1)

where and , . The se-
quence of the first source component is observed by
Transmitter 1 and the sequence of the second source
component is observed by Transmitter 2. The two source com-
ponents are to be described over the multiple-access channel to
the common receiver by means of the channel input sequences

and , where and . The corre-
sponding time- channel output is given by

(2)

where is the time- additive noise term, and where are
i.i.d. zero-mean variance- Gaussian random variables that are
independent of the source sequence.

0018-9448/$26.00 © 2010 IEEE



LAPIDOTH AND TINGUELY: SENDING A BIVARIATE GAUSSIAN SOURCE OVER A GAUSSIAN MAC WITH FEEDBACK 1853

Fig. 1. Bivariate Gaussian source with one-to-two Gaussian multiple-access
channel with feedback.

We consider block encoding schemes and denote the block-
length by and the associated -sequences in boldface, e.g.,

. Transmitter is described
by a sequence of functions , ,
which, for every time instant produce the channel input

from the source sequence and the past channel outputs
, i.e.,

(3)

The channel input sequences are subjected to expected average
power constraints

(4)

for some given .
The receiver is described by two functions ,

, each of which forms an estimate of the respec-
tive source sequence based on the observed channel output
sequence . Thus,

(5)

We are interested in the pairs of expected squared-error dis-
tortions that can be achieved simultaneously on the source-pair
as the blocklength tends to infinity. In view of this, we next
define the notion of achievability.

B. Achievability of Distortion Pairs

Definition II.1: Given ; ; ;
and we say that the tuple
is achievable if there exists a sequence of encoding functions

as in (3), satisfying the average
power constraints (4), and a sequence of reconstruction pairs

as in (5), such that the average distortions resulting
from these encoding and reconstruction functions satisfy

whenever for all

where are i.i.d. zero-mean bivariate Gaussian
vectors of covariance matrix as in (1) and are
i.i.d. zero-mean variance- Gaussians that are independent of

.

For given , , , , , and , we wish to find the
set of pairs such that is
achievable. Sometimes, we shall refer to this set as the distor-
tion region associated with . In that sense,
we shall often say, with respect to some ,
that the pair is achievable, instead of saying that the
tuple is achievable.

C. Normalization

For the described problem we now note that, without loss
in generality, the source law given in (1) can be restricted to
a simpler form. This restriction simplifies the statement and the
derivation of our results.

Reduction II.1: For the problem stated in Sections II-A and
II-B, there is no loss in generality in restricting the source law
to satisfy

and (6)

Proof: The proof is almost identical to that of
Reduction II.1 in [1] and is thus omitted.

In view of Reduction II.1, we henceforth assume that the
source law additionally satisfies (6).

D. “Symmetric Version” and a Convexity Property

The “symmetric version” of our problem corresponds to the
case where the transmitters are subjected to the same power con-
straint, and where we seek to achieve the same distortion on each
source component. That is, , and we are interested
in the minimal distortion

is achievable (7)

that is simultaneously achievable on and on .
We conclude this section with a convexity property of the

achievable distortions.

Remark II.1: If both and
are achievable, then

is also achievable for every , where .
Proof: Follows by a time-sharing argument.

III. MAIN RESULTS

A. Necessary Condition for Achievability of

To state our necessary condition we first introduce three
rate-distortion functions. They are: the rate-distortion function

on ; the rate-distortion function
on when the component is given

as side-information to both Encoder 1 and Decoder 1; and the
rate-distortion function on when the com-
ponent is given as side-information to both Encoder 2
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and Decoder 2. For jointly Gaussian as in (1)
with , the two latter functions are given by

(8)

(9)

where we define . The function
is given in the following theorem.

Theorem III.1 (Xiao, Luo [5]; Lapidoth, Tinguely [2];
Tinguely [4]): The rate-distortion function is
given by

if

if

if .

(10)

where

(11)

where , and where the regions , ,
and are given by the equation shown at the bottom of the
page.

Our necessary condition is now as follows.

Theorem III.2: A necessary condition for the achievability of
is the existance of some

such that

(12)

(13)

(14)

Proof: See Appendix A.

