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ABSTRACT

It has been observed that rainfall may be estimated from the
attenuation of microwave links. In this paper, we propose a
new approach to this problem (for a single microwave link),
which is based on a dynamical model of the attenuation with-
out rain. This dry-air model combines local smoothing with
quasi-periodicity over 24 hours. Rainfall causes large de-
viations of the attenuation from this dry-air model, and the
rainfall can be estimated from these deviations.

The proposed approach yields practical algorithms that
are shown to work well on real data. We propose both an it-
erative offline algorithm for estimating past rainfall and an
online algorithm for estimating present rainfall. Both al-
gorithms can cope with irregular sampling and intervals of
missing data.

The factor graph approach of this paper demonstrates a
number of modeling techniques that are not quite standard—
including extensive use of “soft” equality constraints and for-
getting factors—and may therefore be of interest beyond the
immediate application.

1. INTRODUCTION

This paper has a dual purpose: on the one hand, it proposes
a new solution to a practical problem; on the other hand, it
demonstrates the versatility of some factor graph modeling
techniques that are not quite standard.

We begin with the former. It is well known that outdoor
microwave links commonly used in commercial telecommu-
nication networks suffer from attenuation due to rain [1].
From this observation, it has been suggested to estimate rain-
fall rates based on available attenuation data of microwave
links [2]. Indeed, estimating rainfall rates in this way would
be a welcome complement to rain gauges and rain radar mea-
surements [2, 3].

However, estimating rainfall from attenuation data has
remained a challenge. The nature of the problem is illus-
trated by the gray line in Figure 6, which shows the attenua-
tion (or rather the gain) of a microwave link over 5 days. The
deep jags in the figure are due to heavy rain; without rain, the
attenuation fluctuates (more or less) smoothly within some
fixed range. The dry-air baseline exhibits some degree of pe-
riodicity with a period of 24 hours, which is due to the daily
cycle of temperature, humidity, and air pressure.

Commonly, estimating the rainfall rate from such attenu-
ation data involves three separate tasks [2,4,5]. The first task
is to classify the data into segments with rain and segments
without rain. The second task is to estimate the smoothed
baseline within each rainy segment, which is subtracted from
the measured attenuation; the result is a net attenuation due

to rain only. The third task is to estimate the rainfall rate
based on this net attenuation.

In this paper, we will focus on the first two tasks, which
will be addressed jointly. The third task has been the focus
of prior work both in the context of rainfall rate estimation
[2,3,6] and for modelling rain attenuation [1,7], and will not
be addressed in this paper.

In contrast to all prior work, we will explicitly model and
use the daily cycle. While elaborate stochastic models for
rain attenuation exist [7], none of the published rain estima-
tion algorithms [2–6] explicitly uses the daily cycle.

From the proposed model, we derive practical algorithms
to estimate the dry-air baseline. We propose both an iterative
offline algorithm for estimating past rainfall and an online al-
gorithm for estimating present rainfall. Both algorithms can
cope with irregular sampling and intervals of missing data,
and both algorithms are shown to work well on real data.

Our model for the dry-air baseline combines local
smoothness constraints with periodicity constraints. The for-
mer consist of a line model whose parameters are allowed to
slowly vary over time; the latter penalizes deviations from
periodicity of the parameters of the line model. Both parts
use soft-equality constraints that are implemented by means
of forgetting factors (cf. [8]). In consequence, the overall
model is not, strictly speaking, a statistical model, but a col-
lection of smoothly connected “local” statistical models, one
for each time instant.

An alternative factor graph model for quasi-periodic sig-
nals was proposed in [9].

The paper is structured as follows. The proposed factor
graph model for the dry-air baseline model is presented in
Section 2. The resulting iterative algorithms are described in
Section 3. Some empirical results are reported in Section 4,
and Section 5 concludes the paper. The paper assumes some
familiarity with factor graphs [10].

2. THE MODEL

We will express the proposed model for the dry-air baseline
in terms of factor graphs as in [10]. The model consists of
two sub-models: one sub-model for local smoothness and
one sub-model for (quasi-) periodicity. The resulting factor
graph is shown in Figure 1, which will be explained in the
following. Note that the overall model is not generative.

