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Abstract—Continuous-time linear state space models
with discrete-time observations enable digital estimation of
continuous-time signals with arbitrary temporal resolution by
means of Kalman filtering/smoothing or Gaussian message
passing in the corresponding factor graph. In this paper, we
demonstrate the application of this approach to time-domain
sensor array processing and to an emulation of the Hilbert
transform.

I. INTRODUCTION

Linear Gaussian state space models and Kalman filter-
ing have long been standard tools in signal processing [1].
Nonetheless, such models are even more versatile than is
commonly appreciated (cf. [2]–[5] for some pertinent exam-
ples). In this paper, we further illustrate this point by two
examples that are almost obvious (with hindsight), but do
not appear to be widely known and are perhaps even new.
First, we point out that continuous-time models with discrete-
time observations can be used for beamforming. Second, we
propose an emulation of the Hilbert transform for such state
space models, which can be used to define and to estimate the
instantaneous amplitude of a signal.

We will use both discrete-time and continuous-time models.
In the former, a real state vector Xk evolves according to

Xk+1 = AXk +BUk (1)
Yk = CXk + Zk (2)

where A is a real square matrix, {Uk} and {Zk} are white
Gaussian noise, and B and C are real vectors or matrices of
appropriate dimensions. In continuous-time models, the state
vector X(t) evolves according to

dX(t) = AX(t) dt+BU(t) dt (3)

where U(t) is white Gaussian noise, and we observe

Yk
4
= CX(tk) + Zk (4)

for discrete moments {tk}. Such a continuous-time model may
be viewed as a special case of a discrete-time model as in (1)
and (2) (with different matrices A and B).

As is well known, MAP/MMSE/LMMSE estimation in such
models can be carried out by Kalman filtering/smoothing [1]
or, equivalently, by Gaussian message passing in the corre-
sponding factor graph [8], [7]. In continuous-time models, all
pertinent signals X(t), Y (t)

4
= CX(t), and even U(t) can be

estimated with arbitrary temporal resolution [6], [7].
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Fig. 1. Factor graph of beamforming as in Section II-A with a state space
model of the source/target and with interleaved observations from two sensors.

II. BEAMFORMING

Assume that some signal of interest s(t) is measured by N
sensors such that sensor n receives this signal with delay τn,
n = 1, . . . , N . Every sensor produces a discrete-time output
signal; the output signal of sensor n will be denoted {Y (n)

k :
k = 1, 2, 3, . . .}. From all these discrete-time signals (from all
sensors), we wish to estimate s(t).

We will consider two different special cases of this general
problem. In both cases, we will assume that the delays
τ1, . . . , τN are known; estimating these delays is beyond the
scope of this paper.

For general background on beamforming, we refer to [9],
[10].

A. State Space Model of Signal with Wide-Band Sensors

In this case, we assume that we have a continuous-time state
space model for s(t) with X(t) as in (3) and s(t) = cX(t)
for some row vector c. The output signal of sensor n at time
t
(n)
k + τn is

Y
(n)
k = s(t

(n)
k ) + Z

(n)
k (5)

where {Z(n)
k } is white Gaussian noise.

We then immediately have a factor graph as in Fig. 1.
The unlabeled boxes in the top row of Fig. 1 represent the
evolution of the state between discrete moments of time,
i.e., conditional densities of the form f

(
x(tk)|x(t`)

)
, and

the unlabeled boxes in the bottom row represent conditional
densities f(y

(n)
k |s(t

(n)
k )) according to (5).

MAP/MMSE/LMMSE estimation of s(t) then amounts to
Gaussian message passing in this factor graph as described in
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s(t)

=

u(1)(t) 6 u(2)(t)6
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Fig. 2. Beamforming as in Section II-B with two sensors and with a state
space model of each sensor. (This figure is not really a factor graph.)

[6], [7]. The complexity of this computation is linear in the
number of sensors N .

By adding a suitable glue factor [2]–[5], the state space
model can be augmented to model pulse-like signals that are
localized at some unknown time. The detection of such pulses
can then profit from the combined information of all sensors.

