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Abstract—We study the power-versus-distortion tradeoff for
the distributed transmission of a memoryless bivariate Gaussian
source over a two-to-one average-power limited Gaussian mul-
tiple-access channel. In this problem, each of two separate
transmitters observes a different component of a memoryless bi-
variate Gaussian source. The two transmitters then describe their
source component to a common receiver via an average-power
constrained Gaussian multiple-access channel. From the output
of the multiple-access channel, the receiver wishes to recon-
struct each source component with the least possible expected
squared-error distortion. Our interest is in characterizing the
distortion pairs that are simultaneously achievable on the two
source components. We focus on the “equal bandwidth” case,
where the source rate in source-symbols per second is equal to
the channel rate in channel-uses per second. We present sufficient
conditions and necessary conditions for the achievability of a
distortion pair. These conditions are expressed as a function of the
channel signal-to-noise ratio (SNR) and of the source correlation.
In several cases, the necessary conditions and sufficient conditions
are shown to agree. In particular, we show that if the channel
SNR is below a certain threshold, then an uncoded transmission
scheme is optimal. Moreover, we introduce a “source-channel
vector-quantizer” scheme which is asymptotically optimal as the
SNR tends to infinity.

Index Terms—Achievable distortion, combined source-channel
coding, correlated sources, Gaussian multiple-access channel,
Gaussian source, mean squared-error distortion, multiple-access
channel, uncoded transmission.

I. INTRODUCTION

W E study the power-versus-distortion tradeoff for the
distributed transmission of a memoryless bivariate

Gaussian source over a two-to-one average-power limited
Gaussian multiple-access channel. In this problem, each of
two separate transmitters observes a different component of a
memoryless bivariate Gaussian source. The two transmitters
then separately describe their source component to a common
receiver via an average-power constrained Gaussian mul-
tiple-access channel. From the output of the multiple-access
channel, the receiver wishes to reconstruct each source compo-
nent with the least possible expected squared-error distortion.
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Our interest is in characterizing the distortion pairs that are
simultaneously achievable on the two source components. The
focus is on the “equal bandwidth” case where the source rate
in source-symbols per second is equal to the channel rate in
channel-uses per second.

We present sufficient conditions and necessary conditions for
the achievability of a distortion pair. These conditions are ex-
pressed as a function of the channel signal-to-noise ratio (SNR)
and of the source correlation. In several cases the necessary
conditions and sufficient conditions are shown to agree, thus
yielding a full characterization of the achievable distortions. In
particular, we show that if the channel SNR is below a cer-
tain threshold (that we compute), then an uncoded transmission
scheme is optimal. This uncoded result is reminiscent of Gob-
lick’s result [1] that for the transmission of a Gaussian source
over an AWGN channel the minimal squared-error distortion
is achieved by uncoded transmission, but in our setting, un-
coded transmission is only optimal for some SNRs. For com-
munication at higher SNRs, we introduce a “source-channel
vector-quantizer” scheme, which we show is asymptotically op-
timal as the SNR tends to infinity.

Our problem can be viewed as a lossy Gaussian version of
the problem addressed by Cover, El Gamal, and Salehi [2]
(see also [3], [4]) in which a bivariate finite-alphabet source
is to be transmitted losslessly over a two-to-one multiple-ac-
cess channel. Our problem is also related to the quadratic
Gaussian two-terminal source-coding problem [5], [6] and to
the quadratic Gaussian CEO problem [7], [8]. In both of these
problems, correlated Gaussians are described distributedly to
a central receiver. However, in the quadratic Gaussian CEO
problem the interest is in reconstructing a single Gaussian
random variable that underlies the observations of the different
transmitters, rather than reconstructing each transmitter’s ob-
servation itself, but, more importantly, the above two problems
are source-coding problems whereas ours is one of combined
source-channel coding. We emphasize that, as our results show,
source-channel separation is suboptimal for our setting.

The problem of transmitting correlated sources over mul-
tiple-access channels has so far only been studied sparsely. One
of the first results is due to Cover, El Gamal, and Salehi [2] who
presented sufficient conditions for the lossless transmission
of a finite-alphabet bivariate source over a multiple-access
channel. Later, several variations of this problem were consid-
ered. Salehi [9] studied a lossy version of the problem with
a finite-alphabet source and arbitrary distortion measures on
each source component. For this problem he derived sufficient
conditions for the achievability of a distortion pair. More re-
cently, another variation where the two source components are
binary with Hamming distortion and where the multiple-access
channel is Gaussian was considered by Murugan, Gopala,
and El Gamal [10] who derived sufficient conditions for the

0018-9448/$26.00 © 2010 IEEE



LAPIDOTH AND TINGUELY: SENDING A BIVARIATE GAUSSIAN OVER A GAUSSIAN MAC 2715

Fig. 1. Bivariate Gaussian source with one-to-two Gaussian multiple-access
channel.

achievability of a distortion pair. In [11], Gündüz et al. studied
the transmission of correlated sources over several multiuser
channel models with correlated receiver side-information.
Necessary and sufficient conditions for the optimality of
source-channel separation were obtained and shown to agree
for certain source and side-information structures. In [12]–[14],
Rajesh et al. studied the transmission of correlated sources
over a multiple-access channel with side-information. Gastpar
[15] considered a combined source-channel coding analog of
the quadratic Gaussian CEO problem. In this problem, dis-
tributed transmitters observe independently corrupted versions
of the same univariate Gaussian source. These transmitters are
connected to a central receiver by means of a many-to-one
Gaussian multiple-access channel. The central receiver wishes
to reconstruct the original univariate source as accurately as
possible. For this problem, Gastpar showed that the minimal
expected squared-error distortion is achieved by an uncoded
transmission scheme. The extension of our problem to the
case where perfect causal feedback from the receiver to each
transmitter is available is studied in [16] (see also [17]).

II. PROBLEM STATEMENT

A. Setup

Our setup is illustrated in Fig. 1. A memoryless bivariate
Gaussian source is connected to a two-to-one Gaussian mul-
tiple-access channel. Each transmitter observes one of the
source components and wishes to describe it to the common
receiver. The source symbols produced at time are
denoted by . The source symbols are
independent identically distributed (IID) zero-mean Gaussians
of covariance matrix

(1)

where and where . The se-
quence of the first source component is observed by
Transmitter 1 and the sequence of the second source
component is observed by Transmitter 2. The two source com-
ponents are to be described over the multiple-access channel to
the common receiver by means of the channel input sequences

and , where and . The corre-
sponding time- channel output is given by

(2)

where is the time- additive noise term, and where are
IID zero-mean variance- Gaussian random variables that are
independent of the source sequence.

For the transmission of the source , we con-
sider block encoding schemes and denote the block-length
by and the corresponding -sequences in boldface, e.g.,

. Transmitter is modeled as
a function which produces the channel
input sequence based on the observed source sequence

, i.e.,

(3)

The channel input sequences are subjected to expected average-
power constraints

(4)

for some given .
The decoder consists of two functions ,

, which form estimates of the respective source se-
quences , based on the observed channel output sequence ,
i.e.,

(5)

Our interest is in the pairs of expected squared-error distor-
tions that can be achieved simultaneously on the source-pair as
the blocklength tends to infinity. In view of this, we next de-
fine the notion of achievability.

B. Achievable Distortion Pairs

Definition II.1: Given , , ,
and we say that the tuple
is achievable if there exists a sequence of encoding functions

as in (3), satisfying the average-power con-
straints(4), and a sequence of reconstruction pairs
as in (5), such that the average distortions resulting from these
encoding and reconstruction functions satisfy

whenever

and where are IID zero-mean bivariate Gaussian
vectors of the covariance matrix in (1) and are
IID zero-mean variance- Gaussians that are independent of

.
The problem we address here is, for given , , ,
, , and , to find the set of pairs such

that is achievable. Some-
times, we will refer to the set of all such that

is achievable as the distortion
region associated with . In that sense, we
will often say, with respect to some , , , , , that
the pair is achievable, instead of saying that the tuple

is achievable.
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C. Normalization

We now show that, without loss in generality, the source law
in (1) can be restricted to a simpler form. This restriction will
simplify the statement of our results and their derivations.

Reduction II.1: For the problem stated in Sections II-A and
II-B, there is no loss in generality in restricting the source law
to satisfy

and (6)

Proof: The proof follows by noting that the described
problem has certain symmetry properties with respect to the
source law. We prove the reductions on the source variance and
on the correlation coefficient separately.

i) The restriction to non-negative correlation coefficients
incurs no loss in generality because the

optimal distortion region depends on the correlation co-
efficient only via its absolute value . That is, the tuple

is achievable if, and only
if, the tuple is achiev-
able. To see this, note that if
achieves the distortion for the source of corre-
lation coefficient , then , where

and

achieves on the source with correlation coeffi-
cient .

ii) The restriction to equal variances
incurs no loss of generality because the distortion re-
gion scales linearly with the source variances. That
is, the tuple is achiev-
able if, and only if, for every , the tuple

is achievable.
This can be seen as follows. If
achieves , then the combi-
nation of the encoders

with the reconstructors

achieves the tuple ,
and by an analogous argument it follows that if

is achievable,
then also is achievable.

In view of Reduction II.1 we assume for the remainder that
the source law additionally satisfies (6).