We will use the set of discrete time instants
{tm}m∈{1,...,M}, which is partitioned into two subsets

{tk}k∈K and {tℓ}ℓ∈L, where K and L are index sets, as
illustrated in Figure 1. The subset {tk}k∈K contains the time
stamps of the given attenuation data {yk}k∈K. The subset
{tℓ}ℓ∈L describes a regular grid containing N time instants
per period T , where T = 1 day.
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Figure 1: Example overall factor graph with sets of time instants {tk}k∈K and {tℓ}ℓ∈L depicted as “ ” and “ ” respectively.

The boxes , , and are defined in Figures 3–2.

To model smoothness, we will use a local line model in
state space form. A noisy version Sℓ ∈ R

2 of the state of this
line model is used by the “periodic” sub-model to impose the
soft-equality constraints

Sℓ
β
≃ Sℓ′ , ∀ (ℓ,ℓ′) ∈ L2 : tℓ− tℓ′ = T , (1)

where the soft equality
β
≃ indicates the application of a for-

getting factor β . Figure 2 shows the factor graph representa-
tion of (1).

As in [8], we define the action of a forgetting factor in
terms of manipulation of sum-product messages in the factor
graph. Specifically, on every edgemarked with square brack-
ets “

][

” in Figures 2–4, the forward as well as the backward
message is taken to the power of the forgetting factor. We
restrict forgetting factors to be smaller than 1 but close to 1.
The application of forgetting factors thus relaxes strict global
properties, such as periodicity, into local properties.

The “smooth” sub-model consists of the following
second-order linear state space model:

Xm

γm
≃ AmXm−1 , ∀ m ∈ {2, . . . ,M} , (2)

where

Am ,

(

1 tm− tm−1

0 1

)

(3)

is the time-varying state transition matrix. With this choice
of Am, the state Xm ∈ R

2 in (2) models a straight line as a
function of time, i.e. [Xm]1 contains the line value at time tm
and [Xm]2 contains the line slope.

The soft equality
γm
≃ in (2) again indicates the use a for-

getting factor γm , ρ tm−tm−1 , where the parameter ρ is the
forgetting factor per unit time. As before, the application of
a forgetting factor relaxes the strict line model into a local
model. We model the observed data at time instants {tk}k∈K

as noisy observations of the state:

Yk =CXk+Zk , ∀ k ∈ K , (4)

where C , (1,0) and Zk is zero-mean additive white Gaus-
sian noise. We will explain in Section 3 how the variance of
this noise is chosen. Figure 3 depicts the factor graph repre-
sentation of (2) and (4).

To complete our model, we noisily connect the states
of the “periodic” sub-model and the “smooth” sub-model at
time instants {tℓ}ℓ∈L as

Sℓ = Xℓ+Uℓ , ∀ ℓ ∈ L , (5)

where Uℓ is zero-mean white Gaussian noise with diagonal

covariance matrix VU , diag(σ2
U,0,σ

2
U,1). The factor graph

representation of (2) and (5) is shown in Figure 4.
We now have defined the overall factor graph in Figure 1

with Figures 2–4 inserted into the respective boxes. Note that
the exact topology of the overall factor graph depends on the
time stamps {tk}k∈K and the number of connections N per
period T .

We conclude this section with two remarks. Firstly, note
that the effect of a forgetting factor is similar (but, in this
case, not equal) to additive state noise.

Secondly, it is not difficult to extend the line model (2)
and (4) to higher order polynomials, but it does not seem to
be helpful in this application.

3. ALGORITHMS

Given the observations {yk}k∈K of the microwave link at-
tenuation with corresponding time stamps tk, we wish to
compute estimates ŷk of the dry-air baseline and class labels
ck ∈ {0,1} where 0 means “rainy” and 1 means “dry”.

We propose both an iterative offline algorithm for esti-
mating past rainfall and an online algorithm for estimating
present rainfall. For the offline algorithm, the whole data yk
for k ∈ K is processed at once.

For the online algorithm, data arrives sequentially in a
stream, and the output is produced in a stream too. Instead
of using a block-based version of the offline algorithm, we
propose a non-iterative algorithm where definitive estimates
ŷk and class labels ck are calculated once the data item yk has
arrived.

