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Abstract—Normal priors with unknown variance (NUV) have
long been known to promote sparsity and to blend well with
parameter learning by expectation maximization (EM). In this
paper, we advocate this approach for linear state space models
for applications such as the estimation of impulsive signals, the
detection of localized events, smoothing with occasional jumps in
the state space, and the detection and removal of outliers.

The actual computations boil down to multivariate-Gaussian
message passing algorithms that are closely related to Kalman
smoothing. We give improved tables of Gaussian-message com-
putations from which such algorithms are easily synthesized, and
we point out two preferred such algorithms.

I. INTRODUCTION

This paper is about two topics:
1) A particular approach to modeling and estimating sparse

parameters based on zero-mean normal priors with un-
known variance (NUV).

2) Multivariate-Gaussian message passing (≈ variations of
Kalman smoothing) in such models.

The main point of the paper is that these two things go very
well together and combine to a versatile toolbox. This is not
entirely new, of course, and the body of related literature is
large. Nonetheless, the specific perspective of this paper has
not, as far as known to these authors, been advocated before.

Concerning the second topic, linear state space models
continue to be an essential tool for a broad variety of appli-
cations, cf. [1]–[4]. The primary algorithms for such models
are variations and generalizations of Kalman filtering and
smoothing, or, equivalently, multivariate-Gaussian message
passing in the corresponding factor graph [5], [6] (or similar
graphical model [1]). A variety of such algorithms can easily
be synthesized from tables of message computations as in [6].
In this paper, we give a new version of these tables with many
improvements over those in [6], and we point out two preferred
such algorithms.

Concerning the first topic, NUV priors (zero-mean normal
priors with unknown variance) originated in Bayesian infer-
ence [7]–[9]. The sparsity-promoting nature of such priors
is the basis of automatic relevance determination (ARD) and
sparse Bayesian learning developed by Neal [9], Tipping [10],
[11], Wipf et al. [12], [13], and others.

The basic properties of NUV priors are illustrated by the
following simple example. Let U be a variable or parameter of
interest, which we model as a zero-mean real scalar Gaussian
random variable with unknown variance s2. Assume that
we observe Y = U + Z, where the noise Z is zero-mean

Gaussian with (known) variance σ2 and independent of U .
The maximum likelihood (ML) estimate of s2 from a single
sample Y = µ ∈ R is easily determined:

ŝ2
4
= argmax

s2

1√
2π(s2 + σ2)

e−µ
2/2(s2+σ2) (1)

= max{0, µ2 − σ2}. (2)

In a second step, for s2 fixed to ŝ2 as in (2), the
MAP/MMSE/LMMSE estimate of U is

û = µ · ŝ2

ŝ2 + σ2
(3)

=

{
µ · µ2−σ2

µ2 if µ2 > σ2

0, otherwise.
(4)

Equations (1)–(4) continue to hold if the scalar observation
Y is generalized to an observation Y ∈ RN such that, for fixed
Y = y, the likelihood function p(y|u) is Gaussian (up to a
scale factor) with mean µ and variance σ2. In fact, this is all
we need to know in this paper about NUV priors per se.

The estimate (4) has some pleasing properties: first, it
promotes sparsity and can thus be used to select features or
relevant parameters; second, it has no a priori preference as
to the scale of U , and large values of U are not scaled down.
Note that the latter property is lost if ML estimation of s2 is
replaced by MAP estimation based on a proper prior on s2.

In this paper, we will stick to basic NUV regularization as
above, with no prior on the unknown variances: variables or
parameters of interest are modeled as independent Gaussian
random variables, each with its own unknown variance that is
estimated (exactly or approximately) by maximum likelihood.
We will advocate the use of NUV regularization in linear
state space models, for applications such as the estimation of
impulsive signals, the detection of localized events, smoothing
with occasional jumps in the state space, and the detection and
removal of outliers.

Concerning the actual computations, estimating the un-
known variances is not substantially different from learning
other parameters of state space models and can be carried
out by expectation maximization (EM) [14]–[17] and other
methods in such a way that the actual computations essentially
amount to Gaussian message passing.

The paper is structured as follows. In Section II, we begin
with a quick look at NUV regularization in a standard linear
model. Estimation of the unknown variances is addressed in
Section III. Factor graphs and state space models are reviewed
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in Sections IV and V, respectively, and NUV regularization in
such models is addressed in Section VI. The new tables of
Gaussian-message computations are given in Appendix A.

