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Abstract—We propose a new model of pulse-based computa-
tion based on inner-product filters with linear-system kernels.
Each inner-product filter looks for some pulse pattern in its
multichannel-input signal by projecting the input signal into
a one-dimensional subspace; an output pulse is generated if
this projection exceeds some threshold. A layered network of
such filters can be used for self-synchronizing multiscale signal
parsing. Such a network can be built with computational units
that are biologically plausible neurons. The feasibility of the pro-
posed approach is demonstrated with a network that understands
Morse code.

I. INTRODUCTION

Consider pattern detection in a (possibly multichannel) time
signal by a network as shown in Figure 1. Each “filter” in
Figure 1 is looking for some feature in its input signals and
produces as output some sort of score signal, which may in
turn be analyzed by subsequent “filters”.

The investigation of such an architecture was begun in [1]
(following a suggestion in [2]). As pointed out in [1], the
format of the intermediate score signals is crucial, and a key
insight in [1] is the observation that robust functionality can be
achieved with pulse signals—signals consisting of unit pulses
separated by some guard space—and not easily otherwise.

In this paper, we develop this approach further. We will
focus on pulse-domain processing, i.e., processing on the right
of the dashed line in Figure 1. Each feature detection filter will
be looking for some multichannel pulse pattern with specific
relative arrival times of the pulses in the different channels as
illustrated in Figure 2.

We will not discuss the first layer in Figure 1, which extracts
pulse-domain feature signals from the input signal(s) of the
network. For these first-layer filters, we refer to the discussion
of feature detection filters in [1] and [3].

We will show that the pulse domain allows us to use
especially simple feature detection filters, which we call inner-
product filters and which amount to projecting the signal to a
one-dimensional subspace. We will also show how such filters
can be designed to detect a given pulse pattern.

As pointed out in [1], networks of such feature detection
filters are self-timed and tolerate small variations in the
timing of the input pulses. In fact, such networks could be
implemented by clockless continuous-time analog circuits.

In [1], the feasibility of the proposed approach was demon-
strated with a network that “understands” Morse code. This
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Fig. 1. Network of feature detection filters with pulse-domain processing
beyond the first layer.

network has now been redesigned to work with the simpler
inner-product filters of this paper. The new filters allow much
more design, and require less experimentation, than the filters
used in [1].

Finally, we observe that such inner-product filters can be
implemented with biologically plausible neurons. We thus
propose a new model of neural information processing where
each neuron targets some particular temporal pulse pattern as
in Figure 2.

For general background on neural networks with spiking
neurons (both artificial and real), see [4]–[7].

This paper does not address learning such networks from
data, which is an obvious topic of future research. Also, in this
paper, we consider only hierarchical networks (as suggested
by Figure 1) that have no loops.

The paper is structured as follows. Section II introduces a
new class of pulse-domain feature detection filters. The design
of such a filter for a particular pulse pattern is addressed in
Section III. An example of a complete network is outlined
in Section IV. The implementation of such feature detection
filters using neuron models from biology is addressed in
Section V.
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Fig. 2. A four-channel pulse pattern (inside the box), a possible target for an
inner-product filter.

II. PULSE-DOMAIN INNER-PRODUCT FILTERS

A. General Form

Let y1, y2, . . . ∈ {0, 1}L be the (pulse-domain) multichannel
input signal of some feature detection filter. The main ingredi-
ent of feature detection filters as in [1] and [3] is a model signal
ỹ1, ỹ2, . . . ∈ RL originating from an autonomous deterministic
state space model

ỹk = CAk−nxn (1)

with A ∈ Rm×m, C ∈ RL×m, and xn ∈ Rm. The matrix A
is assumed to be regular, which means that the time-n state
xn completely determines ỹk for all k.

In this paper, we will exclusively use feature detection filters
that compute the inner-product signal 〈y, ỹ〉1 , 〈y, ỹ〉2 , . . . ∈ R
defined as

〈y, ỹ〉n
4
=

n∑
k=1

yTk ỹk (2)

for some fixed xn = s. The model signal ỹ thus serves as
a weighting kernel for the pulses in y. We will assume that
all eigenvalues of A are strictly larger than 1, which implies
that the sum (2) converges for n→∞, and we are primarily
interested in the stationary case n � 1 where border effects
can be neglected.

The feature detection filter produces a unit pulse at time
n if 〈y, ỹ〉n exceeds some threshold, whereupon any further
pulses are suppressed for the duration of some guard interval.

The inner-product signal 〈y, ỹ〉n is not actually computed
using (2), but (more efficiently) by means of the quantity

ξTn
4
=

n∑
k=1

yTkCA
k−n. (3)

We then have the recursion

ξn = (A−1)Tξn−1 + CTyn (4)

and
〈y, ỹ〉n = sTξn. (5)

Using (4) and (5), the inner-product signal is computed by a
linear filter in state space form.

Such inner-product filters may be viewed as a (substantial)
simplification of filters as in [1, eq. (20)]; this simplification is
not possible for general signals, but it works fine in the pulse
domain.