Both algorithms can cope with irregular sampling and in-
tervals of missing data, and both algorithms are shown to
work well on real data.

We have not yet explained how the distinction between
“dry” and “rainy” data items is modelled. We propose to
achieve this by considering a time-varying variance σ2

ck
of

the observation noise Zk in (4), depending on the class label
ck. Since we expect “rainy” data to have a larger offset from
the dry-air baseline than “dry” data we choose σ2

0 ≫ σ2
1 . All

model and algorithm parameters are listed in Table 1.

3.1 Message Passing and Classification

The algorithms presented here are constructed from sum-
product message passing in the overall factor graph of Fig-
ure 1 with Figures 2–4 inserted into the respective boxes. Ev-
ery edge in the graph corresponds to a variable and is asso-
ciated with a forward message sent in the same direction as
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the direction of the edge and a backward message sent in the
opposite direction. We use arrows to distinguish between for-

ward messages (−→· ) and backward messages (←−· ). Messages
leaving a node on some edge are calculated from messages
entering the node on all other edges using the sum-product
rule. (See [10] for the use of the sum-product rule and Gaus-
sian factor graphs.)

In this graph all messages are scaled and potentially de-
generate (multivariate) Gaussian probability density func-
tions. E.g., the forward message on some edge X is

−→
µX (x)∝ e−(x−−→mX )

T−→WX (x−
−→mX )/2 , (6)

where −→mX is the mean vector,
−→
W−1

X is the covariance matrix
(if it exists), and ∝ denotes equality up to a constant. Any
message is thus parameterized by its mean and its inverse

covariance matrix. If X is a scalar then we write
−→
σ 2
X instead

of
−→
W−1

X .

For messages of the form (6), the application of a for-

getting factor γ amounts to multiplying
−→
WX by γ . On every

edge with square brackets “
][

” in Figures 2–4, the forward
as well as the backward message undergoes this manipula-
tion. For all nodes in Figures 2–4, the message update rules
for Gaussian messages are listed and derived in [10]. An
estimate x̂ of some variable X in the graph is calculated as

x̂= argmaxx
−→
µX (x)

←−
µX(x).

We propose to alternate between

1. calculating
−→
µỸk ,
←−
µỸk , and

ŷk = argmax
y

−→
µỸk(y)

←−
µỸk (y) , ∀ k ∈ K , (7)

for fixed class labels ck and

2. updating class labels ck based on the messages
−→
µỸk .

For fixed class labels ck the messages
−→
µỸk and

←−
µỸk in (7)

are calculated by message passing in the overall graph. As
a by-product of Step 1, we calculate state estimates x̂m =
argmaxx

−→µXm(x)
←−µXm(x) for m = 1, . . . ,M, and hence we are

able to extract dry-air baseline estimates [x̂ℓ]1 at time instants
tℓ for ℓ ∈ L where no data yk is present.

For k ∈ K, the message
−→
µYk(y) represents a probability

density function on Yk given the observations Yj = y j for all
j ∈ K\{k} and the overall model. We classify the data item

yk as “rainy” if the value yk lies outside of a confidence inter-

val [−→mYk −θ
−→
σYk ,∞), i.e:

ck =

{

0 if yk < ηk

1 else
, ηk ,

−→mYk −θ
−→
σYk , (8)

where θ is a parameter of the algorithm. Note that in this ap-
plication we only choose “rainy” if yk is less than the detec-
tion thresholdηk. If the outliers were expected to lie below as
well as above the dry-air baseline then we would consider a

confidence interval [−→mYk −θ
−→
σYk ,

−→
mYk +θ

−→
σYk ]. Also note that

the threshold ηk is time-varying and adapts automatically to
non-uniform time stamps and hence to missing data.

3.2 Offline Algorithm

Let R1, R2 be the number of recursions in the loops. The
algorithm is the following:

1. init

2. Do R1 times (or until convergence): smooth

3. Do R2 times:

(a) periodic

(b) Do R1 times (or until convergence): smooth

4. end

The subroutines (with reference to Figures 1–4) are:

init: Set ck = 1 for all k ∈ K. Set
−→
WS̃ℓ

= 0 for all ℓ ∈ L.

