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ABSTRACT

A new approach to image segmentation (grayscale or color)
is proposed. It uses a (improper) Markov random field prior
with sparsifying NUV terms (normal with unknown vari-
ance), which favors piecewise smooth images with sharp
edges. The proposed algorithm iterates two steps. In the first
step, the unknown scalar variances are learned by approx-
imate EM (expectation maximization). The actual compu-
tations for this step boil down to iterative scalar Gaussian
message passing, which scales linearly with the number of
pixels. In the second step, all edges that were detected in
the first step are cut and removed from further processing.
Simulation results demonstrate that the proposed approach
compares favorably with four standard methods.

Index Terms— Image segmentation, sparse Bayesian
learning, expectation maximization, Gaussian message pass-
ing

1. INTRODUCTION

Image segmentation is the process of partitioning an image
into non-overlapping segments so that pixels belonging to the
same segment share certain properties. Applications include
machine vision, medical image analysis, object detection and
recognition, etc. Image segmentation is known to be one of
the most important and difficult tasks in image processing.

A great variety of segmentation algorithms exists, based
on techniques such as thresholding, clustering, non-linear
transformations, edge detection, and many others [1–6].
Many of these algorithms rely on edge detection, which is
known to be sensitive to parameter settings and requires ad-
ditional efforts to close regions [3]. Also, many segmentation
algorithms are based on graph structures, often using Markov
random fields (MRFs), which usually model the image as
an undirected graph with edge weights defined by some
(dis)similarity measure between neighboring pixels [7–9].

In this paper, we use both edge detection and a specific
(improper) MRF prior. The latter was recently proposed in
[10] and uses normal random variables with unknown vari-
ances (NUV) from sparse Bayesian learning [11–13]. (A re-

lated, but different, MRF prior was proposed in [14].) The
proposed algorithm, which differs substantially from other
segmentation algorithms, is iterative, and each iteration con-
sists of two steps. In the first step, unknown parameters (vari-
ances) of the MRF prior are learned by an approximate EM
algorithm. The pertinent computations boil down to an in-
ner loop of iterative scalar Gaussian message passing, which
scales linearly with the number of pixels. An edge (between
two neighboring pixels) is detected whenever the correspond-
ing variance is nonzero. In the second step (which is com-
putationally trivial), all detected edges are cut and removed
from further processing.

The proposed algorithm is empirical: we do not claim it to
converge to the global minimum of some plausible cost func-
tion. However, the algorithm is based on solid concepts (NUV
priors from sparse Bayesian learning [11–13] and iterative
scalar Gaussian message passing [15–17]), and it works very
well in practice. According to experimental results, our ap-
proach yields arguably better segmentations than some stan-
dard methods.

The paper is structured as follows. In Section 2, we de-
fine the image representation. The NUV prior and the edge
detection algorithm are described in Section 3. Edge cutting
is described in Section 4, and some experimental results are
reported in Section 5.

2. IMAGE REPRESENTATION

We assume that the pixels are arranged in a 2-dimensional
rectangular grid. Each pixel has a unique spatial index s` =

(i, j) with ` 2 {1, . . . , L}, where i is the row index, j is the
column index, and L is the total number of pixels.

Let B ⇢ {1, . . . , L}2 be the set of nearest-neighbor pairs:
for any two pixels at locations s` = (i, j) and s`0 = (i0, j0),
(`, `0) 2 B if and only if both |i�i0|+ |j�j0| = 1 and ` < `0.

The color (or grayscale value) of each pixel is a vector
(or scalar) ys` 2 Rm with m = 3 for color images and
m = 1 for grayscale images. For color images, we will not
use the standard RGB representation, but the color space CIE
L⇤a⇤b⇤ [18], which offers a better match between human vi-
sual perception and Euclidean distance. Each color is repre-
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Fig. 1. Factor graph representation of the prior model with
{(`, `0), (`, ˜`), (`0, ˜`0), (˜`, ˜`0)} ⇢ B.

sented by a vector (L⇤, a⇤, b⇤), where L⇤ is the measure of
lightness, a⇤ represents color from cyan to magenta, and b⇤

represents color from blue to yellow.

3. EDGE DETECTION

The segmentation algorithm of this paper iterates between
two steps. Step 1 is a new edge detection algorithm and Step 2
removes (cuts) the detected edges. By “edge”, we mean here
an element (`, `0) of B that corresponds to an edge in the im-
age. In the end, when the algorithm terminates successfully,
such ` and `0 belong to different segments.

Step 2 of the algorithm is computationally trivial and will
be discussed in Section 4. We now focus on Step 1.