We now specialize Theorem III.2 to the symmetric case.
To this end, we first substitute the rate-distortion functions

, , on the LHS of
(12)–(14) by their explicit forms given in (10), (8), and (9),
respectively. Substituting for in (10) and (12)
yields that if is achievable, then

if

if .
(15)

Similarly, from (8) and (13) [or (9) and (14)] we obtain that if
is achievable, then

(16)

Denoting the RHS of (15) by and the RHS of
(16) by , yields the following lower bound on

.

Corollary III.1: In the symmetric case

The minimization over is discussed in the following remark.

Remark III.1: For the min-
imum in Corollary III.1 is achieved by , and for all larger

the minimum is achieved by the satisfying

or

or
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Fig. 2. Distributed source coding problem for a bivariate Gaussian source.

As it can be shown that tends to one and hence
Corollary III.1 yields

(17)

In the next section, we show that the in (17) is a limit,
and that it is achieved by source-channel separation.

B. Source-Channel Separation

We now consider the set of distortion pairs that are achieved
by combining the optimal scheme for the corresponding source-
coding problem with the optimal scheme for the corresponding
channel-coding problem. The source-coding problem is illus-
trated in Fig. 2. The two source components are observed by two
separate encoders. These two encoders wish to describe their
source sequence to the common receiver by means of individual
rate-limited and error-free bit pipes. The receiver estimates each
of the sequences subject to expected squared-error distortion. A
detailed description of this problem can be found in [6] and [7].
The associated rate-distortion region is given in the next the-
orem.

Theorem III.3 (Oohama [6]; Wagner, Tavildar, and Viswanath
[7]): For the Gaussian two-terminal source coding problem
(with source components of unit variances) a distortion-pair

is achievable if, and only if,

where the expressions for the regions , , and
are shown in the first equation at the bottom of

the page, with

The capacity region of the Gaussian mul-
tiple-access channel with feedback was derived in [8] and is re-
stated in the following theorem.

Theorem III.4 (Ozarow [8]): The capacity region
of the Gaussian multiple-access channel

with perfect feedback is shown in the second equation at the
bottom of the page.

The distortions achievable by source-channel separation are
now given in the following corollary.

Corollary III.2: A distortion pair is achievable by
source-channel separation whenever

(18)

Proof: The result essentially follows by considering a
transmission scheme that first describes the source sequences
with bits using the source-coding scheme of Theorem III.3 and
then transmits the bits over the Gaussian MAC with feedback
using the channel-coding scheme of Theorem III.4. Key is the
observation that the coding scheme of Theorem III.4 achieves
not only an arbitrarily small average probability of error, but
also an arbitrarily small maximal probability of error. This
observation is critical because the messages sent over the MAC
are not, in general, equally likely: their law is determined by
source law and by the source-encoder.

Consider some and , , satisfying (18).
Let be a rate pair in
such that the distortion pair resulting on from the
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source-coding scheme of [6] at rate is . We
now show that the separate source-channel coding scheme
that combines the rate- source-code of [6] with the
rate- channel-code of [8] results in a distortion pair

that approaches as the blocklength tends
to infinity. To this end, denote by the quantized
version of produced by the source encoder, and denote
by the guess of the pair that is made by the
source decoder based on the indices received from the channel
decoder. By [6, Equation (55), p. 1920], the reconstruction pair

is

where for all we can assume without loss of op-
timality that whenever and that
whenever .

To show that the distortion pair resulting from this
separation-based scheme approaches , we now use a
genie-aided argument. Let be the reconstruction pair
resulting from a genie-aided scheme where the decoder is pro-
vided with the correct source reconstructions so

for as above. Because this genie-aided scheme is not af-
fected by the transmission errors that might occur in the channel
coding part, it achieves the distortion pair . Hence, to
prove Corollary III.2 it now remains to verify that whenever

, the differences
, of the distortions resulting from the

two schemes vanishes as the blocklength tends to infinity. This
can be established in much the same way that Proposition D.1 is
proved using Lemmas D.10—D.13 in Appendix D of [1]. The
details are omitted here.