Set
−→
WX0 = 0 and

←−
WXM = 0.

smooth: Given ck for all k ∈ K and
−→
µS̃ℓ

for all ℓ ∈ L, do
forward and backward message passing in the “smooth”

sub-model. Calculate
−→
µYk for all k ∈ K, and

←−
µS̃ℓ

for all

ℓ ∈ L. For all k ∈ K apply the classification rule (8) to
update ck. If ck is unchanged for all k ∈ K then declare
convergence.

periodic: Given
←−
µS̃ℓ

for all ℓ ∈ L, do forward and back-

ward message passing in all N state spaces of the “peri-

odic” sub-model. Calculate
−→
µS̃ℓ

for all ℓ ∈ L.

end: Calculate ŷk for all k ∈ K and [x̂ℓ]1 for all ℓ ∈ L.

3.3 Online Algorithm

We assume that the data item yk with time stamp tk has ar-
rived and we want to compute an estimate ŷk and a class label
ck. The corresponding factor graph is depicted in Figure 5. In
contrast to the offline model in Figure 1, the factor graph now
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Figure 5: Example overall factor graph for the online algorithm. The boxes , , and are defined in Figures 3–2.

extends infinitely from tk on towards the future. The purpose
of this is, that we want to consider the backward message
←−
µXk without having future observations, i.e., only due to the
“periodic” sub-model.

The factor graph in Figure 5 still has cycles and there-
fore algorithms based directly on this graph are still iterative.
Moreover, since the graph extends infinitely into the future
a direct application of message passing is not practical. To
make the algorithm non-iterative and practical we make the
following simplifications:

1. No iterations are done for classification.

2. For all ℓ ∈ L, the message
←−
µS̃ℓ is calculated assuming a

neutral message
←−
µXℓ , i.e.,

←−
µXℓ(x) = 1. In contrast, for all

k ∈ K, the message
−→
µYk , and hence the classification and

the dry-air baseline estimation, is calculated from a non-

neutral message
←−
µXk . We formulate the calculation of this

message below.

3. The messages
←−
µSℓ are assumed to be neutral, i.e.,

←−
µSℓ(s) = 1 for all ℓ ∈ L. Hence, the message

−→
µS̃ℓ is al-

ways calculated as
−→
µS̃ℓ(s) =

−→
µSℓ′ (s)

β , where ℓ′ is chosen
such that tℓ′ = tℓ−T .

4. For all ℓ > k we select the connection noise variance in
the nodeN (0,VU) as VU = 0 (see Figure 4).

Simplifications 3 and 4 allow us to formulate the (non-

neutral) message
←−
µXk despite the infinite extension of the

graph towards the future. In the following we formulate the

message
←−
µX̃k+1

(see Figure 4) from which
←−
µXk can easily be

obtained.
We start by defining

−→
µn ,

−→
µSℓn (as depicted in Figure 5),

where ℓn is chosen such that tk+1− tℓn = (N−n+1)T/N for

n= 1, . . . ,N. Let
−→
Wn and

−→
mn be the inverse covariancematrix

and the mean vector of
−→
µn respectively.

It can be shown, that
←−
WX̃k+1

is given by the solution of the

Lyapunov equation

←−
WX̃k+1

−βρT
(

AN
)T←−
WX̃k+1

AN =
N

∑
n=1

ρnT/N(An)
T−→
WnA

n , (9)

where A,
(

1 T/N
0 1

)

. Equation (9) can be solved by vectoriz-

ing
←−
WX̃k+1

. Similarly, the weighted mean
←−
WX̃k+1

←−m X̃k+1
can be

calculated as

←−
WX̃k+1

←−m X̃k+1
=
(

I−βρT
(

AN
)T
)−1 N

∑
n=1

ρnT/N(An)
T−→
Wn

−→mn .