D. “Symmetric Version” and a Convexity Property

The “symmetric version” of our problem corresponds to the
case where the transmitters are subjected to the same power con-
straint, and where we seek to achieve the same distortion on each
source component. That is, , and we are interested

in the minimal distortion that is simultaneously achievable on
and on

is achievable

In this case, we define the SNR as and seek the distortion
.

We conclude this section with a convexity property of the
achievable distortions.

Remark II.1: If both and
are achievable, then

is also achievable for every , where .
Proof: Follows by a time-sharing argument.

III. PRELIMINARIES: SENDING A BIVARIATE GAUSSIAN

OVER AN AWGN CHANNEL

In this section we lay the ground for our main results. We
study a point-to-point analog of the multiple-access problem
described in Section II-A. More concretely, we consider the
transmission of a memoryless bivariate Gaussian source, sub-
ject to expected squared-error distortion on each source compo-
nent, over the additive white Gaussian noise (AWGN) channel.
For this problem, we characterize the power-versus-distortion
tradeoff and show that below a certain SNR threshold, an un-
coded transmission scheme is optimal. This problem is simpler
than our multiple-access problem because here source-channel
separation is optimal.

A. Problem Statement

The setup considered in this section is illustrated in Fig. 2. It
differs from the multiple-access problem of Section II-A in that
the two source sequences and are observed and trans-
mitted jointly by one single transmitter and not by two dis-
tributed transmitters. Thus, the channel input sequence is a
function of the source sequences ,
i.e.,

(7)

This channel input sequence is subjected to an average-power
constraint

(8)

for some given .
The remainder of the problem statement is as in the mul-

tiple-access problem. The source law is assumed to be given
by (1) and to satisfy (6). The reconstruction functions are as de-
fined in (5), and the achievability of distortion pairs is defined
analogously to Section II-A. Our interest is in the set of achiev-
able distortion pairs .
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Fig. 2. Bivariate Gaussian source with additive white Gaussian noise channel.

B. Rate-Distortion Function of a Bivariate Gaussian

Denoting the rate-distortion function of the source
by , the set of achievable

distortion pairs is given by all pairs satisfying

(9)

We next compute the rate-distortion function .

Theorem III.1: The rate-distortion function
is given by

if

if

if

(10)
where

(11)

, where ,
and where, using the shorthand notation , the
regions , and are given by

or

or

Proof: By [26, Theorem 2, p. 856], the rate-distortion func-
tion is given by

(12)

To prove Theorem III.1 it remains to solve (12) for all dis-
tortion pairs . One solution was

Fig. 3. Regions � , � , � .

presented in [20]. An alternative approach can be found in
[18, Appendix A] and [19, Appendix A.2].

The regions , , and are illustrated in Fig. 3 and can
be interpreted as follows. In the region it is optimal to only
describe the component that needs to be reconstructed with the
smaller distortion and to then scale the result in order to re-
construct the other component. In the region , the dis-
tortion pairs can be achieved with the least possible
rate by first computing two independent linear
combinations and of the source pair , and then
quantizing according to the reverse waterfilling prin-
ciple. For the distortion pairs in only one of the
linear combinations , is quantized (the one with the larger
variance), and for the distortion pairs in both
and are quantized. For more details on this source coding
procedure see [18, Appendix A] and [19, Appendix A.2].

Remark III.1: Let denote the rate-distortion func-
tion for the source component , i.e.,

and let denote the rate-distortion function for
when is given as side-information to both the

encoder and the decoder, i.e.,

Then, for every the rate-distortion function
satisfies
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where holds because for we have
and .

C. Optimal Uncoded Scheme

As an alternative to the separation-based approach, we now
present an uncoded scheme that, for all SNR below a certain
threshold, is optimal. The optimality of this uncoded scheme
will be useful for understanding a similar result in the multiple-
access problem.

The uncoded scheme can be described as follows. At every
time instant , the transmitter produces a
channel input of the form

for some . From the resulting channel output , the re-
ceiver forms a minimum mean squared-error (MMSE) estimate

, , of the source sample , i.e.,

The corresponding expected distortions on and on
are

where

The optimality of this uncoded scheme below a certain SNR-
threshold is stated next. To this end, define

if
else.

(13)

Proposition III.1: Let be an achievable distortion
pair for the point-to-point setting. If

(14)

then there exist such that

and

Proof: See Appendix A.

In the symmetric case, Proposition III.1 simplifies as follows.

Corollary III.1: Let be such that is an achiev-
able distortion pair for the point-to-point problem. If

(15)

then the pair is achieved by the uncoded scheme with
time- channel input

Corollary III.1 can also be verified without relying on
Proposition III.1. This is discussed in the following remark.

Remark III.2: The distortions resulting from the uncoded
scheme with any choice of such that are

By evaluating the necessary and sufficient condition of (9) for
the case where , it follows that this is indeed the
minimal achievable distortion for all satisfying (15).

We now return to our multiple-access problem.

IV. MAIN RESULTS

A. Necessary Condition for the Achievability of

Theorem IV.1: A necessary condition for the achievability of
a distortion pair is

(16)
Proof: See Appendix B.

Remark IV.1: Theorem IV.1 can be extended to a wider
class of sources and distortion measures. Indeed, if the source
is any memoryless bivariate source (not necessarily zero-mean
Gaussian) and if the fidelity measures and

that are used to measure the distortion in recon-
structing each of the source components are arbitrary, then the
pair is achievable with powers only if

(17)

where is the Hirschfeld–Gebelein–Rényi maximal corre-
lation between and , i.e.,

(18)
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where the supremum is over all functions , satisfying

(19)

and

(20)

For the bivariate Gaussian memoryless source, condition (17)
reduces to (16) because in this case is equal to [21,
Lemma 10.2, p. 182].

Remark IV.2: The necessary condition of Theorem IV.1
corresponds to the necessary and sufficient condition for the
achievability of a distortion pair when the source

is transmitted over a point-to-point AWGN
channel of input power constraint (see
(9)). This is no coincidence. The proof of Theorem IV.1 (see
Appendix B) indeed consists of reducing the multiple-ac-
cess problem to the problem of transmitting the source

over an AWGN channel of input power con-
straint .

Theorem IV.1 also generalizes to the multivariate case with
more than two source components.

Proposition IV.1: Consider the extention of our problem (as
described in Section II) to the multivariate case with jointly
Gaussian source components, each of zero-mean and variance

, and corresponding transmitters. Denote the source output
-tuple at time by , the correlation

coefficient between the source components and by
, the channel input power constraint associated to source

component/transmitter by , and the dis-
tortion on source component by . Finally,
denote the rate-distortion function on the source -tuple by

. Then, a necessary condition for the
achievability of a distortion tuple is that

(21)

Proof: See Appendix B-B.

We now specialize Theorem IV.1 to the symmetric case. We
combine the explicit form of the rate-distortion function in (10)
with (16) and substitute for to obtain:

Corollary IV.1: In the symmetric case

for

for .

Corollary IV.1 concludes the section on the necessary con-
dition for the achievability of a distortion pair . We

Fig. 4. Distributed source coding problem for a bivariate Gaussian source.

now compare this necessary condition to several sufficient con-
ditions. The first sufficient condition that we consider is based
on conventional source-channel separation.

B. Source-Channel Separation

As a benchmark we now consider the set of distortion pairs
that are achieved by combining the optimal scheme for the cor-
responding source-coding problem with the optimal scheme for
the corresponding channel-coding problem.

The corresponding source-coding problem is illustrated in
Fig. 4. The two source components are observed by two separate
encoders. These two encoders wish to describe their source se-
quence to the common receiver by means of individual rate-lim-
ited and error-free bit pipes. The receiver estimates each of the
sequences subject to expected squared-error distortion. A de-
tailed description of this problem can be found in [5], [6]. The
associated rate-distortion region is given in the next theorem.

Theorem IV.2 (Oohama [5]; Wagner, Tavildar, Viswanath
[6]): For the Gaussian two-terminal source coding problem
(with source components of unit variances) a distortion-pair

is achievable if, and only if

where

with

The distortions achievable by source-channel separation now
follow from combining Theorem IV.2 with the capacity of the
Gaussian multiple-access channel (see, e.g., [22] and [23]). We
state here the explicit expression for the resulting distortion pairs
only for the symmetric case.
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Corollary IV.2: In the symmetric case, a distortion is
achievable by source-channel separation if, and only if

We next consider several combined source-channel coding
schemes. The first scheme is an uncoded scheme.

C. Uncoded Scheme

In this section, we consider an uncoded transmission scheme,
which, as we show, is optimal below a certain SNR-threshold.

The uncoded scheme operates as follows. At every time in-
stant , Encoder produces as channel input
a scaled version of the time- source output . The corre-
sponding scaling is such that the average-power constraint of
the channel is satisfied. That is

Based on the resulting time- channel output , the decoder
then performs an MMSE estimate of the source output ,

, . That is

The expected distortions resulting from this uncoded
scheme as well as the optimality of the scheme below a certain
SNR-threshold are given in the following theorem.

Theorem IV.3: The distortion pairs resulting from
the described uncoded scheme are given by

(22)

(23)

These distortion pairs are optimal, i.e., lie on the boundary of
the distortion region, whenever

(24)
Proof: The evaluation of leading to (22) and (23)

is given in Appendix C. Based on the expressions for and
the optimality of the uncoded scheme now follows from

verifying that for all , and satisfying (24) the corre-
sponding distortion pair satisfies the necessary con-
dition (16) of Theorem IV.1 with equality. To verify this, one
can first verify that for all , and satisfying (24) we have

.

