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Abstract—Following an earlier suggestion, the concept of a
hierarchical network of feature-detection filters is developed.
The individual filters are derived from a localized least-squares
approach based on non-generative state space models, which
results in simple forward-only recursions for the actual com-
putations. It is demonstrated that such filters can naturally
cope with spiking signals, and the use of spiking signals in
such networks is advocated. The feasibility of the approach is
demonstrated with a four-layer network that understands Morse
code.

I. INTRODUCTION

In [1], it was proposed to use likelihood filters (first
proposed in [2]) in a layered network as in Figure 1 for multi-
scale pattern detection in time signals. Each block in such a
network is looking for some feature in its multichannel-input
signal and produces some sort of a score signal (or likelihood
signal). The proposal in [1] was not very concrete, though,
and no example of such a network was given.

In this paper, we develop this approach further and we will
present a nontrivial example of such a network: a four-layer
network that “understands” Morse code [3].

As for the individual filter blocks, we follow the general
recipe of [1] and use state space models with 2nd-order
(i.e., sinusoidal) components, which leads to simple forward-
only recursions. However, we develop these filters from
a least-squares perspective as in [4] rather than from a
statistical perspective as in [1]. The relation between these
two perspectives is discussed in [4].

Note that these filters are model-based (cf. Section II),
but the models are not generative. Also, these filters could,
in principle, be implemented in clockless continuous-time
analog circuits. By their very nature, the proposed networks
are self-synchronizing and they tolerate small variations in
the timing of the input signal.

As it turns out, a key issue with the structure of Figure 1 is
the format of the intermediate signals (score signals or like-
lihood signals). Experiments suggest that the format of these
intermediate signals is critical, and some obvious approaches
(including those proposed in [1]) do not seem to work well.
However, we find that spiking signals —unit pulses separated
by spaces of at least some minimum duration—work well,
which comes as a surprise to us and is a main point of this
paper.

Networks as in Figure 1 may be viewed as a new kind
of artificial neural network, and indeed, many connections
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Fig. 1. Layered network of feature-detection filters.

to the vast neural-networks literature are becoming appar-
ent. For example, Figure 1 is vaguely reminiscent of deep
convolutional neural networks [5]–[7], which have recently
received much interest. Also, analog computation with pulses
was studied in [8], and neural network models with spiking
neurons are a subject of intense current research [9]–[12].
However, the approach of this paper is new and it offers a
new perspective on pulse-based information processing that
is firmly rooted in classical signal processing concepts.

This paper does not address learning at all. In particu-
lar, the mentioned Morse code network is handcrafted, not
learned.

The paper is structured as follows. The class of feature
models used in this paper is described in Section II. A Hilbert
space perspective on the corresponding filters is given in
Section III. The actual computations in these filters are
addressed in Section IV. The application of such filters to
pulse patterns is demonstrated in Section V.

While Sections II–V are about individual feature-detection
filters, Section VI returns to networks as in Figure 1 and
presents the case for spiking intermediate signals. Sec-
tion VII, finally, describes (in outline) the design of a network
that parses Morse code.

II. LOCAL FEATURE MODELS

As in [4], we use local feature models of the following
form. Let y1, . . . , yN ∈ RL (with N � 1) be the signal that
is to be analyzed. (Only L = 1 was considered in [4], but
the generalization to L > 1 is obvious.) For k = 0, 1, . . . , N ,
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let xk ∈ Rm be a vector that evolves according to

xk+1 = Axk (1)

where A ∈ Rm×m is a non-singular square matrix. Note
that the state xk at any time k completely determines
the whole state trajectory x0, x1, . . . , xN . A corresponding
output signal ỹ1, . . . , ỹN ∈ RL is defined by

ỹk = Cxk (2)

for some matrix C ∈ RL×m. At any given time n ∈
{1, 2, . . . , N}, we locally fit this model to the given signal
y1, . . . , yN by forming an estimate

x̂n = argmin
xn∈S

n∑
k=1

γn−k
∥∥yk − ỹk(xn)

∥∥2, (3)

where γ is a real parameter with 0 < γ < 1, where

ỹk(xn) = CAk−nxn (4)

is the output signal determined by xn according to (1) and
(2), and where S ⊂ Rm is an admissible set for x̂n. We
will mainly be interested in the case where n � 1 so that
boundary effects can be neglected.