II. SUM OF GAUSSIANS AND LEAST SQUARES
WITH NUV REGULARIZATION

We begin with an elementary linear model (a special case of
a relevance vector machine [10]) as follows. For b1, . . . , bK ∈
Rn \ {0}, let

Y =

K∑
k=1

bkUk + Z (5)

where U1, . . . , UK are independent zero-mean real scalar
Gaussian random variables with unknown variances
σ2
1 , . . . , σ

2
K , and where the “noise” Z is Rn-valued zero-mean

Gaussian with covariance matrix σ2I and independent of
U1, . . . , UK . For a given observation Y = y ∈ Rn, we wish
to estimate, first, σ2

1 , . . . , σ
2
K by maximum likelihood, and

second, U1, . . . , UK (with σ2
1 , . . . , σ

2
K fixed).

In the first step, we achieve sparsity: if the ML estimate of
σ2
k is zero, then Uk = 0 is fixed in the second step.
The second step — the estimation of U1, . . . , UK for fixed

σ2
1 , . . . , σ

2
K — is a standard Gaussian estimation problem

where MAP estimation, MMSE estimation, and LMMSE
estimation coincide and amount to minimizing

1

σ2

∥∥∥y − ∑
k∈K+

bkuk

∥∥∥2 + ∑
k∈K+

1

σ2
k

‖uk‖2, (6)

where K+ denotes the set of those indices k ∈ {1, . . . ,K} for
which σ2

k > 0. A closed-form solution of this minimization is

ûk = σ2
kb

T
kW̃y (7)

with

W̃
4
=

(
K∑
k=1

σ2
kbkb

T
k + σ2I

)−1
, (8)

as may be obtained from standard least-squares equations (see
also [11]). An alternative proof will be given in Appendix B,
where we also point out how W̃ can be computed without a
matrix inversion.

In (2) and (4), the estimate is zero if and only if y2 ≤ σ2.
Two different generalizations of this condition to the setting of
this section are given in the following theorem. Let p(y, . . .)
denote the probability density of Y and any other variables
according to (5).

Theorem. Let σ1, . . . , σK be fixed at a local maximum or at
a saddle point of p(y|σ2

1 , . . . , σ
2
K). Then σ2

k = 0 if and only
if (

bTkWk y
)2 ≤ bTkWk bk (9)

with

Wk
4
=

(
K∑
`=1

σ2
` b`b

T
` + σ2I − σ2

kbkb
T
k

)−1
. (10)

Moreover, with W̃ as in (8), we have(
bTkW̃y

)2 ≤ bTkW̃ bTk , (11)

with equality if σ2
k > 0. 2

(The proof will be given in Appendix B.) The matrices Wk

and W̃ are both positive definite. The former depends on k,
but not on σ2

k; the latter depends also on σ2
k, but not on k.

III. VARIANCE ESTIMATION

Following a standard approach, the unknown variances
σ2
1 , . . . , σ

2
K in Section II (and analogous quantities in later

sections) can be estimated by an EM algorithm as follows.
1) Begin with an initial guess of σ2

1 , . . . , σ
2
K .

2) Compute the mean mUk
and the variance σ2

Uk
of the

(Gaussian) posterior distribution p(uk |y, σ2
1 , . . . , σ

2
K)

with σ2
1 , . . . , σ

2
K fixed.

3) Update σ2
1 , . . . , σ

2
K according to (13) below.

4) Repeat steps 2 and 3 until convergence, or until some
pragmatic stopping criterion is met.

5) Optionally update σ2
1 , . . . , σ

2
K according to (16) below.

The standard EM update for the variances is

σ2
k ← E

[
U2
k |σ2

1 , . . . , σ
2
K

]
(12)

= m2
Uk

+ σ2
Uk
. (13)

The required quantities m2
Uk

and σ2
Uk

are given by (85) and
(88), respectively. With this update, basic EM theory guaran-
tees that the likelihood p(y|σ2

1 , . . . , σ
2
K) cannot decrease (and

will normally increase) in step 3 of the algorithm.
The stated EM algorithm is safe, but the convergence can

be slow. The following alternative update rule, due to MacKay
[10], often converges much faster:

σ2
k ←

m2
Uk

1− σ2
Uk
/σ2

k

(14)

However, this alterative update rule comes without guaran-
tees; sometimes, it is too agressive and the algorithm fails
completely.

An individual variance σ2
k can also be estimated by a

maximum-likelihood step as in (2):

σ2
k ← argmax

σ2
k

p(y|σ2
1 , . . . , σ

2
K) (15)

= max
{
0, (←−mUk

)2 −←−σ 2
Uk

}
, (16)

The mean ←−mUk
is given by (104) and the variance ←−σ 2

Uk
is given

by (95). However, for parallel updates (simultaneously for all
k ∈ {1, . . . ,K}, as in step 3 of the algorithm above), the rule
(16) is normally too agressive and fails.

Later on, the same algorithm will be used for estimating
parameters or variables in linear state space models. In this
case, we have no useful analytical expressions for (the analogs
of) mUk

and σ2
Uk

, but these quantities are easily computed by
Gaussian message passing.

IV. ON FACTOR GRAPHS AND
GAUSSIAN MESSAGE PASSING

From now on, we will heavily use factor graphs, both for
reasoning and for describing algorithms. We will use factor
graphs as in [5], [6], where nodes/boxes represent factors and
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Fig. 1. Cycle-free factor graph of (5) with NUV regularization.

edges represent variables. (By contrast, factor graphs as in [18]
have both variable nodes and factor nodes.)

