
Analog-to-Digital Conversion Using Unstable Filters

Information Theory & Applications Workshop (ITA), UCSD, La Jolla, Feb. 2011

Hans-Andrea Loeliger, Lukas Bolliger, Georg Wilckens, and Jonas Biveroni
Dept. of Information Technology & Electrical Engineering

ETH Zurich, CH-8092 Zurich, Switzerland

Abstract—A new approach to analog-to-digital conversion is
proposed which combines unstable analog filters with digital
Kalman filtering. The proposed approach subsumes sigma-delta
converters, on which it offers a new perspective.

Index Terms—Analog-to-digital conversion, Kalman filter, fac-
tor graphs, Gaussian message passing.

I. INTRODUCTION

Analog-to-digital converters (ADCs) are key components
in all digital electronic devices that process continuous-time
signals [1]. In this paper, we propose a new approach to
analog-to-digital conversion which subsumes and generalizes
sigma-delta ADCs [1], [2].

The proposed ADCs will be called unstable-filter ADCs.
Like most ADCs, the proposed ADCs have both an analog
part and a digital part. The analog part contains an unstable
continuous-time linear filter that is stabilized by discrete-time
digital control signals. This combination may be viewed as
taking the main idea of beta-expansion ADCs [3], [4] to
continuous time.

The digital part of an unstable-filter ADC is essentially
Kalman filtering based on a state-space model of the analog
part, which we will describe in terms of factor graphs and
Gaussian message passing as in [5]. We will also use results
from [6], where the processing of continuous-time signals
using factor graphs is described. For some missing details and
proofs in [6], we refer to the fuller account in [7].

The paper is structured as follows. The proposed ADCs are
presented in Sections II and III: Section II describes the analog
part and Section III describes the digital part. Section IV
addresses spectral shaping. Section V considers a special case
which includes sigma-delta ADCs. The connection to beta-
expansion ADCs is discussed in the appendix. Section VI
concludes the paper.

II. THE ANALOG PART

The analog part of an unstable-filter ADC has the structure
shown in Fig. 1. The continuous-time signal u(t) is fed into
an unstable continuous-time linear system. The system is
controlled (stabilized) by M control bits, which are obtained
from M one-bit ADCs that monitor the system state at discrete
points in time (as provided by a digital clock signal). These
control bits will be denoted by s1,k, . . . , sM,k, where the
second index, k, is the discrete time. The linear system is
also monitored by L additional flash ADCs with discrete-time
output signals y1,k, . . . , yL,k which will be used to digitally
track the state of the system.
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Fig. 1. Analog part (with digital control) of an unstable-filter ADC.
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Fig. 2. A toy example.

A toy example of such a structure is shown in Fig. 2. In
this example, the unstable linear system is a single integrator;
there is only one control bit sk and only one additional flash
ADC that provides the discrete-time digital signal yk. (The
one-bit ADC that provides sk may be omitted since sk can
be extracted from yk.) If the continuous-time signal u(t) is
bounded by

|u(t)| ≤ a < 1, (1)

then the integrator output y(t) is bounded by

|y(t)| < (1 + a)T (2)

where T is the integration time between discrete-time samples.
Note that this toy example looks like the analog part of a
simple sigma-delta ADC.

We note that the unstable system provides an amplification
or “expansion” similar to a sequential ADC. This perspective
is elaborated in the appendix.
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Fig. 3. Factor graph (as in [5], [6]) of the analog system in Fig. 1.

We will use a state space representation of such a system as
follows. Let tk, k ∈ Z, be the discrete points in time when the
quantized outputs y`,k and the control bits sm,k are sampled.
Let x(t) ∈ RN be the state of the system at time t ∈ R and
let ẋ(t) be its derivative with respect to t. Then

ẋ(t) = Akx(t) + bu(t) + dk (3)

for tk ≤ t < tk+1, where Ak is a real N × N matrix and
where b and dk are real column vectors. The matrix Ak and
the vector dk may depend on the control bits s1,k, . . . , sM,k,
but otherwise they are constant. The control bits influence the
system only via their effect on Ak and dk.

