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Abstract—A new approach to analog-to-digital conversion is
proposed. The analog part of such a converter is a continuous-
time linear system/filter that is subject to digital control; the
digital part infers the signal based only on the digital control.
An exact transfer-function analysis is possible.

I. INTRODUCTION

In this paper, we further develop the new approach to
analog-to-digital conversion that was proposed in [1] and
add an extra twist to it. The approach of [1] is illustrated
in Figure 1. The analog part of such an analog-to-digital
converter (ADC) is a continuous-time linear system (filter)
with an output signal y(t) (or with several such output signals)
which is sampled and quantized. From these samples, the
digital part of the ADC estimates the analog input signal u(t).

A main feature of the approach of [1] is to submit the analog
part of the ADC to digital control (as in Figure 1), which
makes it possibles to use a linear system/filter that is unstable
(when not controlled). However, no explicit example of such
an ADC was given in [1], and no attempt was made to analyze
the behaviour of such a converter.

In this paper, we will show that the signal y(t) in Figure 1
can be omitted; the signal u(t) will then be estimated only
from the digital control bits. The thresholds for these control
bits need not be implemented with precision, and the (im-)
precision of these thresholds does not affect the accuracy of the
estimation of u(t) (provided that the control is successful). We
also present a transfer function analysis of the overall ADC,
which shows, in particular, that the ADC is free of aliasing.

The proposed ADCs resemble sigma-delta ADCs [2] (and
indeed, the analysis of Section II can be adapted to sigma-
delta ADCs). In contrast to sigma-delta ADCs, we have no
stability issues with high-order analog filters (because we are
free to design a suitable control for any filter). The conceptual
relation between our approach and the idea of beta-expansion
converters [3] is discussed in [1]. For general background on
analog-to-digital conversion, we refer to [4].

II. INPUT SIGNAL ESTIMATION: TRANSFER FUNCTIONS

For ease of exposition, we will assume both |u(t)| < 1 and
|y(t)| < 1. Let y̆(t) be the (hypothetical) output signal of the
uncontrolled analog filter and assume that the digital control
is such that

y(t) = y̆(t)− q(t) (1)

for some (presumably very complicated) control signal q(t),
which is (in principle) known to the digital estimator of u(t).

Loosely speaking, the main idea is this: if there is sufficient
gain in the analog filter, we expect |y̆(t)| to be much larger
than |y(t)| so that y̆(t) ≈ q(t) and the “small” signal y(t) can
be replaced by 0 for estimating u(t).

For the following analysis, we assume that the uncontrolled
analog filter is time-invariant and stable with impulse response
g(t), i.e.,

y̆(t) = (u ∗ g)(t) (2)

where “∗” denotes convolution. We propose to estimate u(t)
by

û(t)
4
= (q ∗ h)(t) (3)
= (u ∗ g ∗ h)(t)− (y ∗ h)(t) (4)

for some suitable filter with impulse response h(t). (The actual
computation of û(t) need not follow (3), but can be carried out
as outlined in Section IV.) Note that (3) is a continuous-time
estimate which does not entail any aliasing.

Let G(ω) and H(ω) be the Fourier transforms of g(t) and
h(t), respectively. A natural (with hindsight) choice of the
estimation filter is

H(ω) =
G(ω)

|G(ω)|2 + η2
(5)

where x denotes the complex conjugate of x ∈ C and where
η ∈ R is a design parameter. The decomposition (4) can then
be interpreted as follows. The first term in (4) is the signal
path: the signal u(t) (with |u(t)| < 1) is passed through a
filter with transfer function

G(ω)H(ω) =
|G(ω)|2

|G(ω)|2 + η2
(6)

The second term in (4) is essentially the conversion error: the
(unknown) signal y(t) (with |y(t)| < 1) is passed through a
filter with transfer function H(ω).

The magnitude of the ratio of these transfer functions is

|G(ω)H(ω)|
|H(ω)| = |G(ω)|, (7)

which may be used as a proxy for the frequency-dependent
signal-to-noise ratio of the ADC. The parameter η in (5)
determines the bandwidth of the ADC, which is roughly given
by 0 ≤ ω < ωcrit with ωcrit determined by |G(ωcrit)| = η.
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Fig. 1. Digital-to-analog conversion as in [1]. In the present paper, the signal path via y(t) and ỹk is dropped.
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Fig. 2. Analog part for the example of Section III.
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Fig. 3. Amplitude response |G(2πf)| of the analog filter in dB
(= 20 log10(|G(2πf)|)) for the numerical example in Section III.
Solid: ρ = 0; dashed: ρ = 0.3.
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Fig. 4. Transfer functions for the ADC with analog filter as in Figure 3.
Top: amplitude response |G(2πf)H(2πf)| of ADC. Bottom: amplitude
response |H(2πf)| of error signal y(t) for ρ = 0 (solid) and for
ρ = 0.3 (dashed).