Figure 1, for example, represents the probability density
p(y, z, u1, . . . , uK |σ1, . . . , σK) of the model (5) with auxiliary
variables Ũk

4
= bkUk and Xk

4
= Xk−1+ Ũk with X0

4
= 0. The

nodes labeled “N ” represent zero-mean normal densities with
variance 1; the node labeled “N (0, σ2I)” represents a zero-
mean multivariate normal density with covariance matrix σ2I .
All other nodes in Figure 1 represent deterministic constraints.

For fixed σ1, . . . , σK , Figure 1 is a cycle-free linear Gaus-
sian factor graph and MAP/MMSE/LMMSE estimation (of
any variables) can be carried out by Gaussian message passing,
as described in detail in [6]. Interestingly, in this particular
example, most of the message passing can be carried out sym-
bolically, i.e., as a technique to derive closed-form expressions
for the estimates.

Every message in this paper is a (scalar or multivariate)
Gaussian distribution, up to a scale factor. (Sometimes, we
also allow a degenerate limit of a Gaussian, such as a
“Gaussian” with variance zero or infinity, but we will not
discuss this in detail.) Scale factors can be ignored in this
paper. Messages can thus be parameterized by a mean vector
and a covariance matrix. For example, −→mXk

and
−→
VXk

denote
the mean vector and the covariance matrix, respectively, of
the message traveling forward on the edge Xk in Figure 1,
while←−mXk

and
←−
VXk

denote the mean vector and the covariance
matrix, respectively, of the message traveling backward on the
edge Xk. Alternatively, messages can be parameterized by the
precision matrix

−→
WXk

(= the inverse of the covariance matrix−→
VXk

) and the precision-weighted mean vector
−→
ξXk

4
=
−→
WXk

−→mXk
. (17)

Again, the backward message along the same edge will be
denoted by reversed arrows.

In a directed graphical model without cycles as in Figure 1,
forward messages represent priors while backward messages
represent likelihood functions (up to a scale factor).

In addition, we also work with marginals of the posterior

distribution (i.e., the product of forward message and back-
ward message along the same edge [5], [6]). For example,
mXk

and VXk
denote the posterior mean vector and the

posterior covariance matrix, respectively, of Xk. An important
role in this paper is played by the alternative parameterization
with the dual precision matrix

W̃Xk

4
=
(−→
VXk

+
←−
VXk

)−1
(18)

and the dual mean vector

ξ̃Xk

4
= W̃Xk

(−→mXk
−←−mXk

). (19)

Message computations with all these parameterizations are
given in Tables I–VI in Appendix A, which contain numerous
improvements over the corresponding tables in [6].

V. LINEAR STATE SPACE MODELS

Consider a standard linear state space model with state
Xk ∈ Rn and observation Yk ∈ RL evolving according to

Xk = AXk−1 +BUk (20)
Yk = CXk + Zk (21)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ RL×n, and where Uk (with
values in Rm) and Zk (with values in RL) are independent
zero-mean white Gaussian noise processes. We will usually
assume, first, that L = 1, and second, that the covariance
matrix of Uk is an identity matrix, but these assumptions are
not essential. A cycle-free factor graph of such a model is
shown in Figure 2.

In Section VI, we will vary and augment such models with
NUV priors on various quantities.

Inference in such a state space model amounts to Kalman
filtering and smoothing [1], [2] or, equivalently, to Gaussian
message passing in the factor graph of Figure 2 [5], [6].
(Estimating the input Uk is not usually considered in the
Kalman filter literature, but it is essential for signal processing,
cf. [19], [20].) With the tables in the appendix, it is easy to
put together a large variety of such algorithms. The relative
merits of different such algorithms depend on the particulars
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Fig. 2. One section of the factor graph of the linear state space model
(20) and (21). The whole factor graph consists of many such sections and
optional initial and/or terminal conditions. The dashed block will be varied
in Section VI.

of the problem. However, we find the following two algo-
rithms usually to be the most advantageous, both in terms of
computational complexity and in terms of numerical stability.
If both the input Uk and output Yk are scalar (or can be
decomposed into multiple scalar inputs and outputs), neither
of these two algorithms requires a matrix inversion. The first
of these algorithms is essentially the Modified Bryson–Frazier
(MBF) smoother [21] augmented with input-signal estimation.

MBF Message Passing:
1) Perform forward message passing with −→mXk

and
−→
VXk

using (II.1), (II.2), (III.1), (III.2), (V.1), (V.2).
(This is the standard Kalman filter.)

2) Perform backward message passing with ξ̃Xk
and W̃Xk

,
beginning with ξ̃XN

= 0 and W̃XN
= 0 at the end of

the horizon, using (II.6), (II.7), (III.7), (III.8), and either
(V.4), (V.6), (V.8) or (V.5), (V.7), (V.9).

3) Inputs Uk may then be estimated using (II.6), (II.7),
(III.7), (III.8), (IV.9), (IV.13).