In addition, we have the continuous-time scalar outputs

y`(t) = cT` x(t) (4)

with row vectors cT` , ` = 1, . . . L. The digital outputs y`,k are
quantized versions of y`(tk).

In the toy example of Fig. 2, we have N = L = M = 1,
Ak = b = c1 = 1, and

dk =
{
−1 if sk indicates “x(tk) ≥ 0”
+1 if sk indicates “x(tk) < 0”, (5)

where sk is the single control bit.

III. THE DIGITAL PART

The digital part of an unstable-filter ADC estimates the input
signal u(t) from the digital signals y`,k and the control bits
sm,k. We propose to do this by modeling the input signal
u(t) as white Gaussian noise and forming the linear (or rather
affine) minimum mean-squared-error (LMMSE) estimate of
u(t) based on the time-varying system model (3) and (4) and
the observations y`,k. This LMMSE estimate of u(t) may be
obtained by modeling the quantization error

z`,k
4= y`,k − y`(tk) (6)

as white Gaussian noise (with the correct variance) and, based
on this assumption, forming the MAP estimate of u(t), which
in turn may be obtained by means of Gaussian message
passing in the factor graph of the system model (3)–(4), cf.
[5, Section V] and [6].
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The corresponding Forney factor graph (in the style of [5])
is shown in Fig. 3. Since the quantities x(t), z`,k, etc., are
now random variables, we will now denote them by capital
letters, i.e., X(t), Z`,k, etc.; the observations y`,k are still
denoted by lowercase letters. The centerpiece of Fig. 3 is
the factor fk

(
x(tk+1)|x(tk)

)
, which is the conditional density

of X(tk+1) for any fixed X(tk) = x(tk) according to (3),
assuming that the analog input signal U(t) is white Gaussian
noise with variance σ2

U . The other parts of Fig. 3 represent (4),
(6), and the assumption that, for any fixed `, the quantization
error Z`,k is white Gaussian noise.

The function fk
(
x(tk+1)|x(tk)

)
can itself be represented

by the factor graph shown in Fig. 4 with Tk
4= tk+1 − tk,

mk =
∫ Tk

0

eAktdk dt, (7)

and

Vk = σ2
U

∫ Tk

0

eAktbbT(eAkt)T dt. (8)

Since Fig. 3 is a linear Gaussian factor graph, the MAP
estimate of U(t) (for arbitrary discrete times t) may be
obtained by Gaussian message passing in this factor graph as
in [5] and [6]. In particular, from eq. (I.5) of [6], the desired
estimate of u(t), for any t ∈ R, is

û(t) = σ2
Ub

T
(−→
VX(t) +

←−
VX(t)

)−1 (←−mX(t) −−→mX(t)

)
(9)

where −→mX(t) and
−→
VX(t) are the parameters (the mean vector

and the covariance matrix, respectively) of the forward mes-
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Fig. 5. Extended system model with a prefilter before the unstable linear
system (ULS).

sage and where ←−mX(t) and
←−
VX(t) are the parameters of the

backwards message along the edge X(t).

IV. SPECTRAL SHAPING

The LMMSE estimate (9) is marked by an implicit spectral
shaping by the continuous-time system model as pointed out
in [6].

It may sometimes be desirable, however, to control the
spectrum of the estimate more explicitly. This can be achieved
by augmenting the system model of Section III with a separate
stable prefilter as shown in Fig. 5. This prefilter represents an
assumption on the spectrum of the physical input signal Us(t);
it is not physically present in the analog part of the ADC. The
hypothetical input signal Uw(t) in Fig. 5 is white Gaussian
noise. In this case, we produce as digital ADC output the
LMMSE estimate of the filtered signal Us(t) rather than an
estimate of Uw(t).

V. SIGMA-DELTA CONVERTERS AS A SPECIAL CASE

In an important special case, the matrix Ak = A in (3) is
constant and the vector dk in (3) can be written as dk = Dsk
for some constant matrix D and for sk

4= (s1,k, . . . , sM,k)T ∈
{+1,−1}M . Eq. (3) thus becomes

ẋ(t) = Ax(t) + bu(t) +Dsk. (10)

E.g., the toy example of Fig. 2 can be represented in this way
with A = 1 and D = −1.