The score signal of such a model is s1, . . . , sN where

sn
4
= 1−

∑n
k=1 γ

n−k∥∥yk − ỹk(x̂n)
∥∥2∑n

k=1 γ
n−k‖yk‖2

(5)

with x̂n as in (3). The fraction in (5) is the local normalized
squared error. Note that sn ≤ 1. If the admissible set S
contains the origin, we also have s ≥ 0 (because for x̂n = 0,
the numerator in (5) coincides with the denominator).

The actual computation of the score signal will be ad-
dressed in Section IV.

In this paper, the state transition matrix A of all such
feature models is a block diagonal matrix

A =


J1 0 0 . . . 0
0 J2 0 . . . 0
...

...
0 0 . . . 0 Jm/2

 (6)

with 2× 2 rotation matrices

J`
4
=

(
cos(Ω`) − sin(Ω`)
sin(Ω`) cos(Ω`)

)
(7)

(` = 1, . . . ,m/2) on the diagonal. For any fixed time-n state
xn, every component of the vector signal ỹ1(xn), . . . , ỹn(xn)
is thus a superposition of undamped sinusoids with amplitude
and phase determined by xn.

Example 1 (Sinusoid) Let L = 1, m = 2, and S = Rm (i.e.,
no restrictions on x̂n). In this case, the score signal (5) indicates
the local presence of a sinusoid with frequency Ω1, as illustrated in
Figure 2. 2

This example is unimpressive in itself, of course, and
more-interesting examples will be described later. We will
mostly use models with L > 1 and with admissible sets S
of the form

S = {βs : β ≥ 0} (8)

0 100 200 300 400 500

�1

0

1

0 100 200 300 400 500

�2

0

2

4

0 100 200 300 400 500
0

0.1

0.2

1

Fig. 2. Detecting a sinusoid in noise as in Example 1. Top: clean signal;
middle: same signal with additive white Gaussian noise; bottom: score signal
(5) and (19).

for some vector s ∈ Rm. Note that (8) implies that the signal
ỹ1, . . . , ỹn is fully determined up to a nonnegative amplitude.

In this paper, each feature-detection filter in Figure 1
is based on such a model, and the output signal of each
feature-detection filter is a thresholded or pulsed version of
the corresponding score signal (5) as will be discussed in
Section VI.

III. HILBERT SPACE PERSPECTIVE

It is instructive to consider the local model fitting of
Section II also from a Hilbert space perspective. Specifically,
for any time n ∈ {1, . . . , N}, let Hn be the Hilbert space of
discrete-time vector signals y′1, . . . , y

′
n ∈ RL with the inner

product

〈y′, y′′〉 4=
n∑

k=1

γn−k(y′k)Ty′′k . (9)

If the set S ⊂ Rm of admissible states xn is a subspace of
Rm, then the corresponding set of signals

H̃n
4
=
{

(ỹ1(xn), . . . , ỹn(xn)) : xn ∈ S
}

(10)

is a subspace of Hn. It then follows from basic Hilbert space
theory [13] that the signal ỹ1(x̂n), . . . , ỹn(x̂n) (with x̂n as
in (3)) is the projection of the signal y1, . . . , yn to H̃n. It
follows, in particular, that the mappings

y1, . . . , yn 7→ ỹ1(x̂n), . . . , ỹn(x̂n) (11)

and
y1, . . . , yn 7→ x̂n (12)



are linear.
We also remark that, with suitably spaced frequencies

Ω1, . . . ,Ωm/2 and with S = Rm, the mapping (12) may
be viewed as a short-time Fourier transform in the spirit of
[14].