3.1. Statistical Model

The description of Step 1 begins by formulating an estimation
problem, where the given image y = (ys1 , . . . ,ysL)

T (with
ys` 2 Rm) is viewed as a noisy observation of a hypothetical
“true” image X = (Xs1 , . . . ,XsL)

T (with Xs` 2 Rm) with

p(y|x) =
LY

`=1

1

(2⇡�2
Z)

m
2
exp

 
�kys` � xs`k

2

2�2
Z

!
, (1)

where the noise �2
Z is a parameter of the algorithm.

The interesting part of the statistical model is the (im-
proper) prior, which penalizes the differences between neigh-
boring pixels as follows. For each pair (`, `0) 2 B, we define
the slack variable

U`,`0 = Xs` �Xs`0 (2)

with a joint probability law p(u|�2
) (with parameters �2) de-

scribed below (see also Fig. 1). Writing (2) as U = DX with
a pertinent matrix D, we define our (improper) prior as

p̃(x;�2
) =

Z
�(u�Dx) p(u|�2

) du. (3)

Concerning p(u|�2
), we define U`,`0 to be independent zero-

mean Gaussian random vectors with covariance matrices
Im(�2

✏ + �2
`,`0), where �2

✏ is a parameter of the algorithm
and �2

`,`0 are unknown and will be estimated. Our statistical
model is thus finalized by

p(u|�2
)

=

Y

(`,`0)2B

1

(2⇡(�2
✏ + �2

`,`0))
m
2
exp

 
� ku`,`0k2

2(�2
✏ + �2

`,`0)

!
, (4)

where �2 is the vector of all �2
`,`0 with (`, `0) 2 B. The

structure of this prior is illustrated in Fig. 1.
This prior is sparsifying in the following sense: at any

local maximum of the likelihood (6), many estimated vari-
ance parameters �2

`,`0 are likely to be zero. The corresponding
pixel differences (2) are then regularized to be small (but not
necessarily zero), thus prompting smooth areas in the image.
On the other hand, when the estimated �2

`,`0 is nonzero, the
cost for arbitrarily large jumps is very small, which allows for
sharp edges in the image [10, 12, 13]. The sparsity level can
be adjusted by tuning �2

✏ .
We now detect edges in the image simply as follows: if

the estimated �2
`,`0 is nonzero, we decide that there is an edge

between s` and s`0 ; otherwise, we decide that there is no edge.

3.2. Maximum “Likelihood” Estimation and EM

As mentioned, we wish to estimate the unknown variances �2

by maximizing the “likelihood”

p̃(y;�2
) =

Z
p(y|x)p̃(x;�2

) dx (5)

=

Z Z
p(y|x)�(u�Dx)p(u|�2

) du dx. (6)

To this end, we use expectation maximization (EM) as fol-
lows. Considering U as a hidden variable, we update �2 iter-
atively by

�̂2
k+1 = argmax

�2

E
⇥
ln p̃(y,U;�2

)

⇤
, (7)

with iteration index k and starting from an initial guess �̂2
0.

The expectation in (7) is taken with respect to the density
p(u|y, �̂2

k). It can be seen from (6) that the maximization
problem splits for each �2

`,`0 :

�̂2
`,`0 = argmax

�2
`,`0

E
⇥
ln p(U`,`0 |�2

`,`0)
⇤

(8)
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✏

◆
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3.3. Scalarization

For grayscale images (i.e. m = 1), p(u,x,y|�2
) can be

represented by a factor graph as in Fig. 2. For color images
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(m = 3), we first note that

E
h
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2
i
. (10)

Moreover, it is easily seen that, the factor graph of p(u,x,y|�2
)

also splits into three independent factor graphs, one for each
color channel, each of which with the structure of Fig. 2.

3.4. Iterative Scalar Gaussian Message Passing

For complexity reasons, we do not attempt to compute
E
⇥
kU`,`0k2

⇤
exactly. Instead, we use iterative scalar Gaus-

sian message passing [10, 15] in the factor graph(s) of Fig. 2
to compute an approximate estimate of E

⇥
kU`,`0k2

⇤
, which

turns out to work well in practice. If the algorithm con-
verges, the estimated means are correct, but the variances are
not [17, 19]. The details of this computation can be obtained
through specializing the algorithm of [10] by setting the ma-
trix A to an identity matrix. Note also that the computational
complexity scales linearly with the number of pixels. After
the algorithm has converged, E

⇥
kU`,`0k2

⇤
can be calculated

from the messages in the factor graph, and �̂2
`,`0 can then be

obtained from (9).

4. ITERATIVE EDGE CUTTING

4.1. The Algorithm

The edge detection algorithm of Section 3 is executed repeat-
edly. After each execution, the detected edges (i.e., the pairs
(`, `0) 2 B with �2

`,`0 > 0) are added to the set E ⇢ B of de-
tected edges and cut. Cutting an edge means fixing �2

`,`0 = 1
or, equivalently, removing the corresponding column of D for
all subsequent iterations. The iteration is continued until no
new edges are detected.