Remark IV.3: The optimality of the uncoded scheme can
also be derived in a more conceptual way. To see this, denote
by the distortion region for our mul-
tiple-access problem, and by the distortion

region for the point-to-point problem of Section III. The opti-
mality of the uncoded scheme for the multiple-access problem
now follows from combining the following three statements.
A)

Statement A) is nothing but a restatement of Theorem IV.1 and
Remark IV.2.
B) For the point-to-point problem of Section III with

power constraint , let
be a distortion pair resulting from

the uncoded scheme of Section III-C. For every ,
resulting in a channel input sequence that satisfies
the power constraint (8) with equality, we have that if

where is the threshold function defined in (13),
then lies on the boundary of

.
Statement B) follows by Proposition III.1 and because the set
of distortion pairs resulting from all

for which (8) is satisfied with equality, is a convex
line segment in the -plane, and, thus, every such pair

lies on the boundary of the distortion
region.
C) Let be the distortion pair resulting

from the uncoded scheme for the point-to-point problem,
and let be the distortion pair resulting from the
uncoded scheme for the multiple-access problem. Then, if

and

then

Statement C) follows since in the multiple-access problem with
channel inputs and , the channel output

mimics the channel output of the uncoded scheme for the
point-to-point problem with channel input .
Thus, while in the multiple-access problem the encoders cannot
cooperate, the channel performs the addition for them, and since
the reconstructors are the same in the multiple-access problem
and the point-to-point problem, the resulting distortions are the
same in both problems.

Combining Statements A), B), and C) gives that if

(25)
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then lies on the boundary of ,
i.e., the uncoded scheme for the multiple-access problem is op-
timal. The threshold condition (24) now follows by (25) and
from substituting therein the value of by its explicit expres-
sion given in (22).

Remark IV.4: In analogy to Remark IV.3, it can also be
shown for the multivariate setup of Proposition IV.1 that if the
correlation coefficients between the source components are
all strictly positive, then uncoded transmission is optimal below
some strictly positive SNR-threshold, i.e., that the extension
of the scheme described at the beginning of this section to the

-variate case results in a distortion tuple
that lies on the boundary of the distortion region of the corre-
sponding problem. The respective statements correponding to
A), B), and C) of Remark IV.3 are as follows.
A') The distortion region for the multiple-access problem with

power constraints , , is a subset of the
distortion region of the associated point-to-point problem
with power constraint

(26)

Statement A’) follows from Proposition IV.1 and the adaptation
of Remark IV.2 to the -variate case.
B') To every -tuple of positive constants there cor-

responds some threshold power such that the fol-
lowing holds: If and the positive constant is such
that the second moment of is

, then an uncoded transmission scheme that sends
achieves a distortion tuple that

is on the boundary of the optimal distortion region of the
point-to-point problem with allowed power .

To prove Statement B’) it suffices to show that, for the
point-to-point source-coding problem, a scheme where the
transmitter only describes to the receiver a linear com-
bination whenever the available
source-coding rate is below some threshold, results in a distor-
tion tuple that lies on the boundary of the optimal distortion
region. It then follows by Goblick’s result [1] that for the
point-to-point problem an uncoded transmission scheme that
sends achieves a distortion
tuple that is on the boundary of the distortion region whenever
the allowed power is below some threshold .

An optimal scheme for the source-coding problem is
described in [18, Appendix A.2, pp. 24 and Remark A.2,
p. 26]. It consists of scaling the source components with some
coefficients ; unitarily decorrelating the
tuple to obtain independent
random variables ; and then applying the re-
verse waterfilling principle on . Combining the
generalizations, to the multivariate case, of [18, Remark A.4,
p. 27] and [18, Remark A.3, Part ii), p. 26] yields that for
every the distortion tuple resulting from this
scheme lies on the boundary of the optimal distortion region.
It, thus, remains to show that for every there
exist and some positive rate-threshold below

which this scheme reduces to describing to the receiver only
the linear combination . To show this,
we use the following lemma.

Lemma IV.1: Let be as in Proposition IV.1
with the additional assumption that the pairwise correlations
are all positive. To every there corre-
spond such that: the covariance matrix of

has a largest eigenvalue
of algebraic multiplicity 1; corresponding to there is an
eigenvector of positive components ; and

...
...

(27)

Proof: Let

(28)

where is the correlation coefficient between and ,
and define

(29)

By (29) it follows immediately that (27) holds. Also, for as
defined in (29), and as in (28), it is easily verified that is an
eigenvector of with corresponding eigenvalue 1: one merely
computes , substitutes as given in (29), and verifies that

.
It remains to prove that 1 is the largest eigenvalue of the co-

variance matrix , and that its algebraic multiplicity is 1. To this
end, we first note that the matrix is (componentwise) positive.
This follows because the pairwise correlations of
are positive and because the ’s as defined in (28) are positive.
Because is positive and because is a positive eigenvector
of , it now follows from [28, Theorem 1.2.2, pp. 5] that 1 is the
largest eigenvalue of and that its algebraic multiplicity is 1.

For given , consider the result
of decorrelating

using a unitary matrix. Among , the random
variable with the largest variance is given by

(30)

where is the eigenvector corresponding to the largest eigen-
value of the covariance matrix of . Conse-
quently, by Lemma IV.1, c.f. (27), to every
there correspond some such that among the

above, the one with the largest variance is

(31)

Thus, by Lemma IV.1 and by the reverse waterfilling principle,
which is used in the optimal source-coding scheme, it follows
that for every there exists some positive rate-
threshold below which the optimal source-coding scheme re-
duces to describing to the receiver only the linear combination

.
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Fig. 5. Upper and lower bounds on� �� � �� ���� for a source of correlation
coefficient � � ���.

C') For the point-to-point problem, the uncoded transmission
scheme with channel input
and

results in the same distortion tuple as the uncoded trans-
mission scheme for the multiple-access problem.

Statement C’) holds because first, in the multiple-access case
the channel performs the addition of the channel inputs

, and, thus, mimics the channel
output of the uncoded scheme of the point-to-point problem,
and second, in the point-to-point problem and the multiple-ac-
cess problem the reconstructors of the corresponding uncoded
schemes are the same.

That also in the multivariate version of our multiple-access
problem uncoded transmission achieves a point on the boundary
of the corresponding distortion region now follows from com-
bining Statements A’), B’), and C’).

We now specialize Theorem IV.3 to the symmetric case:

Corollary IV.3: In the symmetric case

for all (32)

where we have used the shorthand notation for
. Moreover, for all SNRs below the given

threshold, the minimal distortion is achieved
by the uncoded scheme.

The upper and lower bounds on of Corol-
laries IV.1–IV.3 are illustrated in Fig. 5 for a source of correla-
tion coefficient . For SNRs below the threshold of (32)
(marked in Fig. 5 by the dashed line) the uncoded approach per-
forms significantly better than the separation-based approach.
However, for SNRs above the threshold of (32) the performance
of the uncoded scheme deteriorates. By the expressions in (22)
and (23), we obtain that in the symmetric case

(33)

That is, as the distortion does not tend to zero.
The reason is that as the noise tends to zero, the channel output

Fig. 6. Encoder of vector-quantizer scheme.

corresponding to the uncoded scheme tends to , from
which and cannot be perfectly recovered.

D. Source-Channel Vector-Quantizer Scheme

In this section, we propose a coding scheme that improves
on the uncoded scheme at high SNR. It also outperforms the
source-channel separation approach. In this scheme the signal
transmitted by each encoder is a vector-quantized version of its
source sequence. In contrast to the separation-based scheme,
the vector-quantized sequences are not mapped to bits before
they are transmitted. Instead, the vector-quantized sequences are
fed directly to the channel themselves. This transfers some of
the correlation from the source to the channel inputs with the
channel inputs still being from discrete sets, thereby enabling
the decoder to make distinct estimates of and of . For this
scheme, we derive the achievable distortions and, based on those
and on the necessary condition of Theorem IV.1, deduce the
high SNR asymptotics of an optimal scheme.

The structure of an encoder of our scheme is illustrated in
Fig. 6. First, the source sequence is quantized by a rate-
vector-quantizer. The resulting quantized sequence is denoted
by . For its transmission over the channel, this sequence is
scaled so as to satisfy the average-power constraint of (4). That
is, the channel input sequence is given by

Based on the channel output resulting from and , the
decoder then estimates the two source sequences and . It
does this in two steps. First, it tries to recover the sequences

and from the channel output sequence by performing
joint decoding that takes into consideration the correlation be-
tween and . The resulting decoded sequences are denoted
by and respectively. In the second step, the decoder
performs approximate MMSE estimates , , of the
source sequences based on and , i.e.,

A detailed description of the scheme is given in Appendix D.
The distortion pairs achieved by this vector-quantizer scheme

are stated in the following theorem.

Theorem IV.4: The distortions achieved by the vector-quan-
tizer scheme are all pairs satisfying
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where the rate-pair satisfies

(34)

(35)

(36)

and where

(37)

Proof: See Appendix D.