B. Two Examples

The following example is similar to, but improves upon,
Example 3 of [1].

Example 1 Suppose we want to detect the particular pulse pattern
shown in Figure 3, where three pulses arrive at different times in
three different channels. The weighting signal ỹ of a suitable inner-
product filter is shown in Figure 4. This weighting signal may be
obtained by

A = λ

(
cos(Ω) − sin(Ω)
sin(Ω) cos(Ω)

)
(6)

with Ω = 2π/400, λ = 1.0025, s = (1, 0)T, and with a matrix C as
described in Section III-A. The corresponding inner-product signal is
shown in Figure 5 together with a suitable threshold for triggering
the output pulse. 2

The next example shows that the matrix A need not have
complex eigenvalues.

Example 2 Suppose we want to detect the same pulse pattern
(Figure 3) as in Example 1, but now with the matrix

A =

 λ1 0 0
0 λ2 0
0 0 λ3

 (7)

with eigenvalues λ1 = 1.005, λ2 = 1.012, and λ3 = 1.015. The
matrix C has the form

C =

 c1,1 c1,2 0
0 c2,2 c2,3
0 0 c3,3

 (8)

with nonzero entries as described in Section III-B. The resulting
weighting signal ỹ is shown in Figure 6 and the corresponding inner-
product signal is shown in Figure 7. 2

C. Remarks

1) The proper functioning of such filters requires the pulses
in each channel to be sufficiently separated.

2) We chose to describe inner-product filters in discrete
time, but the translation to continuous time is obvious.
This applies, in particular, to both examples in Sec-
tion II-B. Moreover, such filters can, in principle, be
implemented by analog circuits.

3) It is obvious from Figures 4 and 6 that such filters can
tolerate some variation of the pulse positions around
their nominal positions.

4) Simple filters as in Examples 1 and 2 can easily cope
with high-dimensional input signals, i.e., L� 1.

5) For L � 1, due to the linearity of (4) and (5), such
a filter can generically cope both with erasures (i.e.,
missing pulses) and with some random extra pulses in
its input signals.
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Fig. 3. Three-channel pulse pattern of Examples 1 and 2.
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Fig. 4. Example 1: the weighting signal ỹ (for n = 400) in all three channels.

Inner-product signal of clean pulse signal:
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Fig. 5. Example 1: the inner-product signal (2) (for n = 1, . . . , 500) for the
filter of Figure 4 when fed with the clean signal of Figure 3. The dashed line
is a suitable threshold for triggering the output pulse.
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Fig. 6. Example 2: the weighting signal ỹ (for n = 400) in all three channels.
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Fig. 7. Example 2: the inner-product signal (2) (for n = 1, . . . , 500) for the
filter of Figure 6 when fed with the clean signal of Figure 3. The dashed line
is a suitable threshold for triggering the output pulse.

III. FILTERS FOR MONOMIAL PULSE PATTERNS

A multichannel signal will be called monomial if it is zero
everywhere except for (at most) one unit pulse in every chan-
nel. For example, the pulse pattern in Figure 3 is monomial.

The preferred monomial pattern of a given inner-product
filter is the monomial signal y that maximizes maxn 〈y, ỹ〉n
(the peak amplitude of the inner-product signal) among all
monomial patterns. For example, it is obvious from Figures 4
and 6 that the preferred monomial pattern for the inner-product
filters of Examples 1 and 2 is Figure 3.

Note that inner-product filters (as in Examples 1 and 2)
that are designed to recognize some monomial pattern work
perfectly well also with non-monomial signals provided that
the pulses in each channel are sufficiently separated.

We now address the design of inner-product filters that
prefer a given monomial pulse pattern y = y1, y2, . . . ∈ RL.
We will assume that there is a pulse in every channel, that the
pulse in channel ` ∈ {1, . . . , L} occurs at time k` ≤ n, and
that we wish to recognize the pulse pattern at time n.

We will address the design of the corresponding filters both
for generalizations of Examples 1 and for generalizations of
Example 2. In both cases, we will assume that the matrix



A ∈ Rm×m is given; the task is to construct C ∈ RL×m and
s ∈ Rm such that the resulting filter prefers (if possible) the
given monomial pulse pattern.

A. Sinusoidal Filters

For m = 2M , let

A =


J1 0 0 . . . 0
0 J2 0 . . . 0
...

...
0 0 . . . 0 JM

 , (9)

where Jj
4
= λj rotm(Ωj) with λj ≥ 1, j = 1, . . . ,M , and

rotm(Ω)
4
=

(
cos(Ω) − sin(Ω)
sin(Ω) cos(Ω)

)
. (10)

The matrix C with rows c1, . . . , cL is then given by

c`
4
= sT


R1 0 0 . . . 0
0 R2 0 . . . 0
...

...
0 0 . . . 0 Rm/2

An−k` , (11)

where s
4
= (1, 0, 1, 0, . . . , 1, 0)T ∈ Rm and where Rj

4
=

rotm(φj)
cos(φj) with φj

4
= arctan

(
ln(λj)

Ωj

)
.