4) The posterior mean mXk
and covariance matrix VXk

of
any state Xk (or of an individual component thereof)
may be obtained from (IV.9) and (IV.13)

5) Outputs Ỹk
4
= CXk may then (very obviously) be esti-

mated using (I.5), (I.6), (III.5), (III.6).
2

In step 2, the initialization with W̃XN
= 0 corresponds to

the typical situation with no a priori information about the
state XN at the end of the horizon. MBF message passing is
especially attractive for input signal estimation (as in step 3
above), without steps 4 and 5.

The second algorithm is an exact dual to MBF message
passing and especially attractive for state estimation and output
signal estimation (i.e., for standard Kalman smoothing), with-

out steps 4 and 5 below. This algorithm—backward recursion
with time-reversed information filter, forward recursion with
marginals (BIFM)—does not seem to be widely known.

BIFM Message Passing:
1) Perform backward message passing with

←−
ξXk

and
←−
WXk

using (I.3), (I.4), (III.3), (III.4), and (VI.1), (VI.2) with
the changes “for the reverse direction” stated in Ta-
ble VI. (This is a time-reversed version of the standard
information filter.)

2) Perform forward message passing with mXk
and VXk

using (I.5), (I.6), (III.5), (III.6), and either (VI.4), (VI.6),
(VI.8) or (VI.5), (VI.7), (VI.9).

3) Outputs Ỹk may then (very obviously) be estimated
using (I.5), (I.6), (III.5), (III.6).

4) The dual means ξ̃Xk
and the dual precision matrices

W̃Xk
may be obtained from (IV.3) and (IV.7).

5) Inputs Uk may then be estimated using (II.6), (II.7),
(III.7), (III.8), (IV.9), (IV.13).

2

VI. SPARSITY BY NUV IN STATE SPACE MODELS

Sparse input signals are easily introduced: simply replace
the normal prior on Uk in (20) and in Figure 2 by a NUV
prior, as shown in Figure 3. This approach was used in [22]
to estimate the input signal U1, U2, . . . itself.

However, we may also be interested in the clean output
signal Ỹk = CXk. For example, consider the problem of
approximating some given signal y1, y2, . . . ∈ R by constant
segments, as illustrated in Figure 8. The constant segments
can be represented by the simplest possible state space model
with n = 1, A = C = (1), and no input. For the occasional
jumps between the constant segments, we use a sparse input
signal U1, U2, . . . with a NUV prior (and with B = b = (1))
as in Figure 3. The sparsity level—i.e., the number of constant
segments—can be controlled by the assumed observation noise
σ2.

The sparse scalar input signal of Figure 3 can be generalized
in several different directions. A first obvious generalization
is to combine a primary white-noise input with a secondary
sparse input as shown in Figure 4. For example, the constant
segments in Figure 8 are thus generalized to random-walk
segments as in Figure 9.

Another generalization of Figure 8 is shown in Figure 10,
where the constant-level segments are replaced by straight-line
segments, which can be represented by a state space model of
order n = 2. The corresponding input block, with two separate
sparse scalar input signals, is shown in Figure 5; the first
input, Uk,1, affects the magnitude and the second input, Uk,2,
affects the slope of the line model. The further generalization
to polynomial segments is obvious. Continuity can be enforced
by omitting the input Uk,1, and continuity of derivatives can
be enforced likewise.

More generally, Figure 5 (generalized to an arbitrary number
of sparse scalar input signals) can be used to allow occasional
jumps in individual components of the state of arbitrary state
space models.
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Fig. 7. Alternative output block for scalar signal with outliers.
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Fig. 8. Estimating (or fitting) a piecewise constant signal.
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Fig. 9. Estimating a random walk with occasional jumps.
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Fig. 10. Approximation with straight-line segments.
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Fig. 11. Outlier removal according to Figure 7.



In all these examples, the parameters σ2
k (or σ2

k,`) can be
learned as described in Section III, and the required quantities
mUk

and σ2
Uk

(or mUk,`
and σ2

Uk,`
, respectively) can be

computed by message passing in the pertinent factor graph
as described in Section V.

A more substantial generalization of Figure 3 is shown in
Figure 6, with σk of Figure 3 generalized to bk ∈ Rn. We
mention without proof that this generalized NUV prior on
Ũk,1

4
= bkUk,1 still promotes sparsity and can be learned

by EM (provided that BBT has full rank) [23]. This input
model allows quite general events to happen, each with its
own signature bk. The estimated nonzero vectors b̂1, b̂2, . . .
may be viewed as features of the given signal y1, y2, . . . that
can be used for further analysis.

Finally, we turn to the output block in Figure 2. A simple
and effective method to detect and to remove outliers from the
scalar output signal of a state space model is to replace (21)
with

Yk = CXk + Zk + Z̃k (22)

with sparse Z̃k, as shown in Figure 7 [24]. Again, the
parameters σk can be estimated by EM essentially as described
in Section III, and the required quantities mZ̃k

and σ2
Z̃k

can be
computed by message passing as described in Section V. An
example of this method is shown in Figure 11 for some state
space model of order n = 4 with details that are irrelevant for
this paper.