From the sufficient condition of Corollary III.2 and the neces-
sary condition of Theorem III.2, we can now derive the optimal
high-SNR asymptotics. To state these asymptotics, we denote
by an arbitrary distortion pair resulting from an op-
timal scheme.

Theorem III.5 (High-SNR Distortion): The high-SNR
asymptotic behavior of is given by

provided that , and that

and (19)

Proof: See Appendix B.

Remark III.2: The asymptotics of Theorem III.5 are almost
the same as those in [1, Theorem IV.5] for the setup without
feedback. The only difference is that in the case with feed-
back the power term is replaced by

. This stems from the fact that with feedback, as
, the cooperation between the transmitters can be al-

most full.

Remark III.3: Note that under source-channel separation,
which achieves the high-SNR asymptotics, the cooperation
between the transmitters takes place only at the channel-coding
level. The source-coding is performed in a distributed manner.

To conclude this section we restate Theorem III.5
more specifically for the symmetric case. Since there

, condition (19) is implic-
itly satisfied. Thus, we have the following corollary.

Corollary III.3: In the symmetric case

C. Uncoded Scheme

We now revisit the uncoded scheme of [1, Section IV-C],
which was shown to be optimal for the setup without feed-
back whenever the SNR is below a certain threshold. For our
setup with feedback, we show that this scheme is still optimal
whenever the SNR is below the threshold of [1, Theorem IV.3].
Below this SNR-threshold, feedback is thus useless.1 Note,
however, that feedback is beneficial for the source-channel
separation approach because, even if noisy, it increases the
capacity region of the Gaussian multiple-access channel [9].

The uncoded scheme operates as follows. Encoder
produces a time- channel input which is a scaled version
of the time- source output . The scaling is such that the
average power constraint of the channel (4) is satisfied. That is

for all

The decoder reconstructs the source output by performing
the MMSE estimate of , , , based
on the time- channel output . That is,

The expected distortions resulting from this uncoded
scheme as well as its optimality below a certain SNR-threshold
are stated in the following theorem.

Theorem III.6: The distortion pairs resulting from
the described uncoded scheme are given by

These distortion pairs are optimal, i.e., lie on the
boundary of the distortion region, whenever

(20)
Proof: The expressions for and are derived in

[1, Appendix C]. The optimality of the uncoded scheme is

1By the simple structure of the uncoded scheme, it follows that feedback is
useless not only in terms of performance, but also in terms of delay and com-
plexity.
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proven in Appendix C. For the particular case where ,
, satisfy (20) with equality, the optimality can also be

verified directly from Theorem III.2. To this end, it suffices to
notice that for , the necessary condition
of Theorem III.2 is satisfied with equality for . It
thus follows that for any satisfying and

or and the necessary condition
of Theorem III.2 is violated for every . Hence, the
uncoded scheme is optimal.

Corollary III.4: Source-channel separation is in general sub-
optimal.

Proof: This can be verified by comparing the achievable
distortions given in Corollary III.2 with the achievable distor-
tions given in Theorem III.6. For example, in the symmetric
case it can be verified that for all and ,
the smallest distortions achievable by source-channel separation
(Corollary III.2) are strictly larger than the distortions resulting
from the optimal uncoded scheme (Theorem III.6).

Remark III.4: From Theorem III.6 it follows that if , ,
satisfy (20) with a strict inequality, then the necessary condition
of Theorem III.2 is not sufficient. This is due to the constraints
(13) and (14) which are loose at low SNR and is best seen in
the symmetric case. In the symmetric case, Theorem III.2 (cf.
Equations (13) and (14)) yields that for to be achievable,
it is necessary that satisfy

(21)

i.e., that (16) hold. Since , the RHS of (21) is upper
bounded by . Thus, for sufficiently low SNRs the
constraint of (21) is inactive, and the only active constraint is
the one of (15). But, if only (15) is active, then , which
corresponds to fully cooperating transmitters, and thus, yields a
loose lower bound on at low SNRs.

We conclude the section on our main results by restating The-
orem III.6 more specifically for the symmetric case.