(10)

Parameter Offline Online
N No. connect. in period. mod. 9 9
θ Threshold 10 23

ρ Forget. fact. smooth model 10−8 10−8

β Forget. fact. period. model 0.9 0.9
σ2
0 “Rainy” noise variance 12.25 12.25

σ2
1 “Dry” noise variance 0.01 0.01

σ2
U,0 Connection noise var. 0.16 0.16

σ2
U,1 Connection noise var. 1 1

R1, R2 Recursions 5, 2 –

Table 1: Parameters of the model and the algorithms

(Note that (·)T means matrix transposition, while (·)T raises
a quantity to the power of the period T .)

The algorithm (with reference to Figures 2–5) is the fol-
lowing:

1. Initialize the algorithm by setting
−→
µX0(x) = 1 and

−→
µn(s) =

1 for all n= 1, . . . ,N. Let k = 0.

2. Assign k′ := k, i.e., all processing has been done until and
including time tk′ . Fetch the next data item yk with time
stamp tk.

3. For each ℓ ∈ L∩{k′ + 1,k′+ 2, . . . ,k− 1} chose ℓ′ ∈ L
such that tℓ′ = tℓ−T and do the following:

(a) From
−→
µXℓ−1

(assuming
←−
µXℓ is neutral) calculate

←−
µS̃ℓ .

From
−→
µSℓ′ and

←−
µS̃ℓ calculate

−→
µSℓ .

(b) From
−→
µSℓ′ (assuming

←−
µSℓ is neutral) calculate

−→
µS̃ℓ .

From
−→
µS̃ℓ and

−→
µXℓ−1

calculate
−→
µXℓ . Let [x̂ℓ]1 =

[−→mXℓ

]

1
.

4. Calculate
←−
µX̃k+1

according to in (9) and (10). From
←−
µX̃k+1

calculate
←−
µXk (Figure 4). From

←−
µXk and

−→
µXk−1

calculate
−→
µỸk (Figure 3). Calculate the estimate ŷk and the class

label ck according to (7) and (8) respectively.

5. Go to Step 2.

4. RESULTS

Both algorithms have been applied to real-world data, of
which we report the following example. In this example, the
microwave link operates at a single frequency of 38 GHz and
covers a distance of 2876 m. The link gain is provided in
units dBm in irregular time intervals of approximately 3 min
with a quantization of 0.1 dBm. Part of the data was deleted
on purpose to examine the behavior of the algorithms in the

974



1 2 3 4 5

−48

−46

−44

−42

−40

 

 

yk
ŷk
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Figure 6: Offline algorithm

case of missing data. The algorithm parameters were set as
in Table 1.

Figures 6 and 7 show yk (gray) and ŷk (solid) at time
instants tk for k ∈ K, and [x̂ℓ]1 (points) at time instants tℓ
for ℓ ∈ L both for the offline and the online algorithm re-
spectively. For illustration the classification threshold ηk at
time instants tk for k ∈ K is shown as dotted lines. Both fig-
ures depict the same time window and the same measured
data. While the online algorithm uses this data window ex-
clusively, the offline algorithm was started 15 days earlier in
order to train the “periodic” sub-model.

Figure 8 shows rain estimates obtained with the offline
algorithm. (When compared with Figure 6, the time axes is
zoomed onto the rain event.) These estimates are not opti-
mized in any way: We simply take as an estimate of the rain
rate the offset yk− ŷk for time instants tk, k ∈ K, at which we
classify ck = 0. The measured rainfall in Figure 8 is taken
from a rain gauge nearby, which, however, is not a perfect
ground truth [3].

5. CONCLUSION AND OUTLOOK

We have described a factor graph representation of a stochas-
tic model for quasi-periodic signals and we have devised al-
gorithms based on the factor graph. Surprisingly, conver-
gence seems to be fast despite the many loops.

To our best knowledge, this seems to be the first model
which takes the daily cycle in microwave link attenuation
data into account. For the example data, both algorithms
were found to work satisfactorily. However, the offline ver-
sion learns a more consistent “periodic” sub-model than the
online version.

In further developments of this model, it might be valu-
able to include maximum likelihood estimates of the noise
variances σ2

0 , σ
2
1 , σ

2
U,0, and σ

2
U,1. For rainfall estimation, the

inclusion of an existing dynamical model of rain attenuation
(e.g. [7]) might be considered. Finally, the combination of
attenuation data from multiple microwave links could make
the algorithm more robust.
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