VII. CONCLUSION

We have given improved tables of Gaussian-message com-
putations for estimation in linear state space models, and we
have pointed out two preferred message passing algorithms:
the first algorithm is essentially the Modified Bryson-Frazier
smoother, the second algorithm is a dual of it. In addition, we
have advocated NUV priors (together with EM algorithms)
from sparse Bayesian learning for introducing sparsity into
linear state space models and outlined several applications.

In this paper, all factor graphs were cycle-free so that
Gaussian message passing yields exact marginals. The use
of NUV regularization in factor graphs with cycles, and its
relative merits in comparison with, e.g., AMP [25], remains
to be investigated.

APPENDIX A
TABULATED GAUSSIAN-MESSAGE COMPUTATIONS

Tables I–VI are improved versions of the corresponding
tables in [6]. The notation for the different parameterizations
of the messages was defined in Section IV. The main novelties
of this new version are the following:

1) New notation
−→
ξ
4
=
−→
W−→m and

←−
ξ
4
=
←−
W←−m.

2) Introduction of the dual marginal ξ̃ (IV.1) with pertinent
new expressions in Tables I–V, and new expressions
with the dual precision matrix, especially (V.4)–(V.9).
These results (from [20]) are used both in Appendix B
and in the two preferred algorithms in Section V.

TABLE I
GAUSSIAN MESSAGE PASSING THROUGH AN EQUALITY-CONSTRAINT.

-X
=

?
Y

-Z

Constraint X = Y = Z,
expressed by factor δ(z − x) δ(y − x)

−→
ξZ =

−→
ξX +

←−
ξY (I.1)

−→
WZ =

−→
WX +

←−
WY (I.2)

←−
ξX =

←−
ξY +

←−
ξZ (I.3)

←−
WX =

←−
WY +

←−
WZ (I.4)

mX = mY = mZ (I.5)
VX = VY = VZ (I.6)

ξ̃X = ξ̃Y + ξ̃Z (I.7)

TABLE II
GAUSSIAN MESSAGE PASSING THROUGH AN ADDER NODE.

-X
+

6
Y

-Z

Constraint Z = X + Y ,
expressed by factor δ(z − (x+ y))

−→mZ = −→mX +−→mY (II.1)
−→
VZ =

−→
VX +

−→
VY (II.2)

←−mX = ←−mZ −−→mY (II.3)
←−
VX =

←−
VZ +

−→
VY (II.4)

mZ = mX +mY (II.5)

ξ̃X = ξ̃Y = ξ̃Z (II.6)
W̃X = W̃Y = W̃Z (II.7)

3) New expressions (VI.4)–(VI.9) for the marginals, which
are essential for the BIFM Kalman smoother in Sec-
tion V.

The proofs (below) are given only for the new expressions;
for the other proofs, we refer to [6].

Proof of (I.7): Using (IV.3), (I.3), (I.4), and (I.5), we have

ξ̃X =
←−
WXmX −

←−
ξX (23)



TABLE III
GAUSSIAN MESSAGE PASSING THROUGH A MATRIX MULTIPLIER NODE

WITH ARBITRARY REAL MATRIX A.

-X
A -Y

Constraint Y = AX , expressed by factor δ(y −Ax)

−→mY = A−→mX (III.1)
−→
VY = A

−→
VXA

T (III.2)

←−
ξX = AT←−ξY (III.3)
←−
WX = AT←−WYA (III.4)

mY = AmX (III.5)
VY = AVXA

T (III.6)

ξ̃X = ATξ̃Y (III.7)
W̃X = ATW̃YA (III.8)

TABLE IV
GAUSSIAN SINGLE-EDGE MARGINALS (m, V ) AND THEIR DUALS (ξ̃, W̃ ).

ξ̃X
4
= W̃X(−→mX −←−mX) (IV.1)

=
−→
ξX −

−→
WXmX (IV.2)

=
←−
WXmX −

←−
ξX (IV.3)

W̃X
4
= (
−→
VX +

←−
VX)−1 (IV.4)

=
−→
WXVX

←−
WX (IV.5)

=
−→
WX −

−→
WXVX

−→
WX (IV.6)

=
←−
WX −

←−
WXVX

←−
WX (IV.7)

mX = VX(
−→
ξX +

←−
ξX) (IV.8)

= −→mX −
−→
VX ξ̃X (IV.9)

= ←−mX +
←−
VX ξ̃X (IV.10)

VX = (
−→
WX +

←−
WX)−1 (IV.11)

=
−→
VXW̃X

←−
VX (IV.12)

=
−→
VX −

−→
VXW̃X

−→
VX (IV.13)

=
←−
VX −

←−
VXW̃X

←−
VX (IV.14)

=
(←−
WY +

←−
WZ

)
mX −

(←−
ξY +

←−
ξZ
)

(24)

=
(←−
WYmY −

←−
ξY
)
+
(←−
WZmZ −

←−
ξZ
)

(25)

= ξ̃Y + ξ̃Z . (26)
2

Proof of (II.6): We first note

−→mX −←−mX = −→mX +−→mY −←−mZ (27)
= −→mZ −←−mZ , (28)

TABLE V
GAUSSIAN MESSAGE PASSING THROUGH AN OBSERVATION BLOCK.