Corollary III.5: In the symmetric case

(22)

IV. SUMMARY

We studied the power-versus-distortion tradeoff for the
transmission of a memoryless bivariate Gaussian source over
a two-to-one average-power limited Gaussian multiple-access
channel with perfect causal feedback. In this problem, each
of two separate transmitters observes a different component
of a memoryless bivariate Gaussian source as well as the
feedback from the channel output of the previous time-instants.
Based on the observed source sequence and the feedback,
each transmitter then describes its source component to the
common receiver via an average-power constrained Gaussian
multiple-access channel. From the resulting channel output, the
receiver wishes to reconstruct both source components with the

least possible expected squared-error distortion. Our interest
was in the set of distortion pairs that can be achieved by the
receiver on the two source components. Our main results were :

• a necessary condition (Theorem III.2) for the achievability
of a distortion pair ;

• the high-SNR asymptotic behavior (Theorem III.5) of op-
timal transmission schemes, which in the symmetric case
(Corollary III.3) is given by

and which is shown to be achievable by source-channel
separation;

• the optimality, for all SNRs below a certain threshold, of an
uncoded transmission scheme, which ignores the feedback
(Theorem III.6). In the symmetric case, this optimality re-
sult (Corollary III.5) is given by

APPENDIX I
PROOF OF THEOREM III.2

To prove the necessary condition of Theorem III.2 for the
achievability of a distortion pair , we use the following
two lemmas.

Lemma A.1: For our multiple-access setup with feed-
back, let , , and be the channel inputs and
channel outputs of a coding scheme achieving some distortion
pair . Then, for every there exists an integer

such that for all

(23)

(24)

(25)

Proof: The proofs of (23)–(25) follow along the lines of the
proof for the univariate analog (see e.g., [10, p. 15]). The main
ingredients in those derivations are the convexity of the rate-dis-
tortion functions and the data-processing inequality. We start
with the proof of (23). By the definition of an achievable dis-
tortion pair (Definition II.1) and by the monotonicity
of in , we have that for every
there exists an such that for every
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(26)

where in step we have used of the convexity of
, and in step we have used the data-pro-

cessing inequality. The RHS of (26) can be further bounded as
follows

(27)

where inequality follows because given the channel in-
puts , , the channel output is independent of

. Inequalities (26) and (27) combine to prove
(23).

The derivations of (24) and (25) are similar to that of (23).
Since there is a symmetry between the derivation of (24) and
the derivation of (25), we only give the derivation of (24). By
the definition of an achievable distortion pair and by
the monotonicity of in , we have that for every

there exists an integer such that for every

(28)

where step follows by the convexity of and step
follows by the data-processing in equality, i.e.,

The RHS of (28) can be further bounded as follows

(29)

where follows because is determined by
and , , and follows because given the channel
inputs , , the channel output is independent
of . Inequalities (28) and (29) combine to
prove (24).

Lemma A.2 (Ozarow [8]): Let and be zero-
mean sequences satisfying , for .
Let , where are i.i.d. zero-mean
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variance- Gaussian, and where for every , is independent
of . Let be given by

(30)

Then, the RHS of (23)–(25) are upper bounded as in (31)–(33)
displayed at the bottom of the page.

Proof: See [8, pp. 627].

Proof of Theorem III.2: The proof follows by bounding
the expressions on the RHS of (23)–(25) using Lemma A.2; by
letting tend to infinity; and then letting tend to zero (from
above).

APPENDIX II
PROOF OF THEOREM III.5

For the result follows by noting that the multiple-access
problem reduces to a point-to-point problem where .
Hence, we shall now assume

(34)

The result can then be obtained from the necessary condition for
the achievability of a distortion pair in Theorem III.2
and from the sufficient conditions for the achievability of a dis-
tortion pair that follow from source-channel separa-
tion in Corollary III.2.