Remark IV.5: The coefficient corresponds to the asymptotic
average correlation coefficient between two time- channel in-
puts and .

Based on Theorem IV.4, we now derive two more results:
we show that for the symmetric version of our problem,
source-channel separation is suboptimal also at high SNR, and
we determine the precise high-SNR asymptotics of an optimal
scheme. We begin with the sub-optimality of source-channel
separation. To this end, we restate Theorem IV.4 more specifi-
cally for the symmetric case.

Corollary IV.4: In the symmetric case

where

By comparing the achievable distortion of the vector-quan-
tizer scheme (Corollary IV.4) with the achievable distortion of
the separation-based scheme (Corollary IV.2) we obtain:

Corollary IV.5: In the symmetric case with , source-
channel separation is suboptimal for all .

We turn to the high-SNR asymptotics of an optimal scheme.
To this end, let denote an arbitrary distortion pair re-
sulting from an optimal scheme. For a subset of those distor-
tion pairs, the high SNR behavior is described in the following
theorem.

Theorem IV.5 (High-SNR Distortion): The high-SNR asymp-
totic behavior of is given by

provided that and , and that

and (38)

Proof: See Appendix E.

We restate Theorem IV.5 more specifically for the symmetric
case. Since there , condition (38)
is implicitly satisfied. Thus:

Corollary IV.6: In the symmetric case

(39)

Remark IV.6: Corollary IV.6 can also be deduced without
Theorem IV.5, by comparing the distortion of the vector-quan-
tizer scheme in Corollary IV.4 to the lower bound on

in Corollary IV.1.
For some intuition on the coefficient on the RHS of (39), let

us first rewrite (39) as follows:

as

Next, let us compare this asymptotic behavior to that of two
suboptimal schemes: the best separation-based scheme and the
suboptimal separation-based scheme that completely ignores
the source correlation, i.e., the best scheme where the transmit-
ters and the receiver treat the two source components as if they
where independent. Denoting the distortion of the best separa-
tion-based scheme by and the distortion of the scheme that
ignores the source correlation by , gives

as

as

The asymptotic expression for follows by Corollary IV.2
and the asymptotic expression for follows from combining
the rate-distortion function of a Gaussian random variable, see,
e.g., [24, Theorem 13.3.2, p. 344], with the capacity region of
the Gaussian multiple-access channel, see, e.g., [24, Section
14.3.6, p. 403].

The asymptotic behavior can now be understood as follows.
The denominator under the square-root corresponds to the av-
erage power that the scheme under discussion produces on the
sum of the channel inputs . In the two separation-
based approaches this average power is , and in the vector-
quantizer scheme this average power is as .
The numerator under the square-root consists of the noise vari-
ance multiplied by a coefficient reflecting the gain due to the
logical exploitation of the source correlation. For the scheme
ignoring the source correlation this coefficient is, by definition
of the scheme, equal to 1, i.e., no gain, whereas for the best
separation-based scheme and for the vector-quantizer scheme
this coefficient is equal to . The means by which this
gain is obtained in the best separation-based scheme and in the
vector-quantizer scheme are fundamentally different. In the sep-
aration-based scheme the gain is achieved by a generalized form
of Slepian–Wolf coding (see [5]), whereas in the vector-quan-
tizer scheme the gain is achieved by joint-typicality decoding
that takes into consideration the correlation between the trans-
mitted sequences and (see Theorem IV.4). The corre-
sponding advantage of the vector-quantizer scheme is that by
performing the logical exploitation only at the receiver, it addi-
tionally allows for exploiting the source correlation in a physical
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way, i.e., by producing a power boost in the transmitted signal
pair.

E. Superposition Approach

The last scheme of this paper is a combination of the previ-
ously considered uncoded scheme and vector-quantizer scheme.
One way to combine these schemes would be by time- and
power-sharing. As stated in Remark II.1, this would result in
a convexification of the union of the achievable distortions of
the two individual schemes. In this section, we propose a better
approach where the two schemes are superimposed. In the sym-
metric case, this approach results in better performances than
time- and power-sharing, and for all SNRs, the resulting dis-
tortion is very close to the lower bound on of
Corollary IV.1. We also point out that for the simpler problem
of transmitting a univariate memoryless Gaussian source over
a point-to-point AWGN channel subject to expected squared-
error distortion, a similar superposition approach was shown in
[25] to yield a continuum of optimal schemes.

The superimposed scheme can be described as follows. The
channel input sequence produced by Encoder , ,
is a linear combination of the source sequence and its rate-
vector-quantized version . That is

(40)

where the sequence is obtained in exactly the same way as
in the vector-quantizer scheme, and where the coefficients
and are chosen so that the sequence satisfies the power
constraint (4), and so that the receiver can, with high probability,
recover the transmitted codeword pair . As we shall
see, these two conditions will be satisfied as long as and ,

satisfy to within some ’s and ’s

(41)

(For a precise statement see Appendix F).
From the resulting channel output , the de-

coder then makes a guess of the transmitted sequences
. This guess is obtained by joint typicality decoding

that takes into consideration the correlation between , ,
and . From the sequences , , and , the decoder

then computes approximate MMSE estimates and of the
source sequences and , i.e.,

(42)

where the coefficients are chosen such that
. To state the explicit form of coefficients

, define for any rate pair , where , the 3 3
matrix by

(43)

where

The coefficients are then given by

(44)

where

The distortions achieved by the superimposed scheme are now
given in the following theorem.

Theorem IV.6: The distortions achieved by the superposition
approach are all pairs satisfying

where the rate-pair satisfies

for some , , , and satisfying (41) and where

(45)
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where

with

(46)

(47)

and with

(48)
where

(49)

(50)

Proof: See Appendix F.

In the symmetric case where ,
and where and , the matrix
and the coefficients reduce to

where

and

where

Thus, in the symmetric case Theorem IV.6 simplifies as follows.

Corollary IV.7: With the superposition approach in the sym-
metric case we can achieve the distortion

Fig. 7. Upper and lower bounds on� �� � �� ���� for a source of correlation
coefficient � � ���.

where the infimum is over all rates satisfying

for some and satisfying

and (51)

and where

and

with

Fig. 7 illustrates the various bounds on .

V. SUMMARY

We studied the power-versus-distortion tradeoff for the dis-
tributed transmission of a memoryless bivariate Gaussian source
over a two-to-one average-power limited Gaussian multiple-ac-
cess channel. In this problem, each of two separate transmit-
ters observes a different component of a memoryless bivariate
Gaussian source. The two transmitters then describe their source
component to a common receiver via a Gaussian multiple-ac-
cess channel with average-power constraints on each channel
input sequence. From the output of the multiple-access channel,
the receiver wishes to reconstruct each source component with
the least possible expected squared-error distortion. Our interest
was in characterizing the distortion pairs that are simultaneously
achievable on the two source components. These pairs are a
function of the power constraints and the variance of the ad-
ditive channel noise, as well as of the source variance and of the
correlation coefficient between the two source components.
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We first considered a different (nondistributed) problem,
which was the point-to-point analog of our multiple-access
problem. That is, we studied the power-versus-distortion
tradeoff for the transmission of a memoryless bivariate
Gaussian source over the AWGN channel, subject to expected
squared-error distortion on each source component. For this
problem, we determined the set of achievable distortion pairs
by deriving the explicit expression for the rate-distortion func-
tion of a memoryless bivariate Gaussian source. Moreover,
we showed that below a certain SNR-threshold an uncoded
transmission scheme is optimal.

For the multiple-access problem, we then derived the fol-
lowing.

• A necessary condition for the achievability of a distor-
tion pair (Theorem IV.1). This condition was obtained by
reducing the multiple-access problem to a point-to-point
problem. The key step was to upper bound the maximal
correlation between the channel inputs by using a result
from maximum correlation theory.

• The optimality of an uncoded transmission scheme below
a certain SNR-threshold (Theorem IV.3). In the symmetric
case, this result becomes (Corollary IV.3)

for all . The strength of the underlying
uncoded scheme is that it translates the entire source cor-
relation onto the channel inputs, and thereby boosts the re-
ceived power of the transmitted signal pair. Its weakness
is that it allows the receiver to recover only the sum of the
channel inputs.

• A sufficient condition based on a “source-channel vector-
quantizer” scheme (Theorem IV.4). The motivation behind
this scheme was to overcome the weakness of the uncoded
scheme. To this end, rather than transmitting the source
components in an uncoded manner, the scheme transmits
a scaled version of the optimally vector-quantized source
components (without channel coding).

• The precise high-SNR asymptotics of an optimal transmis-
sion scheme, which in the symmetric case are given by
(Corollary IV.6)

The achievability part of this result follows from the
“source-channel vector-quantizer” scheme (Theorem IV.4)
and the inachievability part from the necessary condition
of Theorem IV.1.

• The suboptimality, in the symmetric case, of source-
channel separation at all SNRs. This follows by com-
paring the best separation-based approach (Corollary IV.2)
with the achievable distortions from the “source-channel
vector-quantizer” scheme (Corollary IV.4).

• A sufficient condition based on a superposition of
the uncoded scheme and the vector-quantizer scheme
(Theorem IV.6). In the symmetric case this superposition
approach was shown to be optimal or close to optimal at
all SNRs.