-X
= -Z

?
A

?
Y

−→mZ = −→mX +
−→
VXA

TG (←−mY −A−→mX) (V.1)
−→
VZ =

−→
VX −

−→
VXA

TGA
−→
VX (V.2)

with G 4
=
(←−
VY +A

−→
VXA

T
)−1

(V.3)

ξ̃X = FTξ̃Z +AT←−WY

(
A−→mZ −←−mY

)
(V.4)

= FTξ̃Z +ATG (A−→mX −←−mY ) (V.5)

W̃X = FTW̃ZF +AT←−WYAF (V.6)
= FTW̃ZF +ATGA (V.7)

with F 4
= I −−→VZAT←−WYA (V.8)

= I −−→VXATGA (V.9)

For the reverse direction, replace −→mZ by ←−mX ,
−→
VZ by

←−
VX ,

−→mX by ←−mZ ,
−→
VX by

←−
VZ , exchange ξ̃X and ξ̃Z , exchange

W̃X and W̃Z , and change “+” to “−” in (V.4) and (V.5).

and (II.6) follows from (II.7). 2

Proof of (III.7): Using [6, eq. (III.9)], we have

ξ̃X = W̃X(−→mX −←−mX) (29)
= W̃X

−→mX − W̃X
←−mX (30)

= ATW̃YA
−→mX −ATW̃Y

←−mY (31)
= ATW̃Y (

−→mY −←−mY ). (32)
2

Proof of (IV.9) and (IV.2): Using (IV.13) and (IV.12), we
have

mX = VX
−→
ξX + VX

←−
ξX (33)

=
(−→
VX −

−→
VXW̃X

−→
VX

)−→
ξX +

−→
VXW̃X

←−
VX
←−
ξX (34)

= −→mX −
−→
VXW̃X

(−→mX −←−mX) (35)

= −→mX −
−→
VX ξ̃X , (36)

and (IV.2) follows by multiplication with
−→
WX . 2

Proof of (V.9): From (I.2) and (III.4), we have
−→
WZ =

−→
WX +AT←−WYA, (37)

from which we obtain
−→
WX =

−→
WZ −AT←−WYA (38)

=
−→
WZF. (39)



TABLE VI
GAUSSIAN MESSAGE PASSING THROUGH AN INPUT BLOCK.

-X
+ -Z

6

A

6
Y

−→
ξZ =

−→
ξX +

−→
WXAH(

−→
ξY −AT−→ξX) (VI.1)

−→
WZ =

−→
WX −

−→
WXAHA

T−→WX (VI.2)

with H 4
=
(−→
WY +AT−→WXA

)−1
(VI.3)

mX = F̃TmZ +A
−→
VY
(
AT−→ξZ −

−→
ξY
)

(VI.4)

= F̃TmZ +AH
(
AT−→ξX −

−→
ξY
)

(VI.5)

VX = F̃TVZ F̃ +A
−→
VYA

TF̃ (VI.6)
= F̃TVZ F̃ +AHAT (VI.7)

with F̃ 4
= I −−→WZA

−→
VYA

T (VI.8)

= I −−→WXAHA
T (VI.9)

For the reverse direction, replace
−→
ξZ by

←−
ξX ,
−→
WZ by

←−
WX ,−→

ξX by
←−
ξZ ,
−→
WX by

←−
WZ , exchange mX and mZ , exchange

VX and VZ , and replace
−→
ξY by −−→ξY .

Thus
−→
VZ
−→
WX = F and

−→
VZ = F

−→
VX . (40)

On the other hand, we have

−→
VZ =

(
I −−→VXATGA

)−→
VX (41)

from (V.2), and F = I −−→VXATGA follows. 2

Proof of (V.4): Using (I.7), (III.7), and (IV.3), we have

ξ̃X = ξ̃Z +ATξ̃Y (42)

= ξ̃Z +AT
(←−
WYmY −

←−
WY
←−mY
)
. (43)

Using (III.5) and (IV.9), we further have

mY = AmZ (44)

= A
(−→mZ −−→VZ ξ̃Z), (45)

and inserting (45) into (43) yields (V.4). 2

Proof of (V.5): We begin with mX = mZ . Using (IV.9), we
have

−→mX −
−→
VX ξ̃X = −→mZ −

−→
VZ ξ̃Z (46)