Admissible sets S of the form (8) can be handled by first
projecting the signal y1, . . . , yn to the one-dimensional space
determined by x̂n ∈ {βs : β ∈ R} and then clipping the
projection x̂n = β̂s to x̂n = 0 if β̂ < 0.

IV. RECURSIVE COMPUTATION OF THE SCORE SIGNAL

The score signal (5) can be computed from the quantities
−→κn ∈ R (the signal energy),

−→
ξ n ∈ Rm, and

−→
Wn ∈ Rm×m

(the precision matrix), which in turn are easily computed by
the following recursions from [4] (which are very similiar to,
but not identical with, classical Kalman filtering and recursive
least-squares algorithms [15], [16]):

−→κn = γ−→κn−1 + ‖yn‖2 (13)
−→
ξ n = γ

(
A−1

)T−→
ξ n−1 + CTyn (14)

= γA
−→
ξ n−1 + CTyn (15)

−→
Wn = γ

(
A−1

)T−→
Wn−1A

−1 + CTC (16)

= γA
−→
Wn−1A

−1 + CTC. (17)

For S = Rm (i.e., no constraints on x̂n), we then have

x̂k =
−→
W−1

−→
ξ k (18)

and

sn =

−→
ξ n

T−→
Wn

−1−→
ξ n

−→κn

, (19)

which can be derived from (55)–(58) in [4]. For S as in (8),
we have

sn =


(
sT
−→
ξ n

)2
−→κnsT

−→
Wns

, if sT
−→
ξ n > 0

0, otherwise,

(20)

which can be derived from (61) in [4].
For n → ∞ (which is the case of primary interest), the

matrix
−→
Wn converges to some constant

−→
W. The term sT

−→
Wns

in (20) is then a mere constant scale factor that may be
omitted. In this case, the matrix

−→
Wn and the corresponding

recursion (17) are not needed at all.

V. APPLICATION TO PULSE PATTERNS

We now come to the heart of this paper. We first demon-
strate the application of local feature models (as in Section II)
to sparse pulse patterns. We will then argue (in Section VI)
that sparse-pulse signals are advantageous for the internal
feature signals in feature-detection networks as in Figure 1.

For some of the illustrations, it will be helpful to rewrite
(3) as

x̂n = argmin
xn∈S

n∑
k=1

∥∥∥γ n−k
2 yk − γ

n−k
2 ỹk(xn)

∥∥∥2 , (21)
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Fig. 3. Pulse pattern detection filter of Example 2. Top: the pattern
to be detected. Next two: the signal ỹ1, . . . , ỹn (not to scale) and its
decomposition into the two sinusoids, for n = 500 and exponentially
weighted as in (21). Bottom: the score signal (20) of the clean pulse pattern
for n = 1, . . . , 550.

i.e., with exponentially damped signals rather than with a
damped cost function.

Example 2 (Single-Channel Pulse Pattern) Suppose we want
to detect the particular pulse sequence shown in Figure 3 (top).
A simple local feature model can be built with L = 1, m = 4,
Ω1 = 2π/100, Ω2 = 2π/333.3, γ = 0.99, and an admissible set S
as in (8). The two sinusoids and the resulting signal ỹ1,. . . ,ỹn (for
n = 500) are also shown in Figure 3, both exponentially weighted
as in (21).

Figure 3 (bottom) shows the resulting score signal when the
input signal is the clean pulse pattern. The dashed horizontal line
is a suitable threshold for detection: no subset of unit pulses at
positions 200, 300, 400, and 500 except the desired one (Figure 3
top) produces a score signal that exceeds this threshold. 2

This example, like all examples in this paper, is hand-
crafted (with a little experimentation) and has no claims on
optimality of any kind.