By Corollary III.2 it follows that a distortion pair is
achievable if , and

(35)

(36)

(37)

where the rate-pair satisfies for some

(38)

(39)

(40)

If we restrict ourselves to distortion pairs satisfying

and (41)

and to satisfying (34), then for sufficiently small
the Constraints (35) and (36) become redundant. Consequently,
for sufficiently small, any distortion pair satisfying
(41) and (37), where satisfies (38)–(40) for some

, is achievable. And because for any fixed as
the Constraints (38) and (39) become redundant, it fol-

lows that any distortion pair satisfying (41) and

(42)

for some , is achievable. Since can be chosen arbi-
trarily close to 1, simple calculus shows that

(43)

is achievable.
Next, let be a

distortion pair resulting from an arbitrary optimal scheme for
the corresponding SNR, and let be the corresponding
shorthand notation for this distortion pair. By Theorem III.2, we
have that

(44)
If satisfies

and (45)

then for sufficiently small

(46)

by Theorem III.1 and because . From (44) and
(46) we thus get that if satisfies (45), then

(47)

Combining (43) with (47) yields Theorem III.5.

(31)

(32)

(33)
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APPENDIX III
PROOF OF THEOREM III.6

Theorem III.6 states that if , , satisfy (20), then the
uncoded scheme is optimal, i.e., no pair satisfying

and or satisfying and
is achievable. For , , satisfying (20) with equality this
was proven right after Theorem III.6. Thus, here we restrict our-
selves to , , satisfying (20) with strict inequality.

We show the inachievability of any satisfying
and . The inachievability of any satis-

fying and follows by similar arguments and
is therefore omitted. The main step in our proof follows by con-
tradiction. More precisely, we show that a contradiction arises
from the following assumption.

Assumption C.1 (Leading to a contradiction): For , ,
satisfying (20) with strict inequality, there exist encoding

rules satisfying the average power constraints (4), which,
when combined with the optimal conditional expectation recon-
structors

(48)

result in

(49)

such that

and (50)

where we have denoted by the interior of .
Once a contradiction from Assumption C.1 is established, it

will follow that Assumption C.1 is false and the proof of The-
orem III.6 will follow in Section C-C.

Assume that Assumption C.1 is true. Let be a se-
quence of encoding functions, with resulting channel inputs

and resulting channel outputs , which,
when combined with the optimal conditional expectation
reconstructors and result in
distortions as defined in (49) and satisfying (50). The
contradiction based on Assumption C.1 will be obtained by
deriving contradictory lower and upper bounds for the expected
squared-error that Transmitter 2 can achieve at the end of the
transmission on the sequence . To this end,
let be some estimator of from and let

be the mean squared-error associated with it:

Based on Assumption C.1, we now derive a lower bound on
.

A) “Lower Bound” on : In this section, we
show

Assumption C.1

(51)

The idea for showing (51) is to exploit the fact that the
sequence is independent of , and that therefore the only
information that Transmitter 2 receives about is via the
feedback signal . Roughly speaking, we then show that if
allows for “good” estimates of and , i.e., if
and , then can only contain “little” information
about , and hence Transmitter 2 can only make a coarse
estimate of . The main element in showing (51) is given by
the following lemma.

Lemma C.1: Let be as defined in (30). Then

(52)

and

Assumption C.1 (53)

Proof: Combining (29) with Inequality (32) of Lemma A.2
establishes (52). It remains to prove that Assumption C.1 im-
plies that . To this end, we recall that from [1,
Proof of Theorem IV.1] we have that if , , satisfy (20),
then the tuple satisfies [1, Condition (16) of Th. IV.1]
with equality, i.e.,

(54)
Next, we notice that since Assumption C.1 guarantees that

is achievable, it follows from Lemma A.1 that for
every there exists an such that for all
we have

(55)

where follows from (23) in Lemma A.1, and follows
from Lemma A.2. Taking the of (55) yields that for every

where . And since is contin-

uous in it follows, upon letting tend to zero, that

(56)
By Assumption C.1 and by the strict monotonicity of

as a function of in , it follows
from the hypothesis and that

(57)
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Combining (57) with (56) and (54) gives .