= −→mX +
−→
VXA

TG(←−mY −A−→mX)−−→VXFTξ̃Z , (47)

where the second step uses (V.1) and
−→
VZ = F

−→
VX = (F

−→
VX)T

from (40). Subtracting −→mX and multiplying by
−→
V −1X yields

(V.5). 2

Proof of (V.7): We begin with VX = VZ . Using (IV.13), we
have

−→
VX −

−→
VXW̃X

−→
VX =

−→
VZ −

−→
VZW̃Z

−→
VZ (48)

=
−→
VX −

−→
VXA

TGA
−→
VX −

−→
VXF

TW̃ZF
−→
VX , (49)

where the second step uses (V.2) and (40). Subtracting
−→
VX

and multiplying by
−→
V −1X yields (V.7). 2

Proof of (V.6): As we have already established (V.7), we only
need to prove

ATGA = AT←−WYAF. (50)

Using (V.9), we have

ATGA =
−→
WX(I − F ) (51)

=
−→
WX
−→
VZA

T←−WYA (52)

= AT←−WYA
−→
VZ
−→
WX , (53)

where the last step follows from ATGA = (ATGA)T. Insert-
ing (39) then yields (50). 2

Proof of (VI.9): From (II.2) and (III.2), we have
−→
VZ =

−→
VX +A

−→
VYA

T, (54)

from which we obtain
−→
VX =

−→
VZ −A

−→
VYA

T (55)

=
−→
VZ F̃ . (56)

Thus
−→
WZ
−→
VX = F̃ and

−→
WZ = F̃

−→
WX . (57)

On the other hand, we have
−→
WZ =

(
I −−→WXAHA

T
)−→
WX (58)

from (VI.2), and F̃ = I −−→WXAHA
T follows. 2

Proof of (VI.4): Using (II.3), (III.5), and (IV.9), we have

mX = mZ −AmY (59)

= mZ −A
(−→mY −−→VY ξ̃Y ). (60)

Using (II.6), (III.7), and (IV.2), we further have

ξ̃Y = ATξ̃Z (61)

= AT
(−→
ξZ −

−→
WZmZ

)
, (62)

and inserting (62) into (60) yields (VI.4). 2

Proof of (VI.5): We begin with ξ̃X = ξ̃Z from (II.6). Using
(IV.2), we have
−→
ξX −

−→
WXmX =

−→
ξZ −

−→
WZmZ (63)

=
−→
ξX +

−→
WXAH(

−→
ξY −AT−→ξX)−−→WX F̃

TmZ , (64)



where the second step uses (VI.1) and
−→
WZ = (F̃

−→
WX)T from

(57). Subtracting
−→
ξX and multiplying by

−→
VX yields (VI.5). 2

Proof of (VI.7): We begin with W̃X = W̃Z from (II.7).
Using (IV.6), we have
−→
WX −

−→
WXVX

−→
WX =

−→
WZ −

−→
WZVZ

−→
WZ (65)

=
−→
WX −

−→
WXAHA

T−→WX −
−→
WX F̃

TVZ F̃
−→
WX , (66)

where the second step uses (VI.2) and (57). Subtracting
−→
WX

and multiplying by
−→
VX yields (VI.7). 2

Proof of (VI.6): Since we have already established (VI.7),
we only need to prove

AHAT = A
−→
VYA

TF̃ . (67)

Using (VI.9), we have

AHAT =
−→
VX(I − F̃ ) (68)

=
−→
VX
−→
WZA

−→
VYA

T (69)

= A
−→
VYA

T−→WZ
−→
VX , (70)

where the last step follows from AHAT = (AHAT)T.
Inserting (57) then yields (67). 2

APPENDIX B
MESSAGE PASSING IN FIGURE 1 AND PROOFS

In this appendix, we demonstrate how all the quantities
pertaining to computations mentioned in Sections II and III,
as well as the proof of the theorem in Section II, are obtained
by symbolic message passing using the tables in Appendix A.
The key ideas of this section are from [6, Section V.C].

Throughout this section, σ1, . . . , σK are fixed.

A. Key Quantities ξ̃Xk
and W̃Xk

The pivotal quantities of this section are the dual mean
vector ξ̃Ũk

and the dual precision matrix W̃Ũk
. Concerning

the former, we have

ξ̃Ũk
= ξ̃Xk

= ξ̃X0
= ξ̃Y (71)

= −W̃Y y, (72)

for k = 1, . . . ,K, where (71) follows from (II.6), and (72)
follows from

ξ̃Y = W̃Y (
−→mY −←−mY ) (73)

= −W̃Y y (74)

since −→mY = 0.
Concerning W̃Xk

, we have

W̃Ũk
= W̃Xk

= W̃X0
= W̃Y (75)

= W̃ as defined in (8) (76)

for k = 1, . . . ,K, where (75) follows from (II.7), and (76)
follows from

W̃Y =
(−→
VY +

←−
VY
)−1

(77)

with
←−
VY = 0 and

−→
VY =

K∑
k=1

σ2
kbkb

T
k + σ2I. (78)

The matrix W̃ can be computed without matrix inversion
as follows. First, we note that

W̃X0
=
(−→
VX0

+
←−
VX0

)−1
(79)

=
(
0 +
←−
VX0

)−1
(80)

=
←−
WX0

. (81)

Second, using (VI.2), the matrix
←−
WX0

can be computed by
the backward recursion
←−
WXk−1

=
←−
WXk

− (
←−
WXk

bk)(σ
−2
k + bTk

←−
WXk

bk)
−1(
←−
WXk

bk)
T

(82)
starting from

←−
WXK

= σ−2I . The complexity of this alter-
native computation of W̃ is O(n2K); by contrast, the direct
computation of (8) (using Gauss-Jordan elimination for the
matrix inversion) has complexity O(n2K + n3).