Somewhat surprisingly, this algorithm empirically works
well and yields satisfactory closed segments. We illustrate the
effects of edge cutting by three examples.

(a) The image

(b) “Likelihood” function

Fig. 3. Edge cutting in a 4-pixel image: the “likelihood” (as a
function of �2

3,4) before and after cutting the edge (1, 2).

(a) The image (b) Heat map before cut (c) Heat map after cut

Fig. 4. A simple two-color image and the calculated value
of E

⇥
kU`,`0k2

⇤
, represented by a heat map, before and after

cutting the horizontal edge in the center of the image.

4.2. Toy Example 1

Consider the example in Fig. 3 (a), which is a grayscale im-
age with only four pixels {1, 2, 3, 4}. The blue dashed curve
in Fig. 3 (b) shows the “likelihood” p̃(y;�2

) as a function of
�2
3,4 while the other �2

`,`0 are fixed to their optimum. Note
that this curve reaches its maximum for �2

3,4 = 0. After cut-
ting the edge (1, 2), the “likelihood” function changes into the
red solid curve in Fig. 3 (b), which reaches its maximum for
�2
3,4 > 0. In other words, cutting the edge (1, 2) entails the

subsequent detection of an edge (3, 4).

4.3. Toy Example 2

In our second example, we focus on the quantity E
⇥
kU`,`0k2

⇤
.

It is obvious from (9) that a sufficiently large value of
E
⇥
kU`,`0k2

⇤
leads to an edge. The example is shown in

Fig. 4. The middle picture shows the approximate value of
E
⇥
kU`,`0k2

⇤
(as computed by iterative scalar Gaussian mes-

sage passing) for horizontally neighboring pixels as a heat
map, i.e., with brighter colors indicating higher values.

We then cut a single horizontal edge in the center of the
image. The effect of this cut on E

⇥
kU`,`0k2

⇤
is shown in the

rightmost picture in Fig. 4. Note that E
⇥
kU`,`0k2

⇤
now be-

comes larger for horizontally neighboring pixels close to the
cut edge, which leads to edge detections near this cut.

4.4. Example 3

The progress of iterative edge cutting is also demonstrated in
Fig. 6, which is discussed in the next section.



(a) Original images (b) Proposed algorithm (c) Mean shift [2] (d) Normalized cuts [7]

Fig. 5. Experimental results from the proposed method, mean shift clustering [2] and the normalized cuts method [7]. First and
second row: boundaries of segments are marked with purple lines. Third row: segment boundaries are not marked.

(a) After the first EM update (b) After the 20th EM update

Fig. 6. Edges and segments after the first and after the 20th
iteration of the proposed algorithm.

5. EXPERIMENTAL RESULTS

Fig. 5 and Fig. 6 show some experimental results using
two test images from the Berkeley Segmentation Dataset
(BSDS300) [20]. The parameters of our algorithm were set
to �2

✏ = 10

�4 and �2
Z = 8 · 10�4 (same for both images). For

the edge detection (Section 3), we used 20 iterations of Gaus-
sian message passing followed by a single EM update. In the
outer loop (Section 4.1), the edge detection was executed 20
times. In these examples, our algorithm took about 2 seconds
on an ordinary laptop computer.

For comparison, Fig. 5 also shows the results of two other
segmentation methods: mean shift [2] and normalized cuts
[7]. We also experimented with two other standard algo-
rithms, K-means [21] and the watershed transformation [22],
the results of which are inferior to all the methods in Fig. 5.
In Fig. 5 and 6, all pixels within the same segment are given
the same color: the average of all the corresponding pixels in

the original image. In the first two rows of Fig. 5, the detected
edges (⇡ the segment boundaries) are marked in purple.

From Fig. 5 and many other examples (not reported here),
we conclude that the proposed algorithm is not inferior to,
and arguably better than, the mean shift algorithm, and clearly
outperforms the other methods. This conclusion is supported
also by numerical scores using the (different) metrics defined
in [23,24]. In any case, our approach does not wash out small
details if they sufficiently contrast with their background.
Concerning the mean shift algorithm, note the crack in the
sky behind the church, and the merging of the red parts of the
horizontal ribbons with the background in the second image.

Fig. 6 shows how the segmentation result evolves during
the algorithm. After the first pass of the edge detection al-
gorithm, many edges are still isolated and there are only few
closed segments. After 20 iterations, we observe the reverse:
most edges now belong to clear segment boundaries.

6. CONCLUSION

We proposed a new approach for image segmentation based
on a graphical model with NUV terms, which favors piece-
wise smooth segments. The proposed algorithm iterates two
steps. The first step uses approximate EM for edge detec-
tion, with computations amounting to iterative scalar Gaus-
sian message passing. In the second step, the edges detected
in the first step are removed (cut). In our simulations, the
proposed method yields closed segments and converges quite
fast, and the results compare favorably to four other methods.
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