Example 3 (Multi-Channel Pulse Train) Suppose we want to
detect the particular 3-channel pulse sequence shown in Figure 4:
three consecutive pulses (separated by 100 samples) arrive in three
different channels. A simple local feature model can be built with
L = 3, m = 2, Ω1 = 2π/400, γ = 0.995, and an admissible set S



as in (8). Figure 5 shows the corresponding single-frequency signal
ỹ1,. . . ,ỹn (for n = 400 and exponentially weighted as in (21)) in
all three channels.

Figure 6 shows the score signal when the input signal is the clean
pulse train of Figure 4. The dashed horizontal line is a suitable
threshold for detection. 2

It should be obvious from these examples that short
sparse pulse patterns may be detected with quite simple
feature-detection filters. Also, small deviations of the pulses
from their nominal positions will typically not substantially
damage the detectability of the pattern.

While these examples are typical for the Morse code
network in Section VII, they may be misleading in several
ways. First, good discrimination between different pulse
patterns may require many frequencies, i.e., m� 1. Second,
we expect L � m to hold for the most interesting feature-
detection filters. Third, any such feature-detection filter (with
a fixed detection threshold on the score signal) will be
deceived by multiple pulses very close together (in the same
channel): in both Examples 2 and 3, two pulses at positions
k and k + 1 (for any k) will make the score signal exceed
the threshold indicated in Figure 3 (bottom) and Figure 6,
respectively. We will therefore argue in the next section that
pulses should be separated by a suitable guard space.

VI. THRESHOLDING AND SPIKING FEATURE SIGNALS

As mentioned in the introduction, the format of the inter-
mediate signals in Figure 1 is an issue. Using the score signal
(5) directly does not work well (and the statistical proposals
in [1, eq. (10) and (12)] have similar difficulties): variations
of the score signals at one layer of the network tend to cause
larger variations of the score signals at the next layer, which
makes it difficult to achieve robust functionality.

It turns out that the desired robustness can be achieved
with thresholded and pulsed versions of the score signal (5)
as illustrated in Figure 7. The former amounts to converting
the score signal into a {0, 1}-valued signal depending on the
sign of sn−θ where θ ∈ R is a threshold parameter. The latter
turns the score signal into a sparse sequence of unit pulses
as follows: if the score signal exceeds some threshold, a unit
pulse is generated; thereafter, any subsequent pulses are only
permitted after a fixed guard space. Note that the pulsed score
signal can be obtained from the thresholded score signal, but
not vice versa.

The choice between a thresholded score signal and a pulsed
score signal depends on the feature: a timeless condition (like
the presence of a tone in Example 1) suggests a thresholded
score function while a localized event (as in Examples 2
and 3) suggests a pulsed score signal with a suitable guard
space such that only one pulse is generated per event. These
two types of features are likely to be expressed by different
admissible sets S as illustrated by the mentioned examples.

However, we also note that the thresholded score signal
can be approximately simulated by a pulsed score signal
with a short guard space (so that typical on-periods of
the thresholded signal are simulated by many pulses). By
contrast, the pulsed score signal cannot be approximated by
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Fig. 4. Three-channel pulse train of Example 3.
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Fig. 5. Example 3: the signal ỹ1,. . . ,ỹn (for n = 400) in all three channels,
up to a common nonnegative scale factor and exponentially weighted as in
(21).
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Fig. 6. Example 3: the score signal (20) (for n = 1, . . . , 500) of the clean
pulse train in Figure 4.



Filter C5

B5 and B4 are present on layer 2
C5 is looking for the succession of B5 and B4 in that order, separated by
approximately 6T.
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Fig. 7. Morse code network. Top: raw data from microphone. Second:
thresholded score signal of first-layer tone detector (A1). Subsequent: pulsed
score signal of features B5, B4, and C5.

a thresholded score signal. In this sense, the pulsed version
is arguably more fundamental.

VII. EXAMPLE: MORSE CODE DETECTION

Using the principles of the previous sections, we built
a four-layer network for parsing Morse code [3]. For this
example, Morse signals are represented by on-off keying of
a 400-Hz tone, which is transmitted acoustically. A typical
waveform as picked up by the microphone in the receiver is
shown in Figure 7 (top).