The presented sufficient conditions indicate that for the effi-
cient exploitation of the source correlation it is necessary not
only to exploit the source correlation in a logical way, e.g.,
by Slepian&ndash;Wolf-like strategies, but to additionally ex-
ploit the source correlation in a physical way. In the considered
schemes, this is done by translating the source correlation onto
the channel inputs. The logical exploitation of the source corre-
lation is then performed at the receiver-side, e.g., by joint-typ-
icality decoding taking into consideration the correlation be-
tween the channel inputs.

APPENDIX A
PROOF OF PROPOSITION III.1

Proposition III.1 pertains to the point-to-point problem of
Section III, in which the source pair is to be trans-
mitted over an AWGN channel. It states that for an achievable
distortion pair for which the SNR of the channel sat-
isfies , there exist , such that

and

The essence of Proposition III.1 is that the uncoded scheme
proposed in Section III-C achieves every distortion pair

in with the least possible transmission
power, i.e., with the for which

In Proposition III.1, the condition is merely
expressed in form of the threshold on .

We start the proof by showing that the uncoded scheme in-
deed achieves every with the least pos-
sible transmission power, respectively at the smallest . To
this end, let be the smallest at which
is achievable, i.e.,

We now argue that for every ,
there exist , such that the distortions resulting
from the uncoded scheme at satisfy

. To this end, we first recall
that in [1] it is shown that the minimum expected squared-error
transmission of a Gaussian source over a AWGN channel is
achieved by uncoded transmission. Next, we recall that for the
source coding part of the problem studied in Section III, every

in can be achieved with rate
by optimally vector-quantizing a linear combination of and

(for details, see [18, Proposition A.1, p. 31]). Thus, since
are jointly Gaussian, and, therefore, each of

their linear combination is also Gaussian, it
follows in combination with [1] that every distortion pair

is achieved at , by
sending at every time instant

with the appropriate .
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It remains to derive the threshold function . To this end, first
notice that for an arbitrary fixed , the smaller the
associated gets, the larger becomes, i.e., for a
fixed the function is decreasing in . Now, for
every , let be the smallest such that

. Then, for every

Hence, it remains to evaluate for every
. Using the shorthand notation , we have

if
if .

(52)

For it immediately follows that
. For the value

of , and, hence, the value of
follows from solving

(53)

where is defined in (11), and where we have used the
shorthand notation for . From (52), we now get

Thus, (53) reduces to

(54)

which, by (52), can be rewritten as

(55)

This is the threshold given in Proposition III.1 whenever
.

To conclude the proof, we justify the restriction to and
. This restriction is made because from the expressions for

and it follows that it incurs no loss in per-
formance. This is so, since , and, thus, the uncoded trans-
mission scheme with the choice of such that
yields a distortion that is uniformly worse than the choice of

, and every distortion pair achievable with ,
is also achievable with . Thus, without loss in perfor-
mance, we can limit ourselves to .

APPENDIX B
PROOF OF THEOREM IV.1

We begin with a reduction.

Reduction B.1: There is no loss in optimality in restricting
the encoding functions to satisfy

for and all (56)

Proof: We show that for every achievable tuple
, there exists a scheme with

encoding functions satisfying (56) that achieves this tuple.
To this end, let be an arbitrary
achievable tuple. Further, let , , be se-
quences of encoding and decoding functions achieving this
tuple. If the encoding functions , do not satisfy
(56), then they can be adapted as follows. Before sending the
codewords over the channel, the mean of the codewords is
subtracted so as to satisfy (56), and at the channel output this
subtraction is corrected by adding this term to the received
sequence before decoding.

In view of Reduction B.1, we restrict ourselves, for the re-
mainder of this proof to encoding functions that satisfy (56).
The key element in the proof of Theorem IV.1 is the following.

Lemma B.1: Any scheme satisfying condition (56) and the
original power constraints (4), also satisfies

(57)

Proof: See Appendix B-A.
Based on Lemma B.1, the proof of Theorem IV.1 is now ob-

tained by relaxing the original problem as follows. First, the
power constraint of (4) is replaced by the power constraint of
(57). Then, under the power constraint of (57), the two transmit-
ters are allowed to fully cooperate. These two relaxations reduce
the original multiple-access problem to a point-to-point problem
where the source sequence is to be transmitted
over an AWGN channel of power constraint
and noise variance . For this point-to-point problem, a neces-
sary condition for the achievability of a distortion pair
follows by source-channel separation, and is

(58)
It is now easy to conclude that (58) is also a necessary condition
for the achievability of a distortion pair in the orig-
inal multiple-access problem. This simply follows since (58) is
a necessary condition for the achievability of a distortion pair

in a relaxed version of the multiple-access problem.
This concludes the proof of Theorem IV.1.

A. Proof of Lemma B.1

The key to Lemma B.1 is as follows:

Lemma B.2: For any coding scheme with encoding func-
tions of the form (3) that satisfy the power constraints (4) and
condition (56) of Reduction B.1, and where the encoder input
sequences are jointly Gaussian as in (1) with non-negative
correlation coefficient and equal variances
(Reduction II.1), any time- encoder outputs and
satisfy

(59)
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Proof: Lemma B.2 follows from two results from Max-
imum Correlation Theory. These results are stated now.

Theorem B.1 (Witsenhausen [27]): Consider a sequence of
pairs of random variables , where the pairs are
independent (not necessarily identically distributed). Then

(60)

where the supremum on the LHS of (60) is taken over all func-
tions , satisfying

and

and the supremum on the RHS of (60) is taken over all functions
, satisfying

and

Proof: See [27, Theorem 1, p. 105].

Lemma B.3: Consider two jointly Gaussian random variables
and with correlation coefficient . Then

where the supremum is taken over all functions ,
satisfying

and

Proof: See [21, Lemma 10.2, p. 182].

Lemma B.2 is now merely a consequence of Theorem B.1 and
Lemma B.3 applied to our setup. To see this, substitute and

by the source sequences and , and let the functions
and be the encoding sub-functions that produce

the time- channel inputs and , i.e., .
Then, for every

(61)

where follows from Theorem B.1 and follows
from Lemma B.3 and from our assumption that
(Reduction II.1). Thus, for every time

(62)

which is the bound of Lemma B.2.

Using Lemma B.2, we can now prove the bound of
Lemma B.1 as follows:

(63)

where Inequality follows by Lemma B.2 and from our
assumption that , and where Inequality follows by
Cauchy–Schwarz. This concludes the proof of Lemma B.1.

B. Proof of Proposition IV.1

The proof is a simple generalization of the proof of The-
orem IV.1 given above. To see this, we first note that in the
mutlivariate case where the correlation coefficients ,

are not necessarily non-negative, the upper bound
of Lemma B.2 on can be written as

(64)

and, as in the derivation of (63), it can be shown that

(65)
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The proof is then concluded by arguments similar to those in the
proof of Theorem IV.1.

APPENDIX C
DISTORTIONS OF THE UNCODED SCHEME

The expression for , , is obtained as follows:

where in we have used that satisfies the
Orthogonality Principle; in we have used the explicit form of
the conditional mean for jointly Gaussians

and in we have used the calculation

APPENDIX D
PROOF OF THEOREM IV.4

In this appendix, we analyze the distortions achievable by the
vector-quantizer scheme that was presented in Section IV-D.
To start, we give a thorough description of the corresponding
coding scheme.

A. Coding Scheme

Fix some and rates and .

Code Construction: Two codebooks and are gener-
ated independently. Codebook , , consists of
codewords . The codewords are
drawn independently uniformly over the surface of the centered

-sphere of radius .
Encoding: Based on the observed source sequence each

encoder produces its channel input by first vector-quantizing
the source sequence to a codeword and then scaling

to satisfy the average-power constraint. To describe the
vector-quantizer precisely, denote for every where
neither nor are the zero-sequence, the angle between
and by , i.e.,

(66)

Let be the set defined in (67), shown at the bottom
of the page. The vector-quantizer output is then given as
follows: if , then is the codeword

that minimizes , and
if , then is the all-zero sequence. This is re-
stated in (68), shown at the bottom of the page. More formally,

should be written as , but we shall usually make
these dependencies implicit. The channel input is now given by

(69)

where

(70)

Since the codebook is drawn over the centered -sphere of
radius , each channel input satisfies
the average-power constraint individually.

Reconstruction: The receiver’s estimate of the
source pair is derived from the channel output
in two steps. First, the receiver makes a guess of
the pair by choosing among all “jointly typical
pairs” the pair whose linear combina-
tion has the smallest distance to the received
sequence . More precisely

(71)

(67)

if

otherwise

(68)
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Fig. 8. Genie-aided decoder.

where

If the channel output and the codebooks and are such
that there does not exist a pair that satisfies

(72)

then and are chosen to be all-zero.
In the second step, the receiver computes the estimates

from the guess by setting

(73)

(74)

where

(75)

(76)

Note that

and (77)

B. Expected Distortion

To analyze the expected distortion we use a genie-aided ar-
gument. We first show that, under certain rate constraints, the
asymptotic normalized distortion of the proposed scheme re-
mains the same when a certain help from a genie is provided.
To derive the achievable distortions it then suffices to analyze
the genie-aided version.