III. AN EXAMPLE

An example of the analog part of such an ADC is shown
in Figure 2. The state variables x1, . . . , xn ∈ R in Figure 2
obey the differential equation

d

dt
x`(t) = −ρx`(t) + βx`−1 − κξ`(t), (8)

` = 1, . . . n, with ρ ≥ 0, with β > 0, with x0(t)
4
= u(t),

and where ξ`(t) ∈ {+1,−1} is a control bit. For ρ > 0, the
integrators are leaky and the (uncontrolled) integrator chain
is stable; for ρ = 0, the (uncontrolled) integrator chain is
unstable.

The switches in Figure 2 represent sample-and-hold circuits
that are controlled by a digital clock (as in Figure 1) with
period T . The threshold elements in Figure 2 produce ξ`(t) ∈
{+1,−1} depending on the sign of x`(kT ) at sampling time
kT immediately preceding t.

We will assume and require both |u(t)| < 1 and

|x`(t)| < 1 (9)

for ` = 1, . . . n, which constrains the admissible values of β,
κ, ρ, and T .

Let y(t)
4
= xn(t) be the (unused) output signal of the analog

filter. The transfer function G(ω) (as defined in Section II) is
then

G(ω) =

(
β

iω + ρ

)n
, (10)

which is plotted in Figure 3 for n = 5, β = 100, and
ρ ∈ {0, 0.3}. The resulting transfer functions (6) and (5)
(with η2 = 3005) are plotted in Figure 4. The quantity (7)
at ω = ωcrit is η ≈ 124 dB. Note that the signal-to-noise ratio
at low frequencies increases for ρ → 0. Indeed, the obvious
choice for a practical implementation is ρ = 0.

IV. LMMSE PERSPECTIVE

The filter (5) may be recognized as the Wiener filter [5], [6]
for estimating a continuous-time zero-mean white Gaussian
noise signal U(t) from

Ỹ (t)
4
= (U ∗ g)(t) + Z(t), (11)

where Z(t) is also zero-mean white Gaussian noise. (We
switch to capital letters U(t), Ỹ (t), Z(t), and X(t) because
these quantities are now stochastic processes.) With this inter-
pretation, we have

η2 = σ2
Z/σ

2
U , (12)

where σ2
U and σ2

Z are the power spectral densities of U and
Z, respectively.

According to (3) and (4), this filter is then applied to the
signal q(t) = y̆(t)− y(t) instead of Ỹ (t).

This Wiener-filter interpretation makes it easy to translate
the estimation filter into a state space form (i.e., into a Kalman-
filter setting) as in [1], [7]. (See [6] for a translation in the
opposite direction.) In the state space setting, the (known)
control signals in Figure 1 can be plugged directly into the
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Fig. 5. A factor graph segment of the state space model for estimating U(t).
“N (m,σ2)” denotes a Gaussian density with mean m and variance σ2. The
representation is exact only in the limit τ → 0.

state space model, which amounts to replacing the observation
(11) by its controlled version Ỹ (t)− q(t), and replacing Ỹ (t)
by q(t) as the observed signal (as above) then amounts to
estimating U(t) from the “observation” 0.

In summary, estimating U(t) as in [1], [7] (with the known
control signals plugged into the space space model) from
the virtual observation y(t) = 0 coincides with the estimate
û(t) from (3) and (5). The relevant factor graph [8] for
this estimation is shown in Figure 5, which refers to the
continuous-time state space model

dX(t) = AX(t) dt+ bU(t), (13)

and
y(t) = cTX(t) (14)

with X(t) ∈ Rn and A ∈ Rn×n. The box labeled “controls” in
Figure 5 represents the (known) control signals. The estimation
can then be carried out by Gaussian message passing in this
factor graph [7], [8]. A more detailed discussion of these
computations will be given elsewhere.

V. CONCLUSION

We have proposed an approach to analog-to-digital conver-
sion that is based entirely on digital control of an analog
filter/system; there is no “signal path” with sampling and
quantization. The digital control itself is (necessarily) based
on sampling and thresholding of analog quantities, but the
details (and the accuracy) of these operations are irrelevant
for the accuracy of the proposed converter.

An exact continuous-time transfer-function analysis of such
converters has been given. Such converters are not subject to
aliasing, and the analog signal can (in principle) be estimated
with arbitrary temporal resolution.
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