B. Wide-Band Signal with State Space Models of Sensors

In this case, we assume that we have a continuous-time state
space model as in (3) for every sensor, each with input signal

u(n)(t) = s(t). (6)

We first estimate the input signal u(n)(t) of each sensor
individually, disregarding (6); we compute this estimate un-
der the assumption that u(n)(t) is white Gaussian noise (as
discussed in [6], [7]), thus avoiding any a priori assumptions
about the spectrum of s(t). In a second step, we combine these
estimates to the final estimate ŝ(t), as illustrated in Fig. 2.

Arguing as in the proof of Theorem 1 of [7], we finally
obtain

ŝ(t) = σ2
S

N∑
n=1

bT
←−
W (n)

(−→mX(n)(t) −←−mX(n)(t)

)
(7)

where
←−
W (n) 4

=
(−→
VX(n)(t) +

←−
VX(n)(t)

)−1

, (8)

where the quantities −→mX(n)(t) and
−→
VX(n)(t) denote the mean

vector and the covariance matrix, respectively, of the forward
message in the state space model, ←−mX(n)(t) and

←−
VX(n)(t)

denote the corresponding quantities for the backward message,
and σ2

S is the a priori variance of
∫ 1

0
s(t) dt.

It should be noted that (7) is the correct
MAP/MMSE/LMMSE estimate only for N = 1; for N > 1,
some dependencies are neglected. Nonetheless, (7) is an
obvious and useful estimate, and the complexity of its
computation is linear in N .

III. EMULATING THE HILBERT TRANSFORM

A. Background: the Hilbert Transform

The basic idea of the Hilbert transform [11] may be stated as
follows. For a given real signal/function r(t), a corresponding
imaginary signal is(t) (where s(t) is real and i

4
=
√
−1) is

created according to the following principles:

1) For r(t) = cos(ωt + ϕ), we define s(t) 4
= sin(ωt + ϕ)

and thus r(t) + is(t) = ei(ωt+ϕ).
2) The mapping r(t) 7→ s(t) is linear.

These two principles lead to the following definition of the
Hilbert transform of a signal/function r(t) with a well-defined
Fourier transform. Let fF denote the Fourier transform of f ,
i.e.,

fF(ω)
4
=

∫ ∞
−∞

f(t)e−iωt dt. (9)

Then

sF(ω)
4
=

 −ir
F(ω) for ω > 0

0 for ω = 0
irF(ω) for ω < 0

(10)

and thus

(r + is)F(ω) =

 2rF(ω) for ω > 0
rF(ω) for ω = 0
0 for ω < 0.

(11)

More generally, the Hilbert transform of r(t) is defined by the
convolution of r(t) with 1

πt , which agrees with (10) if r(t)
has a Fourier transform. It should be noted, however, that a
filter with impulse response 1

πt is not stable, and a discrete
step in r(t) creates a pulse of infinite magnitude in s(t).

The Hilbert transform is often used to define the instanta-
neous amplitude (or positive envelope signal)

√
r2(t) + s2(t)

of a signal r(t).
These remarks do not do justice to the rich theory of

the Hilbert transform [11], but they suffice to motivate the
development below.

B. A State-Space Hilbert Transform

We are now going to emulate the idea of the Hilbert
transform (according to the principles stated above) in a state
space setting as follows.

Consider the linear state space model

Xk = AXk−1 + bUk (12)
Yk = cXk (13)

where A is a real square matrix, where b is a real column
vector, and where c is a real row vector. We will assume that all
eigenvalues of A are nonzero (which excludes finite-impulse-
response filters).

First, we consider the special case of (12) where

A = ρ

(
cos Ω − sin Ω
sin Ω cos Ω

)
(14)



with real Ω and ρ > 0. The state-space impulse response of
such a system has the form Xk = (0, 0)T for k < 0 and

Xk = aρk
(

Re
(
ei(Ωk+ϕ)

)
Im
(
ei(Ωk+ϕ)

) ) (15)

for k ≥ 0, where the amplitude a and the phase ϕ are
determined by X0 = b.