1) Genie-Aided Scheme: In the genie-aided scheme, the
genie’s help is provided to the decoder. An illustration of this
genie-aided decoder is given in Fig. 8. The genie provides
the decoder with the codeword pair . The decoder
then estimates the source pair based on
and ignores the guess produced in the first decoding
step. The estimate of this genie-aided decoder is denoted by

, where

(78)

(79)

with , , , as in (75) and (76). Under certain rate
constraints, the normalized asymptotic distortion of this genie-
aided scheme is the same as for the originally proposed scheme.
This is stated more precisely in the following proposition.

Proposition D.1: For every and there
exists an such that for all

whenever is in the rate region given by

where , and depend only on , , , , and ,
where

Proof: See Appendix D-C.

Corollary D.1: If satisfy

then

Proof: Follows from Proposition D.1 by first letting
and then and .

By Corollary D.1, to analyze the distortion achievable by our
scheme it suffices to analyze the genie-aided scheme. This is
done in Appendix D-D.

C. Proof of Proposition D.1

The main step in the proof of Proposition D.1 is to show
that for every and sufficiently large , the
probability of a decoding error, and, thus, the probability of

, can be made very small. This step is done in the fol-
lowing section. The proof of Proposition D.1 is then completed
in Appendix D-C-II.

1) Upper Bound on Probability of a Decoding Error: In this
section, we show that for every and suffi-
ciently large , the probability of a decoding error, and, thus,
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the probability of , can be made very small. The hitch
is that to upper bound the probability of a decoding error for
the proposed scheme, we cannot proceed by the method con-
ventionally used for the multiple-access channel. The reason is
that in the conventional analysis of the multiple-access channel
it is assumed that the probability of the codewords does
not depend on the realization of the codebook . However, in
our combined source-channel coding scheme, the probability
of encoder producing the channel input of index

depends not only on the source sequence
, but also on the realization of . Another reason the conven-

tional analysis fails is that, conditional on the codebooks and
, the indices produces by the vector-quantizers are dependent.
To address these difficulties, we proceed by a geometric ap-

proach. To this end, we introduce an error event related to a de-
coding error at the receiver. This event is denoted by and
consists of all tuples for which there exists a
pair in that satisfies Condition (72)
of the reconstructor, and for which the Euclidean distance be-
tween and is smaller or equal to the Euclidean

distance between and . More formally,
where , , and are given

in (80)–(82), shown at the bottom of the page, where
. Note that a decoding error occurs only if

. The main result of this section can now
be stated as follows.

Lemma D.1: For every and , there exists
an such that for all

whenever

To prove Lemma D.1, we introduce three auxiliary error
events. The first auxiliary event is denoted by and cor-
responds to an atypical source output. It is given in (83),
shown at the bottom of the page. The second auxiliary event
is denoted by and corresponds to an atypical behavior of
the additive noise, and is given in (84), shown at the bottom
of the page. Finally, the third auxiliary event is denoted by

and corresponds to irregularities at the encoders. That is,

and (80)

and (81)

and

and (82)

or or (83)

or or (84)
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the event that one of the codebooks contains no codeword
satisfying Condition (67) of the vector-quantizer, or that the
two quantized sequences and have an “atypical” angle to
each other. More formally, where

, , and are given in (85)–(87), shown at the
bottom of the page. To prove Lemma D.1 we now start with the
decomposition

(88)

where we have used the shorthand notation for
, and where denotes the com-

plement of . Lemma D.1 now follows from upper bounding
the probability terms on the RHS of (88).

Lemma D.2: For every and there exists an
such that for all

Proof: The proof follows by the weak law of large num-
bers.

Lemma D.3: For every and there exists an
such that for all

Proof: The proof follows by the weak law of large numbers
and since for every , as

where .

Lemma D.4: For every and there exists
an such that for all

Proof: This result has nothing to do with the channel; it is
a result from rate-distortion theory. A proof for our setting is
given in Appendix D-E1.

Lemma D.5: For every and every there exists
some such that for all Conditions
(89)–(91), shown at the bottom of the page, hold in which ,

, and are positive constants determined by , , and .
The proof of Lemma D.5 requires some preliminaries. To this

end, define

(92)

where

(93)

(94)

In the remainder, we shall use the shorthand notation instead
of . We now start with a lemma that will be
used to prove (89).

(85)

(86)

(87)

(89)

(90)

(91)
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Lemma D.6: Let be the angle between and
, and let the set be defined as

(95)

where is a positive constant determined by , , , and
. Then

and, in particular

Proof: We first recall that for the event to occur, there
must exist a codeword that satisfies

(96)

and

(97)

The proof is now based on a sequence of statements related to
Condition (96) and Condition (97).

A) For every and every ,
where is the surface area of the codeword sphere of

defined in the code construction

(98)

Statement A) follows by rewriting as
, and then multiplying the inequality

on the LHS of (98) by and recalling that
and that .

B) For every and every

(99)

Statement B) follows from rewriting the inequality on the LHS
of (99) as
or equivalently as

(100)

It now follows from the equivalence of the first inequality in (99)
with (100) that for , the first inequality
in (99) can only hold if

(101)

thus establishing B).
C) For every and every ,

implication (102), shown at the bottom of the page, holds.
Statement C) is obtained as follows:

where in we have used Statement A) and Statement B).
D) For every

(103)

where depends on , , , , and only.
Statement D) is obtained as follows:

where in we have used that .
E) For every and an arbitrary

, implication (104), shown at the bottom of the next
page, holds, where we have used the notation

and where only depends on , , , and .
Statement E) follows from combining Statement C) with State-
ment D) and the explicit values of and given in (93) and
(94).

and

(102)
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F) For every , denote by the angle between
and , and let

where only depends on , , , and , and where
we assume sufficiently small such that

Then, for every , implication
(105), shown at the bottom of the page, holds.

Statement F) follows from Statement E) by noting that if
and , then

To see this, first note that for every , where , satis-
fying the condition on the LHS of (105) lies within a sphere of
radius centered at , and for every we have that

also lies on the centered -sphere of radius . Hence,
every satisfying the condition on the LHS of (105) lies
in the intersection of these two regions, which is a polar cap on
the centered sphere of radius . An illustration of such a
polar cap is given in Fig. 9. The area of this polar cap is outer
bounded as follows. Let be an arbitrary point on the boundary
of this polar cap. The half-angle of the polar cap would be max-
imized if and would lie perpendicular to each other, as
is illustrated in Subplot (b) of Fig. 10. Hence, every
satisfying the upper conditions of (105) also satisfies

where we assume sufficiently small such that
and where .

The proof of Lemma D.6 is now concluded by noticing that
the set , defined in (95), is the set of tuples
for which there exists a such that

Fig. 9. Polar cap of half angle � on an -sphere of radius
�
�� .

Fig. 10. Half-angle of cap for different constellations of � and �.

. Thus, by Statement F) and by the definition
of in (80) it follows that

and, therefore

We now state one more lemma that will be used for the proof
of (89).

Lemma D.7: For every , let the set be given by

where is defined in (92). Then

(106)

Proof: The proof follows from upper bounding in every
point on the density of every and then
using a standard argument from sphere-packing. The proof is
given in Appendix D-E2.

and (104)

and (105)
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We next state two lemmas for the proof of (91). These lemmas
are similar to Lemma D.6 and Lemma D.7.

Lemma D.8: For every sufficiently small , define the set
as in (107), shown at the bottom of the page, where we

have used the notation

and where and depend only on , , and . Then, for
every sufficiently small

and, in particular

Proof: We first recall that for the event to occur,
there must exist codewords and

such that

(108)

and

(109)

The proof is now based on a sequence of statements related to
Condition (108) and Condition (109).

A) For every , implication (110),
shown at the bottom of the page, holds, where only
depends on , , and .

Statement A) follows by rewriting the LHS of (110) as

(111)

where in we have used that and
that .
B) For every

where only depends on , , and .
Statement B) is obtained as follows:

where in we have used that .
C) For every , implication (112), shown at

the bottom of the next page, holds.
Statement C) follows by

where in we have used that multiplying the inequality on
the LHS of (112) by and recalling that

and that gives

and

and (107)

(110)
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and thus

thus establishing C).
D) For every , Implication (113),

shown at the bottom of the page, holds.
Statement D) follows by rewriting the expression

as

and then lower bounding using A) and
upper bounding and using B) and
C), respectively. Using the shorthand notation

this, yields that for every

Lemma D.8 now follows by D) which gives

and, therefore

We now state the second lemma needed for the proof of (91).

Lemma D.9: For every and , let the set
be given by (114), shown at the bottom of the page. Then

(115)

Proof: The proof follows from upper bounding in every
point on , , the density of every
and then using a standard argument from sphere-packing. The
proof is given in Appendix D-E3

Proof of Lemma D.5: We first prove (89)

(116)

where follows by Lemma D.6 and follows because
. The proof of (89) is now completed by combining (116)

with Lemma D.7. This gives that for every and every
there exists some such that for all

we have whenever

(112)

and

(113)

(114)
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where is a positive constant determined by , , , and
. A similar argument establishes (90).
We turn to the proof of (91)

(117)

where follows by Lemma D.8 and follows because
. The proof of (91) is now completed by com-

bining (117) with Lemma D.9, which gives that for every
and every there exists some such that for all

we have
whenever

where is a positive constant determined by , and .