We next prove that

(58)

To derive (58), denote by the rate-distortion function
for a source of the law of . We then have 56tit04-stinguely-
2040870.xml

(59)

where inequality a) follows by the data-processing inequality
and the convexity of . Inequality b) follows by the data-
processing inequality, and c) follows since and are
independent. Substituting on the LHS of (59)
by its explicit form gives

Rewriting this inequality establishes (58).
Lemma C.1 and Inequality (58) combine to prove (51). We

next derive an upper bound on .
B) “Upper Bound” on Minimal : We now

present an estimator for which we show

Assumption C.1

(60)

for some monotonically increasing sequence of integers.
From Implications (51) and (60) we then conclude that Assump-
tion C.1 is false. The estimator is given by

where the coefficients and are given by

(61)

(62)

with as in Assumption C.1. The idea for showing that
for this estimator (60) holds, is to exploit the fact that if al-
lows for a “good” estimate of , i.e., if , then
Transmitter 2 can also make a “good” estimate of , based on

and . To show this we first notice that Assumption C.1 im-
plies that there exists a monotonically increasing sequence of
integers such that

(63)

We now derive (60) using the following two lemmas.

Lemma C.2: For every there exists an such
that for all the following inequalities hold:

(64)

(65)

(66)

Proof: See Appendix C–D.

Lemma C.3: Assumption C.1 and in particular
implies that the coefficients and defined in (61) and (62)

satisfy

and (67)

Proof: Follows by noting that for every

if

if .

To prove (60), we first rewrite as shown in
(68) at the bottom of the next page. Using (68), Lemma C.2
and Lemma C.3, as well as and

, we now get that for , , satisfying
(20) and for every there exists a such that for
all ,

(69)

Letting in (60), the index tend to infinity and then , we
obtain (70) displayed at the bottom of the page, where in the last
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step we have replaced the terms and by their expressions in
(61) and (62). To conclude our upper bound we now make use
of one last lemma.

Lemma C.4: For all the expression
on the RHS of (70) is strictly increasing in .

Proof: Denote by the RHS of (70). The proof follows
by showing that for all

This follows by direct differentiation and by noting that for

if

if .

Since and it follows from (70) and
Lemma C.4 that is upper bounded
as in (71) at the bottom of the page, where the last line fol-
lows from replacing and by their expressions given in
Theorem III.6. Thus, we have proven (60).

C) Concluding the Proof of Theorem III.6: It follows from
(51) and (60) that Assumption C.1 is false. We now show that
this implies that if , , satisfy (20) with strict inequality,

then no pair satisfying and or
satisfying and is achievable. To prove this
we assume because for Condition (20) becomes

and is therefore never satisfied with strict inequality.
Our arguments are given in the following sequence of state-

ments:
A) If , , satisfy (20) with strict inequality, then the set

of satisfying (50) is not empty.

Statement A) holds since if , , satisfy (20) with strict
inequality, then and when-
ever .

B) If , , satisfy (20) with strict inequality, then there
do not exist encoding rules, that, when combined with the
optimal conditional expectation reconstructors, result in

as defined in (49) satisfying

and

(with in or outside ).

Statement B) can be shown by contradiction. If a
coding scheme as described in B) were to exist, then
by time-sharing it with the uncoded scheme—for which

—and by Statement A), we would obtain

(68)

(70)

(71)
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a scheme for which satisfies (50), in contradiction to
the fact that Assumption C.1 is false.

C) If , , satisfy (20) with strict inequality, then there
exist no encoding rules, which, when combined with the
optimal conditional expectation reconstructors, result in

as defined in (49) such that

and
Statement C) can be proved using arguments similar to those
used to prove Statement B).

D) If , , satisfy (20) with strict inequality, then there
exist no encoding rules, which when combined with the
optimal conditional expectation reconstructors, result in

as defined in (49) such that and
or such that and .

To show Statement D) we proceed by contradiction. To this
end, consider two variations of our uncoded scheme. Call these
two variations “Scheme ” and “Scheme ”. Let Scheme
be given by the channel inputs

and

and the optimal conditional expectation reconstructors
and . The resulting distor-

tion pair is given by

Similarly, let Scheme be given by the channel inputs

and

and the same optimal conditional expectation reconstructors
as for Scheme . The resulting distortion pair is
given by

Now assume that there could exist a coding scheme as described
in D). Since and it would follow from
time-sharing either with Scheme or Scheme that State-
ment B) or Statement C) is false.