For c = (1, 0), we then have the impulse response

Yk =

{
aρk cos(Ωk + ϕ) for k ≥ 0

0 for k < 0, (16)

and we define its state-space Hilbert transform as

Y Hk
4
= (0, 1)Xk (17)

=

{
aρk sin(Ωk + ϕ) for k ≥ 0

0 for k < 0. (18)

It should be noted that (18) is not the Hilbert transform of
(16), but it may be viewed as embodying the same idea for
the state space model at hand. Note that

√
Y 2
k + (Y Hk )2 is

arguably a better instantaneous amplitude (or envelope signal)
than its counterpart from the Hilbert transform.

Everything else then follows naturally. For c = (0, 1), the
impulse response is

Yk =

{
aρk sin(Ωk + ϕ) for k ≥ 0

0 for k < 0, (19)

and we define

Y Hk
4
= (−1, 0)Xk (20)

=

{
−aρk cos(Ωk + ϕ) for k ≥ 0

0 for k < 0. (21)

For general c = (c1, c2), we thus have

Y Hk
4
= (−c2, c1)Xk (22)

by linearity.
At this point, we have defined the state-space Hilbert

transform (22) only for the impulse response of a system with
A as in (14). However, for this same matrix A, (22) holds
for any fixed input signal {Uk} by linearity, and the further
generalization to a stochastic input signal is immediate.

Beyond (14), we first consider the case where A is a real
scalar, for which we define

Y Hk = 0. (23)

Considering the impulse response and arguing as above, we
note again that this definition does not agree with the Hilbert
transform, but it can still be argued that it embodies the same
idea for the particular model at hand. Again,

√
Y 2
k + (Y Hk )2 =

|Yk| is arguably a better instantaneous amplitude than its
counterpart from the Hilbert transform.

We next consider models of the form (12) and (13) where
the real matrix A has the form

A =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · JM

 (24)

where each block J` is either a 2×2 matrix as in (14) or else
a real number. The corresponding generalization of (22) and
(23) is

Y Hk
4
= c


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RM

Xk (25)

with

R`
4
=

(
0 1
−1 0

)
(26)

if J` is a 2 × 2 block and R`
4
= 0 if J` is a scalar. More

generally, we propose the definition (25) for every matrix A
in real Jordan form.

Finally, we consider models of the form (12) and (13) with
arbitrary real matrix A (but still assuming that all eigenvalues
of A are nonzero). Let T be a regular transformation matrix
such that TAT−1 is in real Jordan form. With X̃k

4
= TXk,

we then have

X̃k+1 = TAT−1X̃k + TbUk (27)
Yk = cT−1X̃k. (28)

Applying (25) to this diagonalized model yields

Y Hk = cT−1


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RM

TXk. (29)

C. Remarks

The proposed state-space Hilbert transform (29) does not
agree with the (standard) Hilbert transform [11], but it emu-
lates its basic idea (according to the stated principles) for the
state space model at hand. In particular, it can be used to define
the instantaneous amplitude or envelope signal

√
Y 2
k + (Y Hk )2,

which may be more useful than its counterpart from the Hilbert
transform.

We also note that the proposed state-space Hilbert transform
is easily adapted to continuous-time models as in (3) and (4).

It should further be noted that the observation noise Zk is an
essential part of the signal models (1)–(4). In particular, the
signal {Yk} and its state-space Hilbert transform {Y Hk } are
usually not directly observable, but need to be estimated from
noisy observations by means of Kalman smoothing (forward-
backward Gaussian message passing). In the continuous-time
case, the instantaneous amplitude can thus be estimated with
arbitrary temporal resolution.

Since (29) is purely local in time, the system model (12),
(13) can easily be generalized to a time-varying model. In
particular, the definition also applies to models with additional
initial or final conditions, as well as to models for pulse-like
signals that use glue factors [2]–[4].



IV. CONCLUSION

We have demonstrated the use of linear Gaussian state space
models for beamforming and for a model-based emulation of
the Hilbert transform. The former uses the continuous-time
capability of such models as well as, in one version, input-
signal estimation as in [7]. The latter uses the state space
representation both for its definition and for estimating the
corresponding signals from noisy observations.
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