The proof of Lemma D.1 now follows straight forwardly.
Proof of Lemma D.1: Combining (88) with Lemma D.2,

Lemma D.3, Lemma D.4, and Lemma D.5, yields that for every
and there exists some such that

for all

2) Concluding the Proof of Proposition D.1: We start with
four lemmas. The first lemma upper bounds the impact of atyp-
ical source outputs on the expected distortion.

Lemma D.10: For every

Proof:

The second lemma gives upper bounds on norms related to
the reconstructions and .

Lemma D.11: Let the reconstructions and be as defined
in (73) and (78). Then

Proof: We start by upper bounding the squared norm of

where in we have used (77), i.e., that and ,
and that , . The upper bound on the
squared norm of is obtained similarly. Its proof is, therefore,
omitted. The upper bound on the squared norm of the difference
between and now follows easily:

The next two lemmas are used in the upcoming proof of
Proposition D.1. They rely on Lemma D.10 and Lemma D.11.

Lemma D.12:

Proof:

(118)

In the first equality the third expectation equals zero because
under we have . In we have used two
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inequalities: in the first term, the inner product is upper bounded
using the inequality

(119)

The second term is upper bounded by the Cauchy–Schwarz in-
equality and by . In we have used
Lemma D.11 and in we have used Lemma D.10.

Lemma D.13:

Proof:

where follows since conditional on we have
and, therefore, , and where follows by
Lemma D.11.

Proof of Proposition D.1: We show that the asymptotic
normalized distortion resulting from the proposed vector-quan-
tizer scheme is the same as the asymptotic normalized distortion
resulting from the genie-aided version of this scheme

(120)

where in step we have used Lemma D.12 and Lemma D.13.
Combining (120) with Lemma D.2 and Lemma D.1 gives that
for every and , there exists an
such that for all and

D. Upper Bound on Expected Distortion

We now derive an upper bound on the achievable distortion
for the proposed vector-quantizer scheme. By Corollary D.1, it
suffices to analyze the genie-aided scheme. Using that

(121)

where in the last equality all expected squared norms have been
replaced by their explicit values, i.e., and

for . The remaining
expectations of the inner products are bounded in the following
three lemmas.

Lemma D.14: For every and and every
positive integer

(122)

Proof:

where in the first equality the first expectation term is non-neg-
ative because conditioned on either or, if ,
Then .

By Lemma D.2 and Lemma D.4, it now follows that for every
and there exists an such that

for all

Lemma D.15: For every and , there exists
an such that for all
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Proof:

Thus, it follows by Lemma D.4 that for every and
there exists an such that for all

Lemma D.16: For every and , there exists
an such that for all

Proof: We begin with the following decomposition:

(123)

The first term on the RHS of (123) is lower bounded as shown
in (124) at the bottom of the page, where in we have used
(119), in we have used that , and in we have
used Lemma D.10.

We now turn to lower bounding the second term on the RHS
of (123). The probability term is lower bounded as follows:

(125)

To lower bound the expectation term, we represent as a
scaled version of corrupted by an additive “quantization
noise” . More precisely

where (126)

for . With this choice of , the vector is always or-
thogonal to . By (126), the inner product can now be
rewritten as . This leads to (127), shown
at the bottom of the page, in which we have denoted by the

(124)

(127)
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random codebook of user , and where in the second
expectation term is zero because for every

This holds since in the expectation over the codebooks with
conditioning on , for every the sequences and

are equiprobable and, thus, their inner products with
cancel off each other. Inequality b) follows from lower bounding

conditioned on combined with the fact that
conditioned on the term is positive. Inequality
c) follows from lower bounding and con-
ditioned on .

Combining (123) with (124), (125), and (127) gives

Thus, by Lemma D.2 and Lemma D.4, it follows that for every
and there exists an such that

for all

The distortion of the genie-aided scheme is now upper
bounded as follows:

where in we have used Lemma D.14, Lemma D.15, and
Lemma D.16, and where

E. Proofs of Lemma D.4, Lemma D.7, and Lemma D.9

The proofs in this section rely on bounds from the geometry
of sphere packing. To this end, we denote by the surface
area of a polar cap of half angle on an -sphere of unit radius.
An illustration of is given in Fig. 11. Upper and lower
bounds on the surface area are given in the following
lemma.

Fig. 11. Polar cap of half angle �.

Lemma D.17: For any

Proof: See [30, Inequality (27)].

The ratio of the two gamma functions that appears in the
upper bound and the lower bound of Lemma D.17 has the fol-
lowing asymptotic series.

Lemma D.18:

and in particular

Proof: We first note that

(128)

where denotes the double factorial of . The proof now fol-
lows by combining (128) with

which is given in [31, Problem 9.60, p. 495].

Before starting with the proofs of this section, we give one
more lemma. To this end, whenever the vector-quantizer of
Encoder 1 does not produce the all-zero sequence, denote by

the index of in its codebook , and whenever the
vector-quantizer of Encoder 1 produces the all-zero sequence,
let . Further, let denote the measure on
the codeword sphere induced by the uniform distribution,
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and let denote the density on with respect to .
Similarly, for Encoder 2 define and .

Lemma D.19: Conditional on , the density of
is upper bounded for every and at

every point by twice the uniform density

and similarly for Encoder 2.
Proof: We first write the conditional density as an

average over . Since conditioned on
we have

, this then yields (129), shown at the
bottom of the page. The proof now follows by upper bounding
the conditional density

To this end, define for every

the set given in (130), shown at the bottom of the page,
and its complement given in (131), shown at the bottom
of the page. The conditional density can now be upper bounded
by distinguishing between and . If

, then the conditional density is zero because the
fact that is 1 implies that for all

and if the conditional density is uniform over
, i.e.,

for some . Thus, for all , , and all
,

(132)

It now remains to upper bound . To this end, notice that the
surface area of never exceeds half the surface area of

. This follows since , and, therefore,
every satisfies . Hence, the sur-
face area of is always larger than half the surface area
of and, therefore

(133)

Combining (133) with (132) and (129) proves the lemma.

1) Proof of Lemma D.4: We begin with the following
decomposition

(129)

(130)

(131)
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The proof of Lemma D.4 now follows by showing that for every
and there exists an such that

for all

(134)

(135)

a) Proof of (134): We give the proof for . Due to the
symmetry the proof for then follows by similar arguments.
Let be the event that does not have a typical angle
to , i.e.,

where we have use the shorthand notation .
Then

(136)

where in we have used that the probability of does not
depend on , and in we have used that all have
the same distribution. To upper bound (136) we rewrite
as in (137), shown at the bottom of the page, where we have
used the notation

and

Hence, since is generated independently of and dis-
tributed uniformly on

(138)

Combining (138) with (136) then gives (139), shown at
the bottom of the page, where in we have used that

, and in we have lower bounded
and upper bounded

according to Lemma D.17. It now follows from sphere-packing
and -covering, see, e.g., [32], that for every we have

as . More precisely, this holds since the
exponent on the RHS of (139) grows exponentially in . This
follows since on the one hand for large

(137)

(139)
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and on the other hand the term

(140)

grows exponentially in . The latter holds since first of all

for large

second, the denominators of the fractions are independent of ,
and third since

with . That
can be seen as follows:

where in we have used the definition of .

Proof of (135): By the notation in (126) we have

(141)

where we recall that is a function of and
and similarly is a function of and . Now,
define the four events

Note that by (141), . Thus

(142)

The four terms on the RHS of (142) are now bounded in the
following two lemmas.

Lemma D.20: For

Proof: We first note that the term in the definition of
can be rewritten as

(143)

We can now upper and lower bound the RHS of (143)
for by noticing that

implies

that implies

and that implies

Hence, combined with (143) this gives

for all . The LHS can be lower
bounded by , and the RHS can be upper
bounded by whenever . Hence,
for

Lemma D.21: For every and there exists an
such that for all

Proof: We start with the derivation of the bound on . To
this end, we first upper bound the inner product between and



2744 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010

. Let denote the projection of onto the subspace of
that is orthogonal to , and that, thus, contains . Hence

(144)

where follows by the definition of and follows since
by the definition of we have . By (144), we
obtain the inequality shown in the equation at the bottom of the
page, where in the last line we have denoted by
the conditional probability of the codebooks and being
such that given
and . To conclude our bound we now notice
that conditioned on , the random vector

is distributed uniformly on the surface of the cen-
tered -sphere of unit radius that lies in the subspace that
is orthogonal to . Hence

Upper bounding the ratio of Gamma functions by the asymp-
totic series of Lemma D.18, gives for every that

as . By similar arguments it also fol-
lows that as .

To conclude the proof of Lemma D.21, we derive the bound
on . The derivations are similar to those for . First, define
by the projection of onto the subspace of that is
orthogonal to . As in (144) we can show that

(145)

from which, using , we then obtain (146),
shown at the bottom of the page. The desired bound now follows
from noticing that conditioned on and

, the random vector is distributed uniformly on the
surface of the centered -sphere of unit radius that lies in
the subspace that is orthogonal to . Hence, similarly as in the
derivation for

Upper bounding the ratio of Gamma functions by the asymp-
totic series of Lemma D.18, gives for every that

as .