E) If , , satisfy (20) with strict inequality, then there
exist no coding scheme resulting in as defined in
(49) such that

and

(be the reconstruction rule optimal or not).
Statement E) follows from D) because no reconstructor can
outperform the optimal conditional expectation reconstructor

.

By Statement E) it follows that if , , satisfy (20) with
strict inequality, then no satisfying and

is achievable.
D) Proof of Lemma C.2: By (63) it follows that for every

there exists a such that for all

(72)
Using (72), the relation , and (48) we obtain that

(73)

and that

(74)

This proves Inequalities (64) and (65).
To prove (66) we note that for every we can view

as an estimator of based on . As such it cannot outperform
the optimal estimator of given by , namely the estimator

. Consequently, for every it follows by (72)
that there exists an such that for all and
all ,

(75)

Rewriting (75) gives

and choosing

yields that for all

REFERENCES

[1] A. Lapidoth and S. Tinguely, “Sending a bivariate Gaussian source over
a Gaussian MAC,” IEEE Trans. Inf. Theory, to be published.

[2] A. Lapidoth and S. Tinguely, Sending a Bivariate Gaussian Source
Over a Gaussian MAC [Online]. Available: http://arxiv.org/pdf/0901.
3314

[3] A. Lapidoth and S. Tinguely, “Sending a bivariate Gaussian source over
a Gaussian MAC,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 9–14,
2006.



1864 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 4, APRIL 2010

[4] S. Tinguely, “Transmitting Correlated Sources Over Wireless Net-
works,” Ph.D. dissertation, ETH Zürich, , Switzerland, 2008.

[5] J. Xiao and Z. Luo, “Compression of correlated Gaussian sources under
individual distortion criteria,” in Proc. 43rd Allerton Conf., Monticello,
IL, Sep. 2005.

[6] Y. Oohama, “Gaussian multiterminal source coding,” IEEE Trans. Inf.
Theory, vol. 43, pp. 1912–1923, Nov. 1997.

[7] A. B. Wagner, S. Tavildar, and P. Viswanath, “Rate region of the
quadratic Gaussian two-encoder source-coding problem,” IEEE Trans.
Inf. Theory, vol. 54, pp. 1938–1961, May 2008.

[8] L. H. Ozarow, “The capacity of the white Gaussian multiple access
channel with feedback,” IEEE Trans. Inf. Theory, vol. IT-30, pp.
623–629, Jul. 1984.

[9] A. Lapidoth and M. A. Wigger, “On the Gaussian MAC with imper-
fect feedback,” in Proc. 24th IEEE Conv. Elec. Electron. Eng. in Israel
(IEEEI’06), Eilat, Israel, Nov. 15–17, 2006, pp. 203–207.

[10] M. Gastpar, “To Code or Not to Code,” Ph.D dissertation, Ecole Poly-
technique Fédérale EPFL, Lausanne, 2002.

Amos Lapidoth (S’89–M’95–SM’00–F’04) received the B.A. degree in math-
ematics (summa cum laude) in 1986, the B.Sc. degree in electrical engineering
(summa cum laude) in 1986, and the M.Sc. degree in electrical engineering in
1990, all from the Technion—Israel Institute of Technology. He received the
Ph.D. degree in electrical engineering from Stanford University in 1995.

In the years 1995–1999, he was an Assistant and Associate Professor at the
department of Electrical Engineering and Computer Science at the Massachu-
setts Institute of Technology, and was the KDD Career Development Associate
Professor in Communications and Technology. He is now Professor of Infor-
mation Theory at ETH Zurich in Switzerland. He is the author of the book A
Foundation in Digital Communication (Cambridge University Press, 2009). His
research interests are in digital communications and information theory.

Dr. Lapidoth served in the years 2003–2004 and 2009 as Associate Editor for
Shannon Theory for the IEEE TRANSACTIONS ON INFORMATION THEORY.

Stephan Tinguely (S’04–M’09) received the M.Sc. degree in communication
systems engineering from EPF Lausanne, Lausanne, Switzerland, in 2003 and
the Ph.D. degree in electrical engineering from ETH Zürich, Zürich, Switzerland
in 2009.

His research interests are in digital communications and information theory.