Note that the target pulse pattern enters the filter design only
by the term An−k` in (11).

Theorem 1. If

max
`∈{1,...,L}

(n− k`) < min
Ω∈{Ω1,...,ΩM}

3π/2

Ω
(12)

then this inner-product filter prefers the given pulse pattern
and the corresponding maximum value of the inner-product
signal is Lm/2. 2

The proof amounts to verifying that (11) results from
maximizing (2) separately for each channel and for each
frequency (as in Figure 4). The details are omitted due to space
constraints. The condition (12) is conservative, but some such
condition is necessary.

B. Filters with Simple Real Poles

Let A be a real diagonal matrix with different diagonal
elements λj > 1, j = 1, . . . ,m. Let s 4

= (1, 1, . . . , 1)T ∈ Rm
and let C be a matrix with rows c1, . . . , cL ∈ Rm as follows.
If k` = n, then

c`
4
= (0, . . . , 0, 1, 0, . . . , 0)T, (13)

where the position of the single nonzero entry is arbitrary. If
k` < n, then c` has exactly two nonzero entries at arbitrary
positions i and j with coefficients

c`,i
4
=

log λj
log λj − log λi

λn−k`i (14)

and vice versa with i and j exchanged. The choice of the
positions of the nonzero elements of C does affect the shape

of the weighting signal ỹ (as in Figure 6), but it is immaterial
for the validity of the following theorem.

Theorem 2. Such a filter prefers the given pulse pattern, and
the corresponding maximum value of the inner-product signal
is L. 2

The proof is omitted due to space constraints.

IV. A NETWORK FOR PARSING MORSE CODE

As an example of a complete network, a four-layer network
that parses Morse code was described in [1]. In the meantime,
this network has been redesigned to work with the inner-
product filters of this paper (which are simpler than the filters
used in [1]). The network has been made to work both with
filters as in Example 1 and with filters as in Example 2. The
new filters of this paper also simplify the proper setting of
the firing thresholds, as is obvious from Figures 5 and 7.
In addition, we no longer use thresholded signals as in [1,
Sec. VI], but we do everything in the pulse domain.

The operation of the network is illustrated by Figure 8. The
top row in Figure 8 shows some clean Morse code represented
as on-off signaling. This signal is modulated onto a 400-Hz
tone, which is transmitted acoustically. The second row in
Figure 8 shows the signal out of the receiver’s microphone.
This signal is then processed by a simple tone detector, which
produces the pulse-domain signal labeled “A1” in Figure 8; a
dot produces a single pulse and a dash produces three pulses.
This tone detector is the whole first layer in Figure 1.

The remaining three rows in Figure 8 show examples of
pulse-domain signals out of the second and third layer of the
network: B5 detects a dot, B4 detects a dash at the end of
a letter, and C5 detects a dot followed by a dash at the end
of a letter. In total, the network comprises 41 inner-product
filters, 26 of which detect the actual letters. For more details,
we refer to [1].

This example demonstrates, in particular, that such a net-
work is self-timed and does not require any external synchro-
nization.

V. NEURONS

The mode of computation proposed in this paper has some
obvious similarities with biological neural networks. This
raises the question whether an inner-product filter can be built
with a biological plausible neuron model.

There is no trace of real neurons doing anything like Exam-
ple 1. The case seems more hopeful for Example 2: indeed,
the classical integrate-and-fire neuron model [4] amounts to
an inner-product filter with m = 1 and A = (λ1). But this is
inadequate for our purpose: the detection of temporal patterns
as in Example 2 requires at least two different time constants
λ1 and λ2.

However, modern neuron models as in [8]–[10] can indeed
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Fig. 8. Morse code network. Top: clean morse code signal. Second: raw data
from microphone. Third: pulse-domain output of tone detector. Subsequent:
pulse-domain feature signals B5, B4, and C5 as in [1].
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Fig. 9. Weighting signal (time-reversed impulse response) of neuron model.

be paraphrased by (4) and (5) with A of the form

(A−1)T =


λ0 α1 . . . αM
0 λ1 0
...

...
0 . . . 0 λM

 , (15)

with s = (1, 0, . . . , 0), and with C of the form

CT =


0 . . . 0
1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0
...

...
0 . . . 0 1 . . . 1

 ; (16)

the first component of the state vector ξn is the potential in the
soma (the main cell body) while the remaining M components
represent the potential in separate dentritic trees.

The weighting signals (= time-reversed impulse responses
from the synapses, disregarding firing) then look like in
Figure 9, where the time constant (and the position of the peak)
differs between different dentritic trees. Any such neuron thus
prefers some well-defined monomial pattern (as in Section III),
and thus makes a useful inner-product filter. For example, the
redesign of the Morse code network of Section IV for such
neurons is straightforward.

VI. CONCLUSION

We have proposed a new mode of signal processing using
linear filters and well-separated unit pulses. Such networks are
self-timed and require no extra synchronization, and they can
be implemented with biologically plausible neurons.
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