Combining Lemma D.20 and Lemma D.21 with (142) gives
that for every and there exists an
such that for all

2) Proof of Lemma D.7: The proof follows from upper
bounding as a function of . First, note that

(147)

where the second equality holds because the conditional distri-
bution of the codewords conditional on is invariant with
respect to permutations of the indexing of the codewords. The
desired upper bound is now obtained by decomposing into
sub-events , , where

(146)
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By (147) we now have

(148)

where in the third step we have used that
is the same for all because the conditional
distribution of given does not depend on

and where in the last step we have upper
bounded the density of , conditional on ,
by Lemma D.19. Thus, combining (148) with Lemma D.17
gives

Replacing the ratio of the Gamma functions by the asymptotic
series of Lemma D.18 establishes (106).

3) Proof of Lemma D.9: The proof follows by upper
bounding as a function of . To this
end, define

By a symmetry argument, which is similar to the one in the proof
of Lemma D.7, we obtain

(149)
The desired upper bound is now obtained by decomposing
into subevents , where

for and . Hence, by
(149)

(150)

where follows since conditioned on
, the laws of and

do not depend on or
. We now rewrite the probability

as in (151), shown at
the bottom of the page, where in the last step we have used that
the probability term does not depend on . To upper bound the
integral we now upper bound this probability term as shown in
(152) at the bottom of the next page, where in we have used

are such that occurs

(151)



2746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010

Lemma D.19 and in we have used that under distributions
of and that are independent of and uniform
over and respectively, the angles and

are independent. Thus, combining
(152) with (150) gives

(153)

and combining (153) with Lemma D.17 gives

Replacing the ratios of the Gamma-functions by their asymp-
totic series in Lemma D.18 finally establishes (115).

APPENDIX E
PROOF OF THEOREM IV.5

The high-SNR asymptotics for the multiple-access problem
without feedback can be obtained from the necessary con-
dition for the achievability of a distortion pair in
Theorem IV.1, and from the sufficient conditions for the
achievability of a distortion pair deriving from the
vector-quantizer scheme in Theorem IV.4.

By Theorem IV.4 it follows that any distortion pair
satisfying , and

(154)

(155)

(156)

where

(157)

(152)
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is achievable. If

and (158)

then for sufficiently small, (154) and (155) are satisfied. Con-
sequently, for sufficiently small any pair satisfying (156) and
(158) is achievable. We next show that if the pair sat-
isfies (156) and (158), then as . To show this, we
note that if satisfies (156) then

and (159)

Combining (159) with (157) gives that if in addition to (156) the
pair also satisfies (159), then as . Thus,
if satisfies (156) and (158), then

(160)

Now, let be
a distortion pair resulting from an optimal scheme and let

be the shorthand notation for this distortion pair. By
Theorem IV.1, we have that

(161)
If satisfies

and (162)

then for sufficiently small

(163)

by Theorem III.1 and because . From (161) and
(163), we, thus, get that if satisfies (162), then

(164)

Combining (160) with (164) yields Theorem IV.5.

APPENDIX F
PROOF OF THEOREM IV.6

Our analysis of the expected distortion for the superimposed
scheme is based on a genie-aided argument, similar as in the

Fig. 12. Genie-aided decoder.

analysis of the vector-quantizer scheme. This argument is de-
scribed more precisely now.

A) Genie-Aided Scheme: In our genie-aided argument, the
genie assists the decoder. An illustration of this decoder is given
in Fig. 12. In addition to the channel output that is observed
originally, the decoder is now also provided with the transmitted
codeword pair . Based on and , the de-
coder then estimates the source pair and thereby ig-
nores the guess produced in the first step of the orig-
inal decoder. The estimate of this genie-aided decoder is de-
noted by and is given by

(165)

(166)

where the coefficients are as defined in (44). We now show
that under certain rate constraints, the normalized asymptotic
distortion of this genie-aided scheme is the same as for the orig-
inally proposed scheme. The key argument is stated in the fol-
lowing proposition.

Proposition F.1: For every and there
exists an such that for all

(167)

whenever is in the rate region given in (168),
shown at the bottom of the page, where in (167) and de-
pend only on , , , and , and where in the expression
of the terms , and depend only on , , ,
and , and where and , are as given in (45), (46) and
(47) respectively.

Proof: See Appendix F-B.

From Proposition F.1, it now follows easily that the expected
distortion asymptotically achievable by the genie-aided scheme
is the same as the expected distortion achievable by the original
scheme.

(168)
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Corollary F.1: If satisfy (169)–(171), shown at
the bottom of the page, then

Proof: Corollary F.1 follows from Proposition F.1 by first
letting and then and .

It follows by Corollary F.1 that to analyze the distortion
achievable by our scheme it suffices to analyze the genie-aided
scheme. This is done in Appendix F-C.

B) Proof of Proposition F.1: The proof of Proposi-
tion F.1 consists of upper bounding the difference between

and . Since the two esti-
mates and differ only if , the
main step is to upper bound the probability of a decoding error.
This is what we do now.

Let the error event be as defined in (80)–(82) for the
vector-quantizer scheme. The probability of is upper
bounded in the following lemma.

Lemma F.1: For every and , there exists
an such that for all

whenever

Proof: The proof follows from restating the decoding
problem for the superimposed scheme in the form of the de-
coding problem for the vector-quantizer scheme. That is, we
seek to rewrite the channel output in the form

(172)

with an additive noise sequence that satisfies the properties
needed for the analysis of the vector-quantizer scheme. This
representation is obtained by first rewriting the source sequences
as

(173)

(174)

where and are defined in (48), and is defined in (37).
Combining (173) and (174) with the expressions for and
in (40) and with yields the desired form of
(172) with

and with

For the additive noise sequence it can now be verified that
for every and there exists an , such that
for as in (45) and for all we have that

(175)

and that for

(176)

Condition (176) follows since for and , given in (48), for
sufficiently large , we have with high probability that

Conditions (175) and (176) are precisely those needed in the
proof of the achievable rates for the vector-quantizer scheme.
Hence, the upper bound on the probability of a decoding error
in the vector-quantizer scheme given in Lemma D.1 can be
adopted to the superimposed scheme. This yields Lemma F.1.

To ease the upper bounding of the difference between
and we now state three

more lemmas which upper bound different norms and inner
products involving , , and . The first lemma gives an
upper bound on the squared norm of .

Lemma F.2: Let the reconstructions and be as de-
fined in (42) and (165). Then, with probability one

Proof:

(169)

(170)

(171)
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where in the last step we have used that .

For the next two lemmas, we reuse the two error events
and which were defined in (83) and (84) for the proof of the
vector-quantizer scheme. We then have:

Lemma F.3: For every

Proof:

(177)

where in the first equality, the second expectation term equals
zero because by we have and by the norm

is bounded. In we have used (119), and in we have
used Lemma D.10, Lemma F.2, and the fact that conditioned on

we have .

Lemma F.4: For every

Proof:

(178)

where the last inequality follows since conditional on we

have and, therefore, . To upper
bound the RHS of (178), we now upper bound the difference

:

(179)

where in we have used (119), and in the last inequality we
have used that . We now upper bound the
squared norm of on the RHS of (179) in terms of , , ,

and

(180)

where follows from upper bounding all inner products by
(119). Thus, Combining (180) with (179) gives

(181)

and combining (181) with (178) gives
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(182)

It now remains to upper bound the expectations on , and
on the RHS of (182). Since , and are each Gaussian,

their corresponding terms can be bounded in similar ways. We
show here the derivation for

(183)

where in the last step we have used Lemma D.10. For the ex-
pectations on and , we similarly obtain

(184)

and

(185)

Thus, combining (183)–(185) with (182) gives the inequality
shown at the bottom of the page.

Based on Lemma F.3 and Lemma F.4, the proof of Proposi-
tion F.1 now follows easily.

Proof of Proposition F.1:

(186)

where in step we have used Lemma F.3 and Lemma F.4, and
where , , depend only on , , , , and

. Combining (186) with Lemma D.1, Lemma D.2, and Lemma
D.3 gives that for every and , there exists an

such that for all and

where and depend only on , , , , and .

C) Upper Bound on Expected Distortion: We now derive
an upper bound on the achievable distortion for the proposed
vector-quantizer scheme. By Corollary F.1, it suffices to analyze
the genie-aided scheme. Using that

, we have

(187)
Some of the expectation terms are bounded straightforwardly. In
particular, we have ,

, and . For three further
terms we take over the bounds from the analysis of the vector-
quantizer scheme. That is, by Lemma D.14, we have that for
every and and every positive integer

(188)
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where is such that . By
Lemma D.15, we have that for every and
there exists an such that for all

(189)

where is such that , and by
Lemma D.16, we have that for every and
there exists an such that for all

(190)

where is such that . Next, re-
calling that , gives

(191)

where in we have used (188), (189) and (190), and where
is such that . For the remaining

terms in (187), it can be shown, similarly as for (188) and (190),
that for every and there exists an

such that for all

(192)

(193)

(194)

(195)

where , , are such that
. Using (189) and (192)–(195), we now get that for every

and there exists an such that for all

(196)

where is such that . Similarly, it
can be shown that for every and there exists
an such that for all

(197)

where is such that , and finally,
we have that for every and there exists an

such that for all

(198)

where is such that . Thus, com-
bining (188)–(191) and (196)–(198) with (187) gives that for
every and there exists an such
that for all

(199)
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where we have used the shorthand notation for ,
and where in we have used the definition of the coefficients

in (44), and where satisfies .
Now, letting in (199) first and then , and com-
bining the result with Corollary F.1 gives

whenever satisfy (169)–(171).
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