B. Posterior Distribution and MAP estimate of Uk
For fixed σ1, . . . , σK , the MAP estimate of Uk is the mean

mUk
of the (Gaussian) posterior of Uk. From (IV.9) and (III.7),

we have

mUk
= −→mUk

−−→VUk
ξ̃Uk

(83)
= 0− σ2

kb
T
k ξ̃Ũk

, (84)

and (72) yields
mUk

= σ2
kb

T
kW̃y, (85)

which proves (7).
For re-estimating the variance σ2

k as in Section III, we also
need the variance σ2

Uk
of the posterior distribution of Uk. From

(IV.13) and (III.8), we have

σ2
Uk

=
−→
VUk
−−→VUk

W̃Uk

−→
VUk

(86)

= σ2
k − σ2

kb
T
kW̃Ũk

bkσ
2
k, (87)

and (76) yields

σ2
Uk

= σ2
k − σ2

kb
T
kW̃ bkσ

2
k. (88)

C. Likelihood Function and Backward Message of Uk
We now consider the backward message along the edge

Uk, which is the likelihood function p(y|uk, σ1, . . . , σK), for
fixed y and fixed σ1, . . . , σK , up to a scale factor. For use in
Section B-D below, we give two different expressions both for
the mean ←−mUk

and for the variance ←−σ 2
Uk

of this message.
As to the latter, we have

←−
WUk

= bTk
←−
WŨk

bk (89)

from (III.4), and thus

←−σ 2
Uk

=
(
bTk
←−
WŨk

bk
)−1

. (90)



We also note (from (II.4)) that
←−
WŨk

=
(−→
VXk−1

+
←−
VXk

)−1
(91)

=Wk as defined in (10). (92)

Alternatively, we have

←−σ 2
Uk

= W̃−1Uk
−−→VUk

(93)

= (bTkW̃Ũk
bk)
−1 − σ2

k (94)

= (bTkW̃ bk)
−1 − σ2

k, (95)

where we used (IV.4), (III.8), and (76).
As to the mean ←−mUk

, we have
←−
ξUk

= bTk
←−
ξ Ũk

(96)

= bTk
←−
WŨk

←−mŨk
(97)

= bTk
←−
WŨk

(←−mXk
−−→mXk−1

) (98)

= bTk
←−
WŨk

y (99)

from (III.3) and (II.3), and thus

←−mUk
= ←−σ 2

Uk

←−
ξUk

(100)

=
(
bTk
←−
WŨk

bk
)−1

bTk
←−
WŨk

y (101)

from (90). Alternatively, we have
←−mUk

= −→mUk
− W̃−1Uk

ξ̃Uk
(102)

= 0− (bTkW̃Ũk
bk)
−1bTk ξ̃Ũk

(103)

= (bTkW̃ bk)
−1bTkW̃y, (104)

where we used (IV.1), (III.8), (III.7), (72), and (76).

D. Proof of the Theorem in Section II

Let σ1, . . . , σK be fixed at a local maximum or at a saddle
point of the likelihood p(y|σ1, . . . , σK). Then

σk = argmax
σk

p(y|σ1, . . . , σK) (105)

and
σ2
k = max{0,←−m2

Uk
−←−σ 2

Uk
} (106)

from (2). From (101) and (90), we have

←−m2
Uk
−←−σ 2

Uk
=

(
bTk
←−
WŨk

y
)2(

bTk
←−
WŨk

bk
)2 − 1

bTk
←−
WŨk

bk
(107)

With (92), it is obvious that ←−m2
Uk
−←−σ 2

Uk
≤ 0 if and only if (9)

holds.
As to (11), we have

←−m2
Uk
−←−σ 2

Uk
=

(
bTkW̃y

)2(
bTkW̃ bk

)2 − 1

bTkW̃ bk
+ σ2

k (108)

from (104) and (95). We now distinguish two cases. If σ2
k > 0,

(106) and (108) together imply(
bTkW̃y

)2(
bTkW̃ bk

)2 − 1

bTkW̃ bk
= 0. (109)

On the other hand, if σ2
k = 0, (106) and (108) imply(

bTkW̃y
)2(

bTkW̃ bk
)2 − 1

bTkW̃ bk
≤ 0. (110)

Combining these two cases yields (11).
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