The first layer of our network is simply a tone detector as
in Example 1 with a thresholded score signal (referred to as
A1) as shown in Figure 7 (second from top). Note that this
thresholded signal need not be a perfect Morse code signal
since the second layer can correct small glitches in this signal.

Layers 2–4 all produce pulsed score signals as described
in Section VI. Three examples of such pulsed score signals
(features B4, B5, and C5) are given in Figure 7. The

TABLE I
SECOND-LAYER FEATURE-DETECTION FILTERS

id feature, letter input freq.

B1 pause – dit u A1 1/3.5T

B2 pause – dah A1 1/8T

B3 dit – pause u A1 1/2.5T

B4 dah – pause A1 1/8T

B5 dit u A1 1/2.5T

B6 dah A1 1/6T

B7 E u A1 1/3T

B8 T A1 1/6T

B9 pause between words A1 1/8T

TABLE II
THIRD-LAYER FEATURE-DETECTION FILTERS

id letter feature input freq.

C1 u B1, B6 1/9T

C2 u u B1, B5 1/9T

C3 u B2, B5 1/6T

C4 B2, B6 1/18T

C5 u B5, B4 1/12T

C6 u u B5, B3 1/2T

C7 u B6, B3 1/6T

C8 B6, B4 1/4T

C9 A u B1, B4 1/12T

C10 I u u B1, B3 1/6T

C11 N u B2, B3 1/9T

C12 M B2, B4 1/15T

TABLE III
FOURTH-LAYER FEATURE-DETECTION FILTERS

id letter input freq.
D1 U C2, C5 1/9T
D2 S C2, C6 1/6T
D3 R C1, C7 1/6T
D4 W C1, C8 1/12T
D5 K C3, C5 1/9T
D6 D C3, C6 1/6T
D7 G C4, C7 1/6T
D8 O C4, C8 1/9T
D9 Q C4, C5 1/12T
D10 Z C4, C6 1/9T
D11 L C1, C6 1/9T
D12 P C1, C7 1/12T
D13 V C2, C5 1/15T
D14 H C2, C6 1/9T
D15 F C2, C7 1/12T
D16 X C3, C5 1/15T
D17 B C3, C6 1/9T
D18 C C3, C7 1/12T
D19 J C1, C8 1/16T
D20 Y C3, C8 1/16T



network’s guess of the transmitted letters are also represented
by such pulses.

The feature-detection filters in layers 2, 3, and 4 are
roughly described in Tables I, II, and III, respectively. All
these filters are single-frequency filters (i.e., m = 2) with
frequencies as indicated in the tables, where the symbol T is
the duration of a dit (or dot) or the space between symbols
of the same letter.

The filters in Layer 2 are similar to Example 2, except that
they use only a single frequency and work on the thresholded
signal A1. The filters in Layers 3 and 4 are all very similar
to a two-channel version of Example 3.

Note the different time scales in the different layers. The
two shortest letters (‘E’ and ‘T’) are already detected in
Layer 1, but most letters are detected only in Layer 4.

We observe that this network works quite robustly (but
without any claim on optimality). It would be easy to add
a fifth layer to detect some short sequences of letters like
“SOS”, and additional layers for longer words.

VIII. CONCLUSION

We have further developed the concept of a hierarchical
multichannel feature-detection filter network (as proposed in
[1]) and demonstrated its feasibility by a nontrivial example.
In contrast to the statistical setting of [1], we developed
the individual filters from a least-squares perspective, and
we gave explicit formulas ((19) and (20)) for the score
signal in two important cases. We demonstrated that such
feature-detection filters can easily cope with spiking signals,
and we advocate the use of spiking signals inside the net-
work. By their very nature, the proposed networks are self-
synchronizing and tolerate small variations in the timing of
the input signal.

The important subject of learning such networks from data
was not addressed and is left for future research.
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