We then have a time-invariant system model, and the
LMMSE estimate û(t) (or ûs(t) as in Section IV) depends
linearly both on the observations y`,k and on the control bits
sm,k. The digital processing of Section III thus becomes a
time-invariant linear filter, which is the usual digital processing
in sigma-delta converters. In this way, unstable-filter ADCs
subsume sigma-delta ADCs that rely on one-bit flash ADCs.

If we generalize the control bits sm,k in Fig. 1 to multi-level
symbols, all sigma-delta ADCs may be viewed as special cases
of unstable-filter ADCs.

VI. CONCLUSION

We have proposed a new approach to analog-to-digital
conversion. Like most ADCs, the proposed ADCs have both
an analog part and a digital part. The analog part provides
digital evidence about the continuous-time signal u(t) that is

to be converted; the digital part controls the analog part and
infers u(t) from the evidence provided by the analog part.

The analog part of the proposed ADCs contains an unstable
linear filter that is controlled digitally. This combination may
be viewed as taking the main idea of sequential ADCs—
expansion and control—to continuous time (cf. the appendix).

The proposed approach subsumes sigma-delta ADCs, on
which it offers a new perspective with a clear conceptual
separation between control (by means of the control bits sm,k)
and system tracking (based on the quantized observations
y`,k).

In addition to these general features, the proposed approach
offers the following advantages and opportunities:
• Digital estimates of the continuous-time signal u(t) may

be obtained for arbitrary discrete points in time, indepen-
dently of the sampling times tk [6].

• The thresholds for the control bits sm,k (Fig. 1) need not
be accurate.

• Noise in the analog circuitry (Fig. 1) can be handled
mathematically by extending the input signal u(t) to a
vector of white-Gaussian-noise signals whose additional
components model the noise.

• Nonlinearities in the analog filter can be handled by
extended Kalman filtering, i.e., by iterative processing
with a linearized model based on a tentative estimate of
the state trajectory x(t).

APPENDIX

EXPANSION AND CONTROL IN IDEAL SEQUENTIAL ADCS

The ideal sequential ADC converts a real number x,
0 ≤ x < 1, which is given in the analog domain, into a
sequence of bits s1, s2, . . . , sN ∈ {0, 1} by means of the
following recursion: beginning with x1

4= x, we compute

xk+1 = 2xk − sk (11)

where
sk =

{
0, if xk < 1/2
1, if xk ≥ 1/2, (12)

and we obtain

x̂ =
N∑
k=1

sk2−k + 2−(N+1) (13)

as the digital estimate of x.
Note that both (11) and the comparison in (12) need to be

computed with high precision in the analog domain, which is
very costly. In consequence, this seemingly elegant procedure
has little, if any, practical value as an ADC.

The beta-expansion ADC is a generalization of the ideal
sequential ADC where (11) is replaced by

xk+1 = βxk − sk (14)

where β is a real number such that 1 < β ≤ 2 and where

sk =


0, if βxk < 1
0 or 1, if 1 ≤ βxk < 1

β−1

1, if βxk ≥ 1
β−1

(15)



The corresponding digital estimate of x is

x̂ =
N∑
k=1

skβ
−k + β−(N+1). (16)

In the middle case of (15), sk may be chosen freely,
which means that no high-precision comparator is required
to determine sk. However, the computation (14) still needs to
be carried out with high precision in the analog domain. (Beta-
expansion ADCs with low-precision analog computation are
discussed in [8].)

These ideal sequential ADCs use a sequence of “expan-
sions” (multiplication by 2 or by β, respectively) to magnify
x and a sequence of “control actions” (the subtraction of sk)
to confine xk within some practical range. An unstable-filter
ADC also uses these two elements (expansion and control),
but it implements the expansion in continuous time. As with
the beta-expansion ADC, the control bits of an unstable-filter
ADC need not be computed with high precision.
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“Beta expansions: a new approach to digitally corrected A/D conversion,”
Proc. 2002 IEEE Int. Symp. Circuits and Systems (ISCAS), May 26–29,
2002, pp. II-